1
|
Lai X, Qiao J, Liu J, Zhou X, Zhang C, Peng Q. Albumin as a functional carrier enhances solubilization, photodynamic and photothermal antibacterial therapy of curcumin. Int J Biol Macromol 2025; 303:140759. [PMID: 39919397 DOI: 10.1016/j.ijbiomac.2025.140759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/09/2025]
Abstract
Bacterial infections are a significant threat to human health. Photodynamic therapy (PDT) and photothermal therapy (PTT) offer promising alternatives to antibiotic therapy. Curcumin (CUR) has shown great potentials in PDT, but its PTT was never reported. Also, its delivery and efficacy is highly limited by the poor water solubility. Herein, we report the antibacterial PTT of CUR for the first time. Furthermore, we successfully solubilized CUR, facilitated its delivery into bacterial cells, and enhanced its antibacterial PDT/PTT via using bovine serum albumin (BSA) as a carrier. The water solubility of CUR was enhanced from 10 to 298 μg/mL by forming CUR-BSA complex (containing 4 mg/mL BSA) which also enhanced the delivery of CUR into E. coli cells by >10 folds. Upon 450 nm irradiation, CUR-BSA (80 μg/mL) caused 94 % viability loss of E. coli, higher than 70 % loss caused by CUR, and more intracellular ROS was generated in CUR-BSA group. Interestingly, the antibacterial activity of CUR-BSA was reduced when the hyperthermia was depleted, suggesting its synergistic PDT/PTT effect. Considering the ready availability and great biocompatibility of albumin, our findings indicate that CUR-albumin complex may have great potentials in clinical use for antibacterial phototherapy.
Collapse
Affiliation(s)
- Xuyang Lai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiao Qiao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jianhong Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xueer Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chaoliang Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Robu A, Kaya MGA, Antoniac A, Kaya DA, Coman AE, Marin MM, Ciocoiu R, Constantinescu RR, Antoniac I. The Influence of Basil and Cinnamon Essential Oils on Bioactive Sponge Composites of Collagen Reinforced with Hydroxyapatite. MATERIALS (BASEL, SWITZERLAND) 2025; 18:626. [PMID: 39942292 PMCID: PMC11818753 DOI: 10.3390/ma18030626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025]
Abstract
The increasing prevalence of acute traumas, surgical wounds, and chronic skin wounds poses significant therapeutic challenges for wound treatment. One of the main concerns in wound care is the danger of infection, which is a significant barrier to healing and a cause of higher morbidity and mortality rates. The emergence of drug-resistant bacterial species is becoming more frequent every day. Antimicrobial dressings have become a viable strategy for wound healing and hospital expense savings. Several factors, such as the wound's localization and state, microbial load, and cost, must be considered when choosing an appropriate antimicrobial dressing. One of the key goals of wound care is infection avoidance. This study addresses the therapeutic challenges of acute traumas, surgical wounds, and chronic skin wounds, focusing on infection prevention and combating drug-resistant bacterial strains. The research explores the development of novel composite wound dressings incorporating hydroxyapatite, known for its osteoconductive properties, and essential oils from basil and cinnamon, recognized for their antimicrobial activity. The study evaluates the impact of these additives on key properties such as surface morphology, water absorption, enzymatic degradation, and mechanical performance. Antimicrobial tests showed that two experimental samples (A1S and A1BS) exhibited significant activity against Escherichia coli but not on Staphylococcus aureus. The results highlight the dressings' enhanced antimicrobial properties, mechanical strength, and controlled degradation, making them promising candidates for advanced wound healing. Tailored applications were identified, with each dressing composition offering unique benefits for specific wound-healing scenarios based on the balance between flexibility, structural support, and bioactivity.
