1
|
Jangra A, Kumar K, Maikhuri S, Bhandari MS, Pandey S, Singh H, Barthwal S. Unveiling stress-adapted endophytic bacteria: Characterizing plant growth-promoting traits and assessing cross-inoculation effects on Populus deltoides under abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108610. [PMID: 38615447 DOI: 10.1016/j.plaphy.2024.108610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
In the face of the formidable environmental challenges precipitated by the ongoing climate change, Plant Growth-Promoting Bacteria (PGPB) are gaining widespread acknowledgement for their potential as biofertilizers, biocontrol agents, and microbial inoculants. However, a knowledge gap pertains to the ability of PGPB to improve stress tolerance in forestry species via cross-inoculation. To address this gap, the current investigation centres on PGPBs, namely, Acinetobacter johnsonii, Cronobacter muytjensii, and Priestia endophytica, selected from the phyllosphere of robust and healthy plants thriving in the face of stress-inducing conditions. These strains were selected based on their demonstrated adaptability to saline, arid, and nitrogen-deficient environments. The utilization of PGPB treatment resulted in an improvement of stomatal conductance (gs) and transpiration rate (E) in poplar plants exposed to both salt and drought stress. It also induced an increase in essential biochemical components such as proline (PRO), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). These reactions were accompanied by a decrease in leaf malonaldehyde (MDA) content and electrolyte leakage (EL). Furthermore, the PGPB treatment demonstrated a notable enhancement in nutrient absorption, particularly nitrogen and carbon, achieved through the solubilization of nutrients. The estimation of canopy temperature via thermal imaging proved to be an efficient method for distinguishing stress reactions in poplar than conventional temperature recording techniques. In summation, the utilization of PGPB especially Cronobacter muytjensii in this study, yielded profound improvements in the stress tolerance of poplar plants, manifesting in reduced membrane lipid peroxidation, enhanced photosynthesis, and bolstered antioxidant capacity within the leaves.
Collapse
Affiliation(s)
- Anamika Jangra
- Plant Physiology Discipline, Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 006, Uttarakhand, India.
| | - Kishan Kumar
- Plant Physiology Discipline, Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 006, Uttarakhand, India.
| | - Sandeep Maikhuri
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 006, Uttarakhand, India.
| | - Maneesh S Bhandari
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 195, Uttarakhand, India.
| | - Shailesh Pandey
- Forest Pathology Discipline, Division of Forest Protection, Forest Research Institute, Dehradun, 248 006, Uttarakhand, India.
| | - Hukum Singh
- Plant Physiology Discipline, Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 006, Uttarakhand, India.
| | - Santan Barthwal
- Plant Physiology Discipline, Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 006, Uttarakhand, India.
| |
Collapse
|
2
|
Mahlangu SG, Zulu N, Serepa-Dlamini MH, Tai SL. Isolation, identification, and biological characterization of bacterial endophytes isolated from Gunnera perpensa L. FEMS Microbiol Lett 2024; 371:fnae056. [PMID: 39039013 PMCID: PMC11321073 DOI: 10.1093/femsle/fnae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/23/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024] Open
Abstract
In the present study, eleven endophytic bacterial strains, Herbaspirillum sp. (GP-SGM1, GP-SGM2, GP-SGM3, and GP-SGM11), Pseudomonas sp. (GP-SGM4, GP-SGM5), Novosphingobium sp. GP-SGM6, Chryseobacterium sp. GP-SGM7, Labedella sp. GP-SGM8, Brevibacterium sp. GP-SGM9, and Pseudomonas sp. GP-SGM10, were isolated from the rhizomes of Gunnera perpensa L. The growth kinetics, assessed through maximum growth rates (μmax) and optical density (OD) values, revealed that GP-SGM7 exhibited highest μmax values of 0.33 ± 0.01 hours (h)-1 with an OD of 4.20 ± 0.04. In contrast, GP-SGM11 exhibited the lowest μmax of 0.12 ± 0.05 h-1 and the smallest OD of 1.50 ± 0.00. In addition, the endophyte crude extracts were tested for antibacterial activity against five pathogenic strains using the disk diffusion method, with GP-SGM7 crude extracts exhibiting promising antibacterial activity against Klebsiella pneumoniae and Staphylococcus aureus. Antioxidant activity was determined by DPPH (2, 2-diphenyl-1-picrylhydrazyl) and FRAP (ferric reducing antioxidant power) assays. The crude extracts of GP-SGM1, GP-SGM7, GP-SGM9, and GP-SGM10 were the most effective at scavenging DPPH radicals, with GP-SGM7 also exhibiting a high FRAP value of 0.54 ± 0.01. These findings emphasize the therapeutic potential of endophytic bacteria from G. perpensa L. in addressing skin-related issues, including bacterial infections and free radicals.
Collapse
Affiliation(s)
- Siphiwe Godfrey Mahlangu
- Department of Chemical Engineering, Centre for Bioprocess Engineering Research, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa
| | - Nodumo Zulu
- Department of Chemical Engineering, Centre for Bioprocess Engineering Research, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa
| | - Mahloro Hope Serepa-Dlamini
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, PO Box 17011, Johannesburg 2028, South Africa
| | - Siew Leng Tai
- Department of Chemical Engineering, Centre for Bioprocess Engineering Research, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa
- Department of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
3
|
Adedayo AA, Babalola OO. Fungi That Promote Plant Growth in the Rhizosphere Boost Crop Growth. J Fungi (Basel) 2023; 9:239. [PMID: 36836352 PMCID: PMC9966197 DOI: 10.3390/jof9020239] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The fungi species dwelling in the rhizosphere of crop plants, revealing functions that endeavor sustainability of the plants, are commonly referred to as 'plant-growth-promoting fungi' (PGPF). They are biotic inducers that provide benefits and carry out important functions in agricultural sustainability. The problem encountered in the agricultural system nowadays is how to meet population demand based on crop yield and protection without putting the environment and human and animal health at risk based on crop production. PGPF including Trichoderma spp., Gliocladium virens, Penicillium digitatum, Aspergillus flavus, Actinomucor elegans, Podospora bulbillosa, Arbuscular mycorrhizal fungi, etc., have proven their ecofriendly nature to ameliorate the production of crops by improving the growth of the shoots and roots of crop plants, the germination of seeds, the production of chlorophyll for photosynthesis, and the abundant production of crops. PGPF's potential mode of action is as follows: the mineralization of the major and minor elements required to support plants' growth and productivity. In addition, PGPF produce phytohormones, induced resistance, and defense-related enzymes to inhibit or eradicate the invasion of pathogenic microbes, in other words, to help the plants while encountering stress. This review portrays the potential of PGPF as an effective bioagent to facilitate and promote crop production, plant growth, resistance to disease invasion, and various abiotic stresses.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|