1
|
Oktavia NS, Mustika A, Hidayati AN. Mechanism of the effect of Piper crocatum extract on wound healing of Wistar rats post-excision mammary tumor based on IL-10 level, TGF-β1 expression, VEGF expression, Collagen density, and clinical features. Open Vet J 2025; 15:1264-1278. [PMID: 40276181 PMCID: PMC12017729 DOI: 10.5455/ovj.2025.v15.i3.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/04/2025] [Indexed: 04/26/2025] Open
Abstract
Background The incidence of wound complications after breast cancer surgery is > 30%. Delayed wound healing increases the risk of systemic recurrence up to three-fold after excisional surgery for primary breast cancer. Patients with breast malignant tumors exhibit immune system dysfunction while T cells play a major role in the inflammatory process of wound healing. The time required to achieve wound closure depends on the severity of the wound. The content of Piper crocatum ethanol extract contains alkaloids, flavonoids, tannins, steroids, and polyphenols. Flavonoid and polyphenol compounds are antioxidant, antidiabetic, anticancer, antiseptic, and anti-inflammatory. Aim To determine whether P. crocatum extract increases interleukin-10 (IL-10) levels, TGF-β1 and VEGF expression, collagen density, and the clinical features of wounds, and how the mechanism works on wound healing of Wistar rats after excision of mammary tumors. Methods This study used 35 female Wistar rats, 30 mammary tumor models by injecting 3-5% benzopyrene as much as 50 mg/Kg.BW in 5 injections into the mammary glands/mammae every 2 days as much as 10 mg/kg.BW. Thirty rats were divided into 5 groups; red betel extract gel 50%, 25%, and 12.5%; povidone iodine group as a positive control; and carboxymethyl cellulose natrium (CMC na) group as a negative control, 5 normal wounds as controls. Treatment was given 2 times a day for 14 days. Results Multiple linear regression results; P. crocatum extract decreased IL-10 levels by -0.64 (p = 0.025), decreased TGF-β1 expression -0.832 (p = 0.001), increased VEGF expression by 0.638 (p = 0.026), and decreased collagen density by -0.605 (p = 0.037) in mammary tumor post-excision rat wounds. Conclusion There is an effect of P. crocatum extract on the wound of Wistar rats after excision of mammary tumor by the mechanism of decreased IL-10 levels and TGF-β1 expression, increased VEGF expression, and decreased collagen density through increased VEGF expression is studied in this article.
Collapse
Affiliation(s)
- Nike Sari Oktavia
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Midwifery, Polytechnic of Health Ministry of Health Padang, Padang, Indonesia
| | - Arifa Mustika
- Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Afif Nurul Hidayati
- Department of Dermatology Venereology and Aesthetics, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Dermatology and Venereology, Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Airlangga Teaching Hospital, Surabaya, Indonesia
| |
Collapse
|
2
|
Setyawati A, Yusuf S, Jafar N, Sagita RW. Exploring herbal remedy utilization for wound healing: Patterns, patient preferences, and implications for nursing practice. Int J Nurs Knowl 2024; 35:363-374. [PMID: 38031257 DOI: 10.1111/2047-3095.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE The utilization of herbal remedies for wound healing is a notable aspect of traditional medicine practices. Understanding herbal use among patients yields insights for nursing care enhancement. This study aimed to investigate the utilization of herbal remedies for wound healing among diabetic patients. METHODS A total of 453 participants were enrolled, with demographic data, including age, sex, occupation, education level, residence, ethnic group, distance from health service, herbal use duration, and wound duration presented. Descriptive statistics were used to analyze the data, including means, standard deviations, ranges, and percentages. FINDINGS The average participant age was 55.39 years, with most being non-civil servant workers (60.3%) and having a low education level (67.1%). Indian almond wood (9.7%) and green betel (6.8%) were the most commonly used herbs for wound healing. Family members were the primary source of information (29.1%), and 43.7% obtained herbs from personal gardens. Although 94.2% of participants did not disclose herbal use to health liaisons, 53.4% used herbs specifically for wound healing. Users reported both positive and negative effects on wounds from various herbs, indicating variability in experiences. However, the consistency of herb usage by individual patients was uncertain. CONCLUSIONS The study identified diverse herbal remedies used for wound healing among patients, driven by familial recommendations. Usage pattern diversity and effects signal necessity for researching herb safety and efficacy. Clarifying the impact of consistent herb usage on wound healing is essential for understanding patients' preferences and practices. IMPLICATIONS FOR CLINICAL PRACTICE These findings emphasize the importance of open communication between patients and healthcare providers regarding herbal remedy use. Nurses should acknowledge patients' preferences for traditional healing practices while ensuring they receive evidence-based care. Patient-centered herbal strategies enhance nursing practice, fostering holistic wound care. Further research can guide nursing interventions, facilitate informed decision-making, and improve patient outcomes.