Collapse
Affiliation(s)
- Alina Robu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica, 060042 Bucharest, Romania; (A.R.); (R.C.); (I.A.)
| | - Madalina Georgiana Albu Kaya
- National Research and Development Institute for Textiles and Leather, Collagen Department, 93 Ion Minulescu, 031215 Bucharest, Romania;
| | - Aurora Antoniac
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica, 060042 Bucharest, Romania; (A.R.); (R.C.); (I.A.)
| | - Durmuș Alpaslan Kaya
- Department of Field Crops, Faculty of Agriculture, Hatay Mustafa Kemal University, Antakya-Hatay 31034, Turkey;
| | - Alina Elena Coman
- National Research and Development Institute for Textiles and Leather, Collagen Department, 93 Ion Minulescu, 031215 Bucharest, Romania;
| | - Maria-Minodora Marin
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica, 060042 Bucharest, Romania;
| | - Robert Ciocoiu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica, 060042 Bucharest, Romania; (A.R.); (R.C.); (I.A.)
| | - Rodica Roxana Constantinescu
- INCDTP—Leather & Footwear Research Institute, Biotechnologies and Environment Protection Research Department, 031215 Bucharest, Romania;
| | - Iulian Antoniac
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica, 060042 Bucharest, Romania; (A.R.); (R.C.); (I.A.)
| |
Collapse
|
3
|
Mikhailova EO. Green Silver Nanoparticles: An Antibacterial Mechanism. Antibiotics (Basel) 2024; 14:5. [PMID: 39858291 PMCID: PMC11762094 DOI: 10.3390/antibiotics14010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/27/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Silver nanoparticles (AgNPs) are a promising tool in the fight against pathogenic microorganisms. "Green" nanoparticles are especially valuable due to their environmental friendliness and lower energy consumption during production, as well as their ability to minimize the number of toxic by-products. This review focuses on the features of AgNP synthesis using living organisms (bacteria, fungi, plants) and the involvement of various biological compounds in this process. The mechanism of antibacterial activity is also discussed in detail with special attention given to anti-biofilm and anti-quorum sensing activities. The toxicity of silver nanoparticles is considered in light of their further biomedical applications.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
4
|
Azzi M, Medila I, Toumi I, Laouini SE, Bouafia A, Hasan GG, Mohammed HA, Mokni S, Alsalme A, Barhoum A. Plant extract-mediated synthesis of Ag/Ag2O nanoparticles using Olea europaea leaf extract: assessing antioxidant, antibacterial, and toxicological properties. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:31309-31322. [DOI: 10.1007/s13399-023-05093-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 01/06/2025]
|
5
|
Abdel-Fatah SS, Mohammad NH, Elshimy R, Mosallam FM. Impeding microbial biofilm formation and Pseudomonas aeruginosa virulence genes using biologically synthesized silver Carthamus nanoparticles. Microb Cell Fact 2024; 23:240. [PMID: 39238019 PMCID: PMC11378559 DOI: 10.1186/s12934-024-02508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Long-term antibiotic treatment results in the increasing resistance of bacteria to antimicrobials drugs, so it is necessary to search for effective alternatives to prevent and treat pathogens that cause diseases. This study is aimed for biological synthesis of silver Carthamus nanoparticles (Ag-Carth-NPs) to combat microbial biofilm formation and Pseudomonas aeruginosa virulence genes. Ag-Carth-NPs are synthesized using Carthamus tenuis aqueous extract as environmentally friendly method has no harmful effect on environment. General factorial design is used to optimize Ag-Carth-NPs synthesis using three variables in three levels are Carthamus extract concentration, silver nitrate concentration and gamma radiation doses. Analysis of response data indicates gamma radiation has a significant effect on Ag-Carth-NPs production. Ag-Carth-NPs have sharp peak at λ max 425 nm, small and spherical particles with size 20.0 ± 1.22 nm, high stability up to 240 day with zeta potential around - 43 ± 0.12 mV, face centered cubic crystalline structure and FT-IR spectroscopy shows peak around 620 cm-1 that corresponding to AgNPs that stabilized by C. tenuis extract functional moiety. The antibacterial activity of Ag-Carth-NPs against pathogenic bacteria and fungi was determined using well diffusion method. The MIC values of Ag-Carth-NPs were (6.25, 6.25, 3.126, 25, 12.5, 12.5, 25 and 12.5 µg/ml), MBC values were (12.5, 12.5, 6.25, 50, 25, 25, 50 and 25 µg/ml) and biofilm inhibition% were (62.12, 68.25, 90.12, 69.51, 70.61, 71.12, 75.51 and 77.71%) against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, Candida tropicalis and Candida albicans respectively. Ag-Carth-NPs has bactericidal efficacy and significantly reduced the swarming, swimming motility, pyocyanin and protease production of P. aeruginosa. Furthermore, P. aeruginosa ToxA gene expression was significantly down regulated by 81.5%, while exoU reduced by 78.1%, where lasR gene expression reduction was 68%, while the reduction in exoU was 66% and 60.1% decrease in lasB gene expression after treatment with Ag-Carth-NPs. This activity is attributed to effect of Ag-Carth-NPs on cell membrane integrity, down regulation of virulence gene expression, and induction of general and oxidative stress in P. aeruginosa. Ag-Carth-NPs have no significant cytotoxic effects on normal human cell (Hfb4) but have IC50 at 5.6µg/mL against of HepG-2 cells. Limitations of the study include studies with low risks of silver nanoparticles for in vitro antimicrobial effects and its toxicity.
Collapse
Affiliation(s)
- Sobhy S Abdel-Fatah
- Drug Radiation Research Department, Drug Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nasser H Mohammad
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Rana Elshimy
- Microbiology and Immunology, Egyptian Drug Authority, Cairo, Egypt
- Microbiology and immunology, Faculty of Pharmacy, AL-Aharm Canadian University (ACU), Giza, Egypt
| | - Farag M Mosallam
- Drug Radiation Research Department, Drug Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
6
|
Rodrigues AS, Batista JGS, Rodrigues MÁV, Thipe VC, Minarini LAR, Lopes PS, Lugão AB. Advances in silver nanoparticles: a comprehensive review on their potential as antimicrobial agents and their mechanisms of action elucidated by proteomics. Front Microbiol 2024; 15:1440065. [PMID: 39149204 PMCID: PMC11325591 DOI: 10.3389/fmicb.2024.1440065] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Nanoparticles play a crucial role in the field of nanotechnology, offering different properties due to their surface area attributed to their small size. Among them, silver nanoparticles (AgNPs) have attracted significant attention due to their antimicrobial properties, with applications that date back from ancient medicinal practices to contemporary commercial products containing ions or silver nanoparticles. AgNPs possess broad-spectrum biocidal potential against bacteria, fungi, viruses, and Mycobacterium, in addition to exhibiting synergistic effects when combined with certain antibiotics. The mechanisms underlying its antimicrobial action include the generation of oxygen-reactive species, damage to DNA, rupture of bacterial cell membranes and inhibition of protein synthesis. Recent studies have highlighted the effectiveness of AgNPs against various clinically relevant bacterial strains through their potential to combat antibiotic-resistant pathogens. This review investigates the proteomic mechanisms by which AgNPs exert their antimicrobial effects, with a special focus on their activity against planktonic bacteria and in biofilms. Furthermore, it discusses the biomedical applications of AgNPs and their potential non-preparation of antibiotic formulations, also addressing the issue of resistance to antibiotics.
Collapse
Affiliation(s)
- Adriana S Rodrigues
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| | - Jorge G S Batista
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| | - Murilo Á V Rodrigues
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| | - Velaphi C Thipe
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Luciene A R Minarini
- Federal University of São Paulo, Institute of Environmental, Chemical and Pharmaceutical Sciences, São Paulo, Brazil
| | - Patricia S Lopes
- Federal University of São Paulo, Institute of Environmental, Chemical and Pharmaceutical Sciences, São Paulo, Brazil
| | - Ademar B Lugão
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| |
Collapse
|
7
|
K Karunakar K, Cheriyan BV, R K, M G, B A. "Therapeutic advancements in nanomedicine: The multifaceted roles of silver nanoparticles". BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:64-79. [PMID: 39416696 PMCID: PMC11446369 DOI: 10.1016/j.biotno.2024.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 10/19/2024]
Abstract
Nanotechnology has the advantages of enhanced bioactivity, reduced toxicity, target specificity, and sustained release and NPs can penetrate cell membranes. The small size of silver nanoparticles, AgNPs, large surface area, and unique physicochemical properties contribute to cell lysis and increased permeability of cell membranes used in the field of biomedicine. Functional precursors integrate with phytochemicals to create distinctive therapeutic properties and the stability of the nanoparticles can be enhanced by Surface coatings and encapsulation methods, The current study explores the various synthesis methods and characterization techniques of silver nanoparticles (AgNPs) and highlights their intrinsic activity in therapeutic applications, Anti-cancer activity noted at a concentration range of 5-50 μg/ml and angiogenesis is mitigated at a dosage range of 10-50 μg/ml, Diabetes is controlled within the same concentration. Wound healing is improved at concentrations of 10-50 μg/ml and with a typical range of 10-08 μg/ml for bacteria with antimicrobial capabilities. Advancement of silver nanoparticles with a focus on the future use of AgNPs-coated wound dressings and medical devices to decrease the risk of infection. Chemotherapeutic drugs can be administered by AgNPs, which reduces adverse effects and an improvement in treatment outcomes. AgNPs have been found to improve cell proliferation and differentiation, making them beneficial for tissue engineering and regenerative medicine. Our study highlights emerging patterns and developments in the field of medicine, inferring potential future paths.
Collapse
Affiliation(s)
- Karthik K Karunakar
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Binoy Varghese Cheriyan
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Krithikeshvaran R
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Gnanisha M
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Abinavi B
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| |
Collapse
|
8
|
Ubah CS, Pokhrel LR, Williams JE, Akula SM, Richards SL, Kearney GD, Williams A. Antibacterial efficacy, mode of action, and safety of a novel nano-antibiotic against antibiotic-resistant Escherichia coli strains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171675. [PMID: 38485022 DOI: 10.1016/j.scitotenv.2024.171675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/17/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Globally rising antibiotic-resistant (AR) and multi-drug resistant (MDR) bacterial infections are of public health concern due to treatment failure with current antibiotics. Enterobacteria, particularly Escherichia coli, cause infections of surgical wound, bloodstream, and urinary tract, including pneumonia and sepsis. Herein, we tested in vitro antibacterial efficacy, mode of action (MoA), and safety of novel amino-functionalized silver nanoparticles (NH2-AgNP) against the AR bacteria. Two AR E. coli strains (i.e., ampicillin- and kanamycin-resistant E. coli), including a susceptible strain of E. coli DH5α, were tested for susceptibility to NH2-AgNP using Kirby-Bauer disk diffusion and standard growth assays. Dynamic light scattering (DLS) was used to determine cell debris and relative conductance was used as a measure of cell leakage, and results were confirmed with transmission electron microscopy (TEM). Multiple oxidative stress assays were used for in vitro safety evaluation of NH2-AgNP in human lung epithelial cells. Results showed that ampicillin and kanamycin did not inhibit growth in either AR bacterial strain with doses up to 160 μg/mL tested. NH2-AgNP exhibited broad-spectrum bactericidal activity, inhibiting the growth of all three bacterial strains at doses ≥1 μg/mL. DLS and TEM revealed cell debris formation and cell leakage upon NH2-AgNP treatment, suggesting two possible MoAs: electrostatic interactions followed by cell wall damage. Safety evaluation revealed NH2-AgNP as noncytotoxic and antioxidative to human lung epithelial cells. Taken together, these results suggest that NH2-AgNP may serve as an effective and safer bactericidal therapy against AR bacterial infections compared to common antibiotics.
Collapse
Affiliation(s)
- Chukwudi S Ubah
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Lok R Pokhrel
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Jordan E Williams
- Environmental Health Science Program, Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, USA
| | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Stephanie L Richards
- Environmental Health Science Program, Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, USA
| | - Gregory D Kearney
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | | |
Collapse
|
9
|
Abdelrazek HM, Ghozlan HA, Sabry SA, Abouelkheir SS. Copper oxide nanoparticles (CuO-NPs) as a key player in the production of oil-based paint against biofilm and other activities. Heliyon 2024; 10:e29758. [PMID: 38720728 PMCID: PMC11076648 DOI: 10.1016/j.heliyon.2024.e29758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Copper oxide nanoparticles are among the metal nanoparticles gaining popularity in many biotechnological fields, particularly in marine environments. Their antimicrobial and antibiofilm activities make them appealing to many researchers. Among the various methods of producing nanoparticles, biosynthesis is crucial. Thus, a large number of reports have been made about the microbiological manufacture of these nanoparticles by bacteria. Nevertheless, bio-production by means of the cell-free supernatant of marine bacteria is still in its primary phase. This is landmark research to look at how bacteria make a lot (14 g/L) of copper oxide nanoparticles (CuO-NPs) via the cell-free supernatant of Bacillus siamensis HS, their characterization, and their environmental and medical approaches. The biosynthesized nanoparticles were characterized using a UV-visible spectrum range that provides two maximum absorption peaks, one obtained at 400 nm and the other around 550-600 nm. Diffraction of X-rays (XRD) clarifies that the size of the NPs obtained was estimated to be 18 nm using Debye-Scherrer's equation. Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX) displays 91.93 % copper oxide purity. The Transmission Electron Microscope (TEM) image proves that the particles have a spherical form and an average diameter of 6.54-8.60 nm. At the environmental level, nanoparticles incorporated into oil-based paint can be used as antibiofilm tools to diminish the biofilm formed on the submerged surface in the marine environment. In disease management, NPs can be used as a wound healing agent to reduce the wound gap size as well as an anti-tumour agent to control liver cancer cells (hepatoma cells (HepG2)).
Collapse
Affiliation(s)
- Hanan M. Abdelrazek
- Faculty of Science, Alexandria University, Moharrem Bey, 21511 Alexandria, Egypt
| | - Hanan A. Ghozlan
- Faculty of Science, Alexandria University, Moharrem Bey, 21511 Alexandria, Egypt
| | - Soraya A. Sabry
- Faculty of Science, Alexandria University, Moharrem Bey, 21511 Alexandria, Egypt
| | | |
Collapse
|
10
|
Pathi BK, Mishra S, Moharana N, Kanungo A, Mishra A, Sahu S, Dash RK, Dubey R, Das MK. Effect of Topical Silver Nanoparticle Formulation on Wound Bacteria Clearance and Healing in Patients With Infected Wounds Compared to Standard Topical Antibiotic Application: A Randomized Open-Label Parallel Clinical Trial. Cureus 2024; 16:e60569. [PMID: 38894757 PMCID: PMC11182760 DOI: 10.7759/cureus.60569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Infected wounds pose a special challenge for management, with an increased risk of wound chronicity, systemic infection, and the emergence of antibiotic resistance. Silver nanoparticles have multimodal effects on bacteria clearance and wound healing. This study aimed to document the efficacy of a topical silver nanoparticle-based cream on bacteria clearance and wound healing in infected wounds compared to Mupirocin. METHODS This open-label parallel randomized clinical trial allocated 86 participants with infected wounds (culture-positive) into Kadermin, silver nanoparticle-based cream arm (n=43) and Mupirocin arm (n=43) and documented the swab culture on day 5 and wound healing at day 28, along with periodic wound status using the Bates-Jensen Wound Assessment Tool. Patients received oral/systemic antibiotics and other medications for underlying diseases. The intention-to-treat principle was adopted for data analysis using the chi-square and Student t tests to document the differences between groups according to variable characteristics. RESULTS All participants completed the follow-up. On day 5, wound bacteria clearance was observed in 86% and 65.1% of the participants in the Kadermin and Mupirocin arms, respectively (p=0.023). At day 28, complete wound healing was observed in 81.4% and 37.2% of the participants in the Kadermin and Mupirocin arms, respectively (p≤0.001). No local or systemic adverse event or local reaction was observed in any of the participants. CONCLUSION Kadermin, the silver nanoparticle-based cream, has better efficacy in achieving faster wound bacteria clearance and healing in infected wounds compared to Mupirocin. This may have relevance for its use as an antibiotic-sparing agent in wound management.
Collapse
Affiliation(s)
- Basanti K Pathi
- Department of Microbiology, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Subrajit Mishra
- Department of Surgery, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Niranjan Moharana
- Department of Surgery, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Abinash Kanungo
- Department of Surgery, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Amaresh Mishra
- Department of Surgery, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Subrat Sahu
- Department of Surgery, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Rajesh K Dash
- Department of Microbiology, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Rajan Dubey
- Department of Public Health and Technology, Health Technology Consultant, Bhopal, IND
| | - Manoja K Das
- Department of Public Health, The INCLEN Trust International, New Delhi, IND
| |
Collapse
|
11
|
Caniglia G, Valavanis D, Tezcan G, Magiera J, Barth H, Bansmann J, Kranz C, Unwin PR. Antimicrobial effects of silver nanoparticle-microspots on the mechanical properties of single bacteria. Analyst 2024; 149:2637-2646. [PMID: 38529543 DOI: 10.1039/d4an00174e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Silver nanoparticles (AgNPs) conjugated with polymers are well-known for their powerful and effective antimicrobial properties. In particular, the incorporation of AgNPs in biocompatible catecholamine-based polymers, such as polydopamine (PDA), has recently shown promising antimicrobial activity, due to the synergistic effects of the AgNPs, silver(I) ions released and PDA. In this study, we generated AgNPs-PDA-patterned surfaces by localised electrochemical depositions, using a double potentiostatic method via scanning electrochemical cell microscopy (SECCM). This technique enabled the assessment of a wide parameter space in a high-throughput manner. The optimised electrodeposition process resulted in stable and homogeneously distributed AgNP-microspots, and their antimicrobial activity against Escherichia coli was assessed using atomic force microscopy (AFM)-based force spectroscopy, in terms of bacterial adhesion and cell elasticity. We observed that the bacterial outer membrane underwent significant structural changes, when in close proximity to the AgNPs, namely increased hydrophilicity and stiffness loss. The spatially varied antimicrobial effect found experimentally was rationalised by numerical simulations of silver(I) concentration profiles.
Collapse
Affiliation(s)
- Giada Caniglia
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee, 11 89081 Ulm, Germany.
| | | | - Gözde Tezcan
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Joshua Magiera
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Albert-Einstein-Allee, 11 89081 Ulm, Germany
| | - Joachim Bansmann
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee, 11 89081 Ulm, Germany.
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
12
|
Amibo TA, Majamo SL, Mekonnen DT. Optimizing bacterial growth inhibition in spring water through central composite design using a nanocomposite of nanocellulose and green-synthesized nanosilver. BIOMASS CONVERSION AND BIOREFINERY 2024. [DOI: 10.1007/s13399-024-05446-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 01/06/2025]
|
13
|
Sarangi A, Das BS, Panigrahi LL, Arakha M, Bhattacharya D. Formulation of Garlic Essential Oil-assisted Silver Nanoparticles and Mechanistic Evaluation of their Antimicrobial Activity against a Spectrum of Pathogenic Microorganisms. Curr Top Med Chem 2024; 24:2000-2012. [PMID: 39092647 PMCID: PMC11497146 DOI: 10.2174/0115680266322180240712055727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The synthesis of nanoparticles using the principle of green chemistry has achieved huge potential in nanomedicine. Here, we report the synthesis of silver nanoparticles (Ag- NPs) employing garlic essential oil (GEO) due to wide applications of GEO in the biomedical and pharmaceutical industry. OBJECTIVE This study aimed to synthesise garlic essential oil-assisted silver nanoparticles and present their antimicrobial and antibiofilm activities with mechanistic assessment. METHOD Initially, the formulation of AgNPs was confirmed using different optical techniques, such as XRD, FT-IR, DLS, zeta potential, SEM, and EDX analysis, which confirmed the formulation of well-dispersed, stable, and spherical AgNPs. The antimicrobial and antibiofilm activity of GEO-assisted AgNPs was evaluated against a spectrum of pathogenic microorganisms, such as Gram-positive (S. aureus and B. subtilis) and Gram-negative (E. coli and P. aeruginosa) bacteria. RESULTS The AgNPs exhibited remarkable antimicrobial and anti-biofilm activity against all tested strains. The mechanism behind the antimicrobial activity of AgNPs was explored by estimating the amount of reactive oxygen species (ROS) generated due to the interaction of AgNP with bacterial cells and observing the morphological changes of bacteria upon AgNP interaction. CONCLUSION The findings of this study concluded that ROS generation due to the interaction of AgNPs with bacterial cells put stress on bacterial membranes, altering the morphology of bacteria, exhibiting remarkable antimicrobial activity, and preventing biofilm formation.
Collapse
Affiliation(s)
- Ashirbad Sarangi
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Bhabani Shankar Das
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Lipsa Leena Panigrahi
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Manoranjan Arakha
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Debapriya Bhattacharya
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| |
Collapse
|
14
|
Tończyk A, Niedziałkowska K, Lisowska K. Optimizing the microbial synthesis of silver nanoparticles using Gloeophyllum striatum and their antimicrobial potential evaluation. Sci Rep 2023; 13:21124. [PMID: 38036613 PMCID: PMC10689739 DOI: 10.1038/s41598-023-48414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023] Open
Abstract
The search for new sources of silver nanoparticles (AgNPs) is highly relevant in many fields. Mycosynthesis seems to be advantageous for large-scale production, and using brown rot fungi might be a promising solution. In this study, AgNP synthesis using Gloeophyllum striatum DSM 9592 was performed under various process conditions. The resulting AgNPs were characterized using UV/Vis, FT-IR, SEM and NTA techniques and their biological activities were determined. It was found that different synthesis conditions changed the production efficiency, which was the highest in 28 s AgNPs. Moreover, temperature and shaking conditions slightly affected the activity of the resulting AgNP types. Gram-negative bacteria were generally more susceptible to the action of AgNPs with MIC values two- or three-fold lower compared to Gram-positive strains. Pseudomonas aeruginosa was the most sensitive among tested strains with a MIC value of 1.56 µg/ml. The research was additionally extended by the biofilm formation assay for this strain. It was found that AgNPs of all types led to a reduction in biofilm-forming capability of P. aeruginosa over the tested concentration range. Haemolytic and cytotoxic activity assays showed that synthesis conditions also affected AgNP toxicity. For instance, 4 ns AgNPs were the least cytotoxic and cause less than 50% reduction of fibroblast viability in the concentration that inhibits the growth of P. aeruginosa completely. These results highlight the possible utility of mycogenic silver nanoparticles as an antibacterial agent in antiseptics or other external treatments.
Collapse
Affiliation(s)
- Aleksandra Tończyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
- The BioMedChem Doctoral School of University of Lodz and Lodz Institutes of Polish Academy of Sciences, University of Lodz, 21/23 Matejki Street, 90-237, Lodz, Poland
| | - Katarzyna Niedziałkowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland.
| |
Collapse
|
15
|
Toader G, Diacon A, Rusen E, Mangalagiu II, Alexandru M, Zorilă FL, Mocanu A, Boldeiu A, Gavrilă AM, Trică B, Pulpea D, Necolau MI, Istrate M. Peelable Alginate Films Reinforced by Carbon Nanofibers Decorated with Antimicrobial Nanoparticles for Immediate Biological Decontamination of Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2775. [PMID: 37887926 PMCID: PMC10609245 DOI: 10.3390/nano13202775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
This study presents the synthesis and characterization of alginate-based nanocomposite peelable films, reinforced by carbon nanofibers (CNFs) decorated with nanoparticles that possess remarkable antimicrobial properties. These materials are suitable for immediate decontamination applications, being designed as fluid formulations that can be applied on contaminated surfaces, and subsequently, they can rapidly form a peelable film via divalent ion crosslinking and can be easily peeled and disposed of. Silver, copper, and zinc oxide nanoparticles (NPs) were synthesized using superficial oxidized carbon nanofibers (CNF-ox) as support. To obtain the decontaminating formulations, sodium alginate (ALG) was further incorporated into the colloidal solutions containing the antimicrobial nanoparticles. The properties of the initial CNF-ox-NP-ALG solutions and the resulting peelable nanocomposite hydrogels (obtained by crosslinking with zinc acetate) were assessed by rheological measurements, and mechanical investigations, respectively. The evaluation of Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) for the synthesized nanoparticles (silver, copper, and zinc oxide) was performed. The best values for MIC and MBC were obtained for CNF-ox decorated with AgNPs for both types of bacterial strains: Gram-negative (MIC and MBC values (mg/L): E. coli-3 and 108; P. aeruginosa-3 and 54) and Gram-positive (MIC and MBC values (mg/L): S. aureus-13 and 27). The film-forming decontaminating formulations were also subjected to a microbiology assay consisting of the time-kill test, MIC and MBC estimations, and evaluation of the efficacity of peelable coatings in removing the biological agents from the contaminated surfaces. The best decontamination efficiencies against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa varied between 97.40% and 99.95% when employing silver-decorated CNF-ox in the decontaminating formulations. These results reveal an enhanced antimicrobial activity brought about by the synergistic effect of silver and CNF-ox, coupled with an efficient incorporation of the contaminants inside the peelable films.
Collapse
Affiliation(s)
- Gabriela Toader
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.D.); (D.P.)
| | - Aurel Diacon
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.D.); (D.P.)
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.M.); (M.I.N.)
| | - Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.M.); (M.I.N.)
| | - Ionel I. Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Blvd., 700506 Iasi, Romania
| | - Mioara Alexandru
- Microbiology Laboratory, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului St., 077125 Bucharest, Romania; (M.A.); (F.L.Z.)
| | - Florina Lucica Zorilă
- Microbiology Laboratory, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului St., 077125 Bucharest, Romania; (M.A.); (F.L.Z.)
- Department of Genetics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Indepententei, 050095 Bucharest, Romania
| | - Alexandra Mocanu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.M.); (M.I.N.)
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Adina Boldeiu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Ana Mihaela Gavrilă
- National Institute of Research and Development for Chemistry and Petrochemistry, 202 Splaiul Independentei, 060041 Bucharest, Romania; (A.M.G.); (B.T.)
| | - Bogdan Trică
- National Institute of Research and Development for Chemistry and Petrochemistry, 202 Splaiul Independentei, 060041 Bucharest, Romania; (A.M.G.); (B.T.)
| | - Daniela Pulpea
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.D.); (D.P.)
| | - Mădălina Ioana Necolau
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.M.); (M.I.N.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Marcel Istrate
- S.C. Stimpex S.A., 46-48 Nicolae Teclu Street, 032368 Bucharest, Romania;
| |
Collapse
|
16
|
Jha PK, Pokhum C, Soison P, Techato KA, Chawengkijwanich C. Comparative study of zinc oxide nanocomposites with different noble metals synthesized by biological method for photocatalytic disinfection of Escherichia coli present in hospital wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1564-1577. [PMID: 37768755 PMCID: wst_2023_272 DOI: 10.2166/wst.2023.272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Binary zinc oxide (ZnO) nanocomposites with different noble metals, silver (Ag) and ruthenium (Ru), were prepared from an aqueous leaf extract of Callistemon viminalis. The biosynthesized photocatalysts were characterized and examined for their photocatalytic disinfection against Escherichia coli isolated from hospital wastewater. The influence of the different noble metals showed a difference in physicochemical characteristics and photocatalytic efficiency between Ag-ZnO and Ru-ZnO. The photocatalytic degradation of methylene blue and photocatalytic disinfection were found to be in the order Ag-ZnO > Ru-ZnO > ZnO. The photocatalytic disinfection of Ag-ZnO reached a 75% reduction in 60 min, compared to 34 and 9% reductions of Ru-ZnO and ZnO, respectively. The kinetic reaction rate for the photocatalytic disinfection of Ag-ZnO was found to be 2.8 times higher than that of Ru-ZnO. The outstanding photocatalytic activity of Ag-ZnO over Ru-ZnO was attributed to higher crystallinity, greater UVA adsorption capacity, smaller particle size, and the additional antimicrobial effect of Ag itself. The C. viminalis