1
|
Zhuang H, Zhang X, Wu S, Yong P, Yan H. Opportunities and challenges of foodborne polyphenols applied to anti-aging health foods. Food Sci Biotechnol 2024; 33:3445-3461. [PMID: 39493397 PMCID: PMC11525373 DOI: 10.1007/s10068-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 11/05/2024] Open
Abstract
Abstract With the increasing proportion of the global aging population, aging mechanisms and anti-aging strategies become hot topics. Nonetheless, the safety of non-natural anti-aging active molecule and the changes in physiological function that occur during aging have not been clarified. There is therefore a need to develop safer pharmaceutical interventions for anti-aging. Numerous types of research have shown that food-derived biomolecules are of great interest due to their unique contribution to anti-aging safety issues and the prevention of degenerative diseases. Among these, polyphenolic organic compounds are widely used in anti-aging research for their ability to mitigate the physiological functional changes that occur during aging. The mechanisms include the free radical theory, immune aging theory, cellular autophagy theory, epigenetic modification theory, gut microbial effects on aging theory, telomere shortening theory, etc. This review elucidates the mechanisms underlying the anti-aging effects of polyphenols found in food-derived bioactive molecules, while also addressing the challenges associated with anti-aging pharmaceuticals. The review concludes by offering insights into the current landscape of anti-aging active molecule research, aiming to serve as a valuable resource for further scholarly inquiry. Graphical abstract
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| |
Collapse
|
2
|
Zhang H, Wang H, Qin L, Lin S. Garlic-derived compounds: Epigenetic modulators and their antitumor effects. Phytother Res 2024; 38:1329-1344. [PMID: 38194996 DOI: 10.1002/ptr.8108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/26/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
Cancer is a highly heterogeneous disease that poses a serious threat to human health worldwide. Despite significant advances in the diagnosis and treatment of cancer, the prognosis and survival rate of cancer remain poor due to late diagnosis, drug resistance, and adverse reactions. Therefore, it is very necessary to study the development mechanism of cancer and formulate effective therapeutic interventions. As widely available bioactive substances, natural products have shown obvious anticancer potential, especially by targeting abnormal epigenetic changes. The main active part of garlic is organic sulfur compounds, of which diallyl trisulfide (DATS) content is the highest, accounting for more than 40% of the total composition. The garlic-derived compounds have been recognized as an antioxidant for cancer prevention and treatment. However, the molecular mechanism of the antitumor effect of garlic-derived compounds remains unclear. Recent studies have identified garlic-derived compound DATS that plays critical roles in enhancing CpG demethylation or promoting histone acetylation as an epigenetic inhibitor. Here, we review the therapeutic progress of garlic-derived compounds against cancer through epigenetic pathways.
Collapse
Affiliation(s)
- Huan Zhang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, China
| | - Lin Qin
- Department of Endoscopic Diagnosis and Treatment, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
3
|
Martino E, D’Onofrio N, Balestrieri A, Colloca A, Anastasio C, Sardu C, Marfella R, Campanile G, Balestrieri ML. Dietary Epigenetic Modulators: Unravelling the Still-Controversial Benefits of miRNAs in Nutrition and Disease. Nutrients 2024; 16:160. [PMID: 38201989 PMCID: PMC10780859 DOI: 10.3390/nu16010160] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
In the context of nutrient-driven epigenetic alterations, food-derived miRNAs can be absorbed into the circulatory system and organs of recipients, especially humans, and potentially contribute to modulating health and diseases. Evidence suggests that food uptake, by carrying exogenous miRNAs (xenomiRNAs), regulates the individual miRNA profile, modifying the redox homeostasis and inflammatory conditions underlying pathological processes, such as type 2 diabetes mellitus, insulin resistance, metabolic syndrome, and cancer. The capacity of diet to control miRNA levels and the comprehension of the unique characteristics of dietary miRNAs in terms of gene expression regulation show important perspectives as a strategy to control disease susceptibility via epigenetic modifications and refine the clinical outcomes. However, the absorption, stability, availability, and epigenetic roles of dietary miRNAs are intriguing and currently the subject of intense debate; additionally, there is restricted knowledge of their physiological and potential side effects. Within this framework, we provided up-to-date and comprehensive knowledge on dietary miRNAs' potential, discussing the latest advances and controversial issues related to the role of miRNAs in human health and disease as modulators of chronic syndromes.