Collapse
Affiliation(s)
- Andina Setyawati
- Department of Medical and Surgical Nursing, Faculty of Nursing, Universitas Hasanuddin, Makassar, Indonesia
| | - Saldy Yusuf
- Department of Medical and Surgical Nursing, Faculty of Nursing, Universitas Hasanuddin, Makassar, Indonesia
| | - Nuurhidayat Jafar
- Department of Community Nursing, Faculty of Nursing, Universitas Hasanuddin, Makassar, Indonesia
| | | |
Collapse
|
3
|
Setyawati A, Saleh A, Tahir T, Yusuf S, Syahrul S, Aminuddin A, Raihan M, Jafar N, Hamzah H, Arfian N. Matrix Metalloproteinase-9 Testing of Golden Rice Cookies With Piper Crocatum Active Extract for Preventing Foot Ulcers in Patients With Diabetes: Protocol for a Randomized Controlled Trial. JMIR Res Protoc 2024; 13:e49940. [PMID: 38422498 PMCID: PMC10940992 DOI: 10.2196/49940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/15/2023] [Accepted: 11/01/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) present a formidable challenge to both patients and health care systems. DFUs significantly reduce the quality of life for patients, prolong hospital stays, and are the cause of approximately 70,000 lower limb amputations across the globe annually. Prevention of DFUs primarily involves the optimization of blood sugar levels and the effective management of complications, particularly peripheral neuropathy. Golden Rice has been proven to lower blood sugar levels due to its beta-carotene content, and Piper crocatum (P. crocatum) has been found to be effective in reducing the risk factors of DFUs through biomolecular regulation because of its polyphenol content. OBJECTIVE The principal objective of this study is to identify the efficacy of P. crocatum-enriched cookies, with Golden Rice as their primary ingredient, in preventing DFUs. The evaluation will center on their impact on the expression of matrix metalloproteinase-9 (MMP-9), a pivotal factor in the development of DFUs. METHODS This study is an experimental clinical research that follows the randomized controlled trial method and uses a single-blind design. The participants in the study are outpatients from primary health centers in Makassar, Indonesia, who have been diagnosed with diabetes mellitus. The sample for the study will be randomly selected and subsequently categorized into 2 groups: the intervention group and the control group. The intervention group consumes P. crocatum-enriched Golden Rice cookies, while the control group receives cookies without these additives. The participants from both groups will consume their respective cookies (packaged identically) twice a day for 14 days. The cookies will be prepared according to a modified recipe with an emphasis on low glucose content, resulting in 51 calories per cookie, comprising 1% carbohydrates, 6% fat, 4% cholesterol, and 4% fiber, excluding gluten, sugar, and salt. They will be baked at 158°C for 20 minutes. The process involves the addition of 20% Golden Rice and 10% P. crocatum ethanol extract, both prepared via maceration with 96% ethanol. The dependent variable in this study is the expression of gelatinases matrix metalloproteinase, to be assessed at 2 distinct time points-preintervention (pretest) and postintervention (posttest)-with the evaluation conducted through the western blotting method. RESULTS The recruitment and testing phase started in January 2024. The study is scheduled to be completed by the end of March 2024. Data analysis will commence in April 2024, and the publication of the results is anticipated in the same year (2024). The study will report on the changes in primary data, encompassing gelatinases matrix metalloproteinase, as well as secondary data, including the ankle-brachial index, neuropathy score, and random blood glucose level. CONCLUSIONS The findings of this trial are expected to significantly impact the selection of strategies by health care practitioners to enhance diabetes self-management, particularly in the domain of therapeutic snacking, for patients diagnosed with diabetes mellitus. TRIAL REGISTRATION Thai Clinical Trials Registry TCTR20230502001; https://www.thaiclinicaltrials.org/show/TCTR20230502001. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/49940.
