1
|
Zhang J, Zhong Y, Wang D, Zhu J, Deng Y, Li Y, Liu C, Wang JLT, Zhang M. Wallace melon juice fermented with Lactobacillus alleviates dextran sulfate sodium-induced ulcerative colitis in mice through modulating gut microbiota and the metabolism. J Food Sci 2024; 89:2450-2464. [PMID: 38462851 DOI: 10.1111/1750-3841.16973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 03/12/2024]
Abstract
Fermented foods have shown promise in preventing or treating ulcerative colitis (UC) via regulating intestinal flora and correcting metabolic disorders. However, the prevention effect of fermented Wallace melon juice (FMJ) on UC is unclear. In this study, the effects of FMJ on dextran sodium sulfate (DSS)-induced UC were investigated via 16S rRNA sequencing and non-targeted metabolomics. The results showed that FMJ was effective in alleviating the symptoms of UC, reducing histological damage and oxidative stress, decreasing the levels of pro-inflammatory cytokines. After FMJ treatment, the level of propionic acid, butyric acid, and valeric acid increased by 14.1%, 44.4%, and 52.4% compared to DSS-induced UC mice. Meanwhile, the levels of harmful bacteria such as Oscillospira, Bacteroidetes, and Erysipelotrichaceae and Clostridium decreased, while the levels of beneficial bacteria such as Akkermansia, Lactobacillus, and Bifidobacterium increased. Fecal metabolomics analysis identified 31 differential metabolites, which could regulate metabolic disorders in UC mice by controlling the primary bile acid biosynthesis, purine metabolism, and pantothenate and CoA biosynthesis pathway. Additionally, the abundances of butyric acid, bile acids, and pantothenic acid were positively correlated with Allobaculum, Bifidobacterium, and other beneficial bacteria (R2 > 0.80, p < 0.01). The results indicated that FMJ played a role in regulating the structure of intestinal flora, which in turn helped in repairing metabolic disorders and alleviated colitis inflammation.
Collapse
Affiliation(s)
- Junwei Zhang
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhong
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Danfeng Wang
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangxiong Zhu
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Deng
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
- Inner Mongolia Research Institute, Shanghai Jiao Tong University, Hohhot City, Inner Mongolia, China
| | - Yuncheng Li
- Inner Mongolia Research Institute, Shanghai Jiao Tong University, Hohhot City, Inner Mongolia, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Cong Liu
- Department of Agriculture, Hetao College, Bayannur, Inner Mongolia, China
| | - Ji-Li-Te Wang
- Department of Agriculture, Hetao College, Bayannur, Inner Mongolia, China
| | - Minyan Zhang
- Eryuan County Inspection and Testing Institute, Yunnan, China
| |
Collapse
|
2
|
Ittiyavirah SP, Ramalingam K, Sathyan A, Rajasree R, Kuruniyan MS, Quadri SA, Elayadeth-Meethal M, Naseef PP. Thymoquinone-rich black cumin oil attenuates ibotenic acid-induced excitotoxicity through glutamate receptors in Wistar rats. Saudi Pharm J 2022; 30:1781-1790. [PMID: 36601514 PMCID: PMC9805979 DOI: 10.1016/j.jsps.2022.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Inflammation-mediated alterations in glutamate neurotransmission constitute the most important pathway in the pathophysiology of various brain disorders. The excessive signalling of glutamate results in excitotoxicity, neuronal degeneration, and neuronal cell death. In the present study, we investigated the relative efficacy of black cumin (Nigella sativa) oil with high (5 % w/w) and low (2 % w/w) thymoquinone content (BCO-5 and BCO-2, respectively) in alleviating ibotenic acid-induced excitotoxicity and neuroinflammation in Wistar rats. It was found that BCO-5 reversed the abnormal behavioural patterns and the key inflammatory mediators (TNF-α and NF-κB) when treated at 5 mg/kg body weight. Immunohistochemical studies showed the potential of BCO-5 to attenuate the glutamate receptor subunits NMDA and GluR-2 along with increased glutamate decarboxylase levels in the brain tissues. Histopathological studies revealed the neuroprotection of BCO-5 against the inflammatory lesions, as evidenced by the normal cerebellum, astrocytes, and glial cells. BCO-2 on the other hand showed either a poor protective effect or no effect even at a 4-fold higher concentration of 20 mg/kg body weight indicating a very significant role of thymoquinone content on the neuroprotective effect of black cumin oil and its plausible clinical efficacy in counteracting the anxiety and stress-related neurological disorders under conditions such as depression and Alzheimer's disease.
Collapse
Affiliation(s)
- Sibi P Ittiyavirah
- Department of Pharmaceutical Sciences, Centre for Professional and Advanced Sciences, Cheruvandoor, Kottayam 686631, India
| | - Kannan Ramalingam
- Department of Pharmaceutical Sciences, Centre for Professional and Advanced Sciences, Cheruvandoor, Kottayam 686631, India
| | - Arathy Sathyan
- Department of Pharmaceutical Sciences, Centre for Professional and Advanced Sciences, Cheruvandoor, Kottayam 686631, India
| | - R.S. Rajasree
- College of Pharmaceutical Sciences, Government Thirumala Devaswom Medical College, Alappuzha 688005, India
| | - Mohamed Saheer Kuruniyan
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Syed Altafuddin Quadri
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammed Elayadeth-Meethal
- Department of Animal Breeding and Genetics, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad 675621, India
| | - Punnoth Poonkuzhi Naseef
- Department of Pharmaceutics, Moulana College of Pharmacy, Perinthalmanna 679321, India,Corresponding author.
| |
Collapse
|