Collapse
Affiliation(s)
- Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Antonino Colloca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Camilla Anastasio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Celestino Sardu
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.S.); (R.M.)
| | - Raffaele Marfella
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.S.); (R.M.)
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy;
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| |
Collapse
|
4
|
Ngum JA, Tatang FJ, Toumeni MH, Nguengo SN, Simo USF, Mezajou CF, Kameni C, Ngongang NN, Tchinda MF, Dongho Dongmo FF, Akami M, Ngane Ngono AR, Tamgue O. An overview of natural products that modulate the expression of non-coding RNAs involved in oxidative stress and inflammation-associated disorders. Front Pharmacol 2023; 14:1144836. [PMID: 37168992 PMCID: PMC10165025 DOI: 10.3389/fphar.2023.1144836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Oxidative stress is a state in which oxidants are produced in excess in the body's tissues and cells, resulting in a biological imbalance amid the generation of reactive oxygen and nitrogen species (RONS) from redox reactions. In case of insufficient antioxidants to balance, the immune system triggers signaling cascades to mount inflammatory responses. Oxidative stress can have deleterious effects on major macromolecules such as lipids, proteins, and nucleic acids, hence, Oxidative stress and inflammation are among the multiple factors contributing to the etiology of several disorders such as diabetes, cancers, and cardiovascular diseases. Non-coding RNAs (ncRNAs) which were once referred to as dark matter have been found to function as key regulators of gene expression through different mechanisms. They have dynamic roles in the onset and development of inflammatory and oxidative stress-related diseases, therefore, are potential targets for the control of those diseases. One way of controlling those diseases is through the use of natural products, a rich source of antioxidants that have drawn attention with several studies showing their involvement in combating chronic diseases given their enormous gains, low side effects, and toxicity. In this review, we highlighted the natural products that have been reported to target ncRNAs as mediators of their biological effects on oxidative stress and several inflammation-associated disorders. Those natural products include Baicalein, Tanshinone IIA, Geniposide, Carvacrol/Thymol, Triptolide, Oleacein, Curcumin, Resveratrol, Solarmargine, Allicin, aqueous extract or pulp of Açai, Quercetin, and Genistein. We also draw attention to some other compounds including Zanthoxylum bungeanum, Canna genus rhizome, Fuzi-ganjiang herb pair, Aronia melanocarpa, Peppermint, and Gingerol that are effective against oxidative stress and inflammation-related disorders, however, have no known effect on ncRNAs. Lastly, we touched on the many ncRNAs that were found to play a role in oxidative stress and inflammation-related disorders but have not yet been investigated as targets of a natural product. Shedding more light into these two last points of shadow will be of great interest in the valorization of natural compounds in the control and therapy of oxidative stress- and inflammation-associated disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ousman Tamgue
- Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| |
Collapse
|
5
|
Gagliardi A, Francescato G, Ferrero G, Birolo G, Tarallo S, Francavilla A, Piaggeschi G, Di Battista C, Gallo G, Realis Luc A, Sacerdote C, Matullo G, Vineis P, Naccarati A, Pardini B. The 8q24 region hosts miRNAs altered in biospecimens of colorectal and bladder cancer patients. Cancer Med 2023; 12:5859-5873. [PMID: 36366788 PMCID: PMC10028171 DOI: 10.1002/cam4.5375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The 8q24 locus is enriched in cancer-associated polymorphisms and, despite containing relatively few protein-coding genes, it hosts the MYC oncogene and other genetic elements connected to tumorigenesis, including microRNAs (miRNAs). Research on miRNAs may provide insights into the transcriptomic regulation of this multiple cancer-associated region. MATERIAL AND METHODS We profiled all miRNAs located in the 8q24 region in 120 colorectal cancer (CRC) patients and 80 controls. miRNA profiling was performed on cancer/non-malignant adjacent mucosa, stool, and plasma extracellular vesicles (EVs), and the results validated with The Cancer Genome Atlas (TCGA) data. To verify if the 8q24-annotated miRNAs altered in CRC were dysregulated in other cancers and biofluids, we evaluated their levels in bladder cancer (BC) cases from the TCGA dataset and in urine and plasma EVs from a set of BC cases and healthy controls. RESULTS Among the detected mature miRNAs in the region, 12 were altered between CRC and adjacent mucosa (adj. p < 0.05). Five and four miRNAs were confirmed as dysregulated in the CRC and BC TCGA dataset, respectively. A co-expression analysis of tumor/adjacent tissue data from the CRC group revealed a correlation between the dysregulated miRNAs and CRC-related genes (PVT1 and MYC) annotated in 8q24 region. miR-30d-5p and miR-151a-3p, altered in CRC tissue, were also dysregulated in stool of CRC patients and urine of BC cases, respectively. Functional enrichment of dysregulated miRNA target genes highlighted terms related to TP53-mediated cell cycle control. CONCLUSIONS Altered expression of 8q24-annotated miRNAs may be relevant for the initiation and/or progression of cancer.