Collapse
Affiliation(s)
- Andina Setyawati
- Medical Surgical Nursing Department, Faculty of Nursing, Hasanuddin University, Makassar, Indonesia
| | - Ariyanti Saleh
- Department of Psychiatric Nursing, Faculty of Nursing, Hasanuddin University, Makassar, Indonesia
| | - Takdir Tahir
- Medical Surgical Nursing Department, Faculty of Nursing, Hasanuddin University, Makassar, Indonesia
| | - Saldy Yusuf
- Medical Surgical Nursing Department, Faculty of Nursing, Hasanuddin University, Makassar, Indonesia
| | - Syahrul Syahrul
- Medical Surgical Nursing Department, Faculty of Nursing, Hasanuddin University, Makassar, Indonesia
| | - Aminuddin Aminuddin
- Department of Nutrition, Medicine Faculty, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Raihan
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Nuurhidayat Jafar
- Community Health Nursing Department, Nursing Faculty, Hasanuddin University, Makassar, Indonesia
| | - Hasyrul Hamzah
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Kalimantan Timur, Indonesia
| | - Nur Arfian
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
4
|
He W, Tang M, Gu R, Wu X, Mu X, Nie X. The Role of p53 in Regulating Chronic Inflammation and PANoptosis in Diabetic Wounds. Aging Dis 2024; 16:AD.2024.0212. [PMID: 38377027 PMCID: PMC11745441 DOI: 10.14336/ad.2024.0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
Diabetic wounds represent a formidable challenge in the clinical management of diabetes mellitus, markedly diminishing the patient's quality of life. These wounds arise from a multifaceted etiology, with the pathophysiological underpinnings remaining elusive and complex. Diabetes precipitates neuropathies and vasculopathies in the lower extremities, culminating in infections, ulcerations, and extensive tissue damage. The hallmarks of non-healing diabetic wounds include senescence, persistent inflammation, heightened apoptosis, and attenuated cellular proliferation. The TP53 gene, a pivotal tumor suppressor frequently silenced in human malignancies, orchestrates cellular proliferation, senescence, DNA repair, and apoptosis. While p53 is integral in cell cycle regulation, its role in initial tissue repair appears to be deleterious. In typical cutaneous wounds, p53 levels transiently dip, swiftly reverting to baseline. Yet in diabetic wounds, protracted p53 activation impedes healing via two distinct pathways: i) activating the p53-p21-Retinoblastoma (RB) axis, which halts the cell cycle, and ii) upregulating the cGAS-STING and nuclear factor-kappaB (NF-κB) cascades, instigating ferroptosis and pyroptosis. Furthermore, p53 intersects with various metabolic pathways, including glycolysis, gluconeogenesis, oxidative phosphorylation, and autophagy. In diabetic wounds, p53 may drive metabolic reprogramming, thus potentially derailing macrophage polarization. This review synthesizes case studies investigating the therapeutic modulation of p53 in diabetic wounds care. In summation, p53 modulates chronic inflammation and cellular aging within diabetic cutaneous wounds and is implicated in a novel cell death modality, encompassing ferroptosis and pyroptosis, which hinders the reparative process.
Collapse
Affiliation(s)
- Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Ming Tang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis 38105, USA.
| | - Rifang Gu
- School Medical Office, Zunyi Medical University, Zunyi 563006, China.
| | - Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xinrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
5
|
Yadav JP, Singh AK, Grishina M, Pathak P, Verma A, Kumar V, Kumar P, Patel DK. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology 2024; 32:149-228. [PMID: 38212535 DOI: 10.1007/s10787-023-01407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Diabetes mellitus is a prevalent cause of mortality worldwide and can lead to several secondary issues, including DWs, which are caused by hyperglycemia, diabetic neuropathy, anemia, and ischemia. Roughly 15% of diabetic patient's experience complications related to DWs, with 25% at risk of lower limb amputations. A conventional management protocol is currently used for treating diabetic foot syndrome, which involves therapy using various substances, such as bFGF, pDGF, VEGF, EGF, IGF-I, TGF-β, skin substitutes, cytokine stimulators, cytokine inhibitors, MMPs inhibitors, gene and stem cell therapies, ECM, and angiogenesis stimulators. The protocol also includes wound cleaning, laser therapy, antibiotics, skin substitutes, HOTC therapy, and removing dead tissue. It has been observed that treatment with numerous plants and their active constituents, including Globularia Arabica, Rhus coriaria L., Neolamarckia cadamba, Olea europaea, Salvia kronenburgii, Moringa oleifera, Syzygium aromaticum, Combretum molle, and Myrtus communis, has been found to promote wound healing, reduce inflammation, stimulate angiogenesis, and cytokines production, increase growth factors production, promote keratinocyte production, and encourage fibroblast proliferation. These therapies may also reduce the need for amputations. However, there is still limited information on how to prevent and manage DWs, and further research is needed to fully understand the role of alternative treatments in managing complications of DWs. The conventional management protocol for treating diabetic foot syndrome can be expensive and may cause adverse side effects. Alternative therapies, such as medicinal plants and green synthesis of nano-formulations, may provide efficient and affordable treatments for DWs.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur, 209217, India.
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454008, Russia
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance, and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to Be University), Hyderabad, 502329, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
6
|
Tasneem S, Ghufran H, Azam M, Arif A, Bin Umair M, Yousaf MA, Shahzad K, Mehmood A, Malik K, Riazuddin S. Cassia Angustifolia Primed ASCs Accelerate Burn Wound Healing by Modulation of Inflammatory Response. Tissue Eng Regen Med 2024; 21:137-157. [PMID: 37847444 PMCID: PMC10764710 DOI: 10.1007/s13770-023-00594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Thermal traumas impose a huge burden on healthcare systems. This merits the need for advanced but cost-effective remedies with clinical prospects. In this context, we prepared a regenerative 3D-construct comprising of Cassia angustifolia extract (SM) primed adipose-derived stem cells (ASCs) laden amniotic membrane for faster burn wound repair. METHODS ASCs were preconditioned with SM (30 µg/ml for 24 h), and subsequently exposed to in-vitro thermal injury (51 °C,10 min). In-vivo thermal injury was induced by placing pre-heated copper-disc (2 cm diameter) on dorsum of the Wistar rats. ASCs (2.0 × 105) pre-treated with SM (SM-ASCs), cultured on stromal side of amniotic membrane (AM) were transplanted in rat heat-injury model. Non-transplanted heat-injured rats and non-heat-injured rats were kept as controls. RESULTS The significantly upregulated expression of IGF1, SDF1A, TGFβ1, VEGF, GSS, GSR, IL4, BCL2 genes and downregulation of BAX, IL6, TNFα, and NFkB1 in SM-ASCs in in-vitro and in-vivo settings confirmed its potential in promoting cell-proliferation, migration, angiogenesis, antioxidant, cell-survival, anti-inflammatory, and wound healing activity. Moreover, SM-ASCs induced early wound closure, better architecture, normal epidermal thickness, orderly-arranged collagen fibers, and well-developed skin appendages in healed rat-skin transplanted with AM+SM-ASCs, additionally confirmed by increased expression of structural genes (Krt1, Krt8, Krt19, Desmin, Vimentin, α-Sma) in comparison to untreated-ASCs laden-AM transplanted in heat injured rats. CONCLUSION SM priming effectively enabled ASCs to counter thermal injury by significantly enhancing cell survival and reducing inflammation upon transplantation. This study provides bases for development of effective combinational therapies (natural scaffold, medicine, and stem cells) with clinical prospects for treating burn wounds.
Collapse
Affiliation(s)
- Saba Tasneem
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Maryam Azam
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Amna Arif
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Musab Bin Umair
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Muhammad Amin Yousaf
- Jinnah Burn & Reconstructive Surgery Centre, Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
- CosmoPlast, Lahore, Pakistan
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan.
| | - Kausar Malik
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan.
- Jinnah Burn & Reconstructive Surgery Centre, Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
7
|
Taghizadeh F, Mehryab F, Mortazavi SA, Rabbani S, Haeri A. Thiolated chitosan hydrogel-embedded niosomes: A promising crocin delivery system toward the management of aphthous stomatitis. Carbohydr Polym 2023; 318:121068. [PMID: 37479428 DOI: 10.1016/j.carbpol.2023.121068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 07/23/2023]
Abstract
Aphthous stomatitis is a common inflammatory oral disease with challenging management. Crocin is a natural carotenoid that has shown great anti-inflammatory properties. The aim of this study was to develop thiolated chitosan (TCS)-based hydrogels containing niosomes to serve as a mucoadhesive crocin delivery system for aphthous stomatitis. Crocin-loaded niosomes were prepared and the impact of surfactant type, cholesterol content, and lipid to drug ratio on the characteristics of niosomes was evaluated. TCS was synthesized and the success of thiolation was investigated. The optimum niosomal formulation was loaded into the hydrogel and the hybrid system was characterized regarding the morphology, mucoadhesive properties, viscosity, chemical structure, in vitro drug release, and in vivo efficacy. The optimized niosome formulation showed 77% crocin entrapment, a particle diameter of 59 nm, and a zeta potential of -18 mV. The niosome-containing hydrogel exhibited pseudoplastic rheological behavior, mucoadhesive properties, suitable swelling, and sustained release of crocin. In vivo study revealed that the niosome-containing hydrogel improved ulcer healing and decreased the expression of tumor necrosis factor-alpha (TNF-α) and p53 while increasing the expression of vascular endothelial growth factor (VEGF) and alpha-smooth muscle actin (α-SMA). Collectively, TCS hydrogel-embedded crocin-loaded niosomes is a promising therapeutic option for aphthous stomatitis. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE: Crocin (PubChem CID: 5281233) Chitosan (PubChem CID: 71853) Thioglycolic acid (PubChem CID: 1133) 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (PubChem CID: 2723939) 5,5'-dithiobis (2-nitrobenzoic acid) (PubChem CID: 6254) Cholesterol (PubChem CID: 5997).
Collapse
Affiliation(s)
- Fatemeh Taghizadeh
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mortazavi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|