Collapse
Affiliation(s)
- Amedeo Gagliardi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
- Department of Computer ScienceUniversity of TurinTurinItaly
| | - Giulia Francescato
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | - Giulio Ferrero
- Department of Computer ScienceUniversity of TurinTurinItaly
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | | | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
- Candiolo Cancer Institute, FPO‐IRCCSCandiolo, TurinItaly
| | | | - Giulia Piaggeschi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
| | - Carla Di Battista
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
| | - Gaetano Gallo
- Universidad Católica San Antonio de Murcia (UCAM) Campus de los JerónimosGuadalupe, MurciaSpain
- Department of Colorectal SurgeryClinica S. RitaVercelliItaly
- Department of Surgical ScienceSapienza University of RomeRomeItaly
| | | | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Center for Cancer Prevention (CPO‐Piemonte)TurinItaly
| | | | - Paolo Vineis
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
- MRC Center for Environment and Health, Imperial CollegeLondonUK
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
- Candiolo Cancer Institute, FPO‐IRCCSCandiolo, TurinItaly
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
- Candiolo Cancer Institute, FPO‐IRCCSCandiolo, TurinItaly
| |
Collapse
|
6
|
Ahmed MB, Islam SU, Alghamdi AAA, Kamran M, Ahsan H, Lee YS. Phytochemicals as Chemo-Preventive Agents and Signaling Molecule Modulators: Current Role in Cancer Therapeutics and Inflammation. Int J Mol Sci 2022; 23:15765. [PMID: 36555406 PMCID: PMC9779495 DOI: 10.3390/ijms232415765] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the deadliest non communicable diseases. Numerous anticancer medications have been developed to target the molecular pathways driving cancer. However, there has been no discernible increase in the overall survival rate in cancer patients. Therefore, innovative chemo-preventive techniques and agents are required to supplement standard cancer treatments and boost their efficacy. Fruits and vegetables should be tapped into as a source of compounds that can serve as cancer therapy. Phytochemicals play an important role as sources of new medication in cancer treatment. Some synthetic and natural chemicals are effective for cancer chemoprevention, i.e., the use of exogenous medicine to inhibit or impede tumor development. They help regulate molecular pathways linked to the development and spread of cancer. They can enhance antioxidant status, inactivating carcinogens, suppressing proliferation, inducing cell cycle arrest and death, and regulating the immune system. While focusing on four main categories of plant-based anticancer agents, i.e., epipodophyllotoxin, camptothecin derivatives, taxane diterpenoids, and vinca alkaloids and their mode of action, we review the anticancer effects of phytochemicals, like quercetin, curcumin, piperine, epigallocatechin gallate (EGCG), and gingerol. We examine the different signaling pathways associated with cancer and how inflammation as a key mechanism is linked to cancer growth.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan
| | | | - Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Perth, WA 6009, Australia
| | - Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
Kilmister EJ, Koh SP, Weth FR, Gray C, Tan ST. Cancer Metastasis and Treatment Resistance: Mechanistic Insights and Therapeutic Targeting of Cancer Stem Cells and the Tumor Microenvironment. Biomedicines 2022; 10:biomedicines10112988. [PMID: 36428556 PMCID: PMC9687343 DOI: 10.3390/biomedicines10112988] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer metastasis and treatment resistance are the main causes of treatment failure and cancer-related deaths. Their underlying mechanisms remain to be fully elucidated and have been attributed to the presence of cancer stem cells (CSCs)-a small population of highly tumorigenic cancer cells with pluripotency and self-renewal properties, at the apex of a cellular hierarchy. CSCs drive metastasis and treatment resistance and are sustained by a dynamic tumor microenvironment (TME). Numerous pathways mediate communication between CSCs and/or the surrounding TME. These include a paracrine renin-angiotensin system and its convergent signaling pathways, the immune system, and other signaling pathways including the Notch, Wnt/β-catenin, and Sonic Hedgehog pathways. Appreciation of the mechanisms underlying metastasis and treatment resistance, and the pathways that regulate CSCs and the TME, is essential for developing a durable treatment for cancer. Pre-clinical and clinical studies exploring single-point modulation of the pathways regulating CSCs and the surrounding TME, have yielded partial and sometimes negative results. This may be explained by the presence of uninhibited alternative signaling pathways. An effective treatment of cancer may require a multi-target strategy with multi-step inhibition of signaling pathways that regulate CSCs and the TME, in lieu of the long-standing pursuit of a 'silver-bullet' single-target approach.
Collapse
Affiliation(s)
| | - Sabrina P. Koh
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Freya R. Weth
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Clint Gray
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
8
|
Ayipo YO, Ajiboye AT, Osunniran WA, Jimoh AA, Mordi MN. Epigenetic oncogenesis, biomarkers and emerging chemotherapeutics for breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194873. [PMID: 36064110 DOI: 10.1016/j.bbagrm.2022.194873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/20/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Breast cancer remains one of the leading causes of cancer-related deaths globally and the most prominent among females, yet with limited effective therapeutic options. Most of the current medications are challenged by various factors including low efficacy, incessant resistance, immune evasion and frequent recurrence of the disease. Further understanding of the prognosis and identification of plausible therapeutic channels thus requires multimodal approaches. In this review, epigenetics studies of several pathways to BC oncogenesis via the inducement of oncogenic changes on relevant markers have been overviewed. Similarly, the counter-epigenetic mechanisms to reverse such changes as effective therapeutic strategies were surveyed. The epigenetic oncogenesis occurs through several pathways, notably, DNMT-mediated hypermethylation of DNA, dysregulated expression for ERα, HER2/ERBB and PR, histone modification, overexpression of transcription factors including the CDK9-cyclin T1 complex and suppression of tumour suppressor genes. Scientifically, the regulatory reversal of the mechanisms constitutes effective epigenetic approaches for mitigating BC initiation, progression and metastasis. These were exhibited at various experimental levels by classical chemotherapeutic agents including some repurposable drugs, endocrine inhibitors, monoclonal antibodies and miRNAs, natural products, metal complexes and nanoparticles. Dozens of the potential candidates are currently in clinical trials while others are still at preclinical experimental stages showing promising anti-BC efficacy. The review presents a model for a wider understanding of epigenetic oncogenic pathways to BC and reveals plausible channels for reversing the unpleasant changes through epigenetic modifications. It advances the science of therapeutic designs for ameliorating the global burden of BC upon further translational studies.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia; Department of Chemistry and Industrial Chemistry, Kwara State University, P.M.B., Malete, 1530 Ilorin, Nigeria.
| | - Abdulfatai Temitope Ajiboye
- Department of Chemistry and Industrial Chemistry, Kwara State University, P.M.B., Malete, 1530 Ilorin, Nigeria
| | - Wahab Adesina Osunniran
- Department of Chemistry and Industrial Chemistry, Kwara State University, P.M.B., Malete, 1530 Ilorin, Nigeria
| | - Akeem Adebayo Jimoh
- Department of Chemistry and Industrial Chemistry, Kwara State University, P.M.B., Malete, 1530 Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia
| |
Collapse
|
9
|
Curcumin Targeting Non-Coding RNAs in Colorectal Cancer: Therapeutic and Biomarker Implications. Biomolecules 2022; 12:biom12101339. [PMID: 36291546 PMCID: PMC9599102 DOI: 10.3390/biom12101339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is one of the most common gastrointestinal malignancies, with high incidence rates, a low rate of early diagnosis, and complex pathogenesis. In recent years, there has been progress made in its diagnosis and treatment methods, but tumor malignant proliferation and metastasis after treatment still seriously affect the survival and prognosis of patients. Therefore, it is an extremely urgent task of current medicine to find new anti-tumor drugs with high efficiency and safety and low toxicity. Curcumin has shown potent anti-tumor and anti-inflammatory effects and is considered a hot spot in the research and development of anti-tumor drugs due to its advantages of precise efficacy, lower toxic side effects, and less drug resistance. Recent studies have revealed that curcumin has anti-tumor effects exerted on the epigenetic regulation of tumor-promoting/tumor-suppressing gene expression through the alteration of expression levels of non-coding RNAs (e.g., lncRNAs, miRNAs, and circRNAs). Herein, we summarize the interaction between curcumin and non-coding RNAs on the occurrence and development of colorectal cancer. The information complied in this review will serve as a scientific and reliable basis and viewpoint for the clinical application of non-coding RNAs in colorectal cancer.
Collapse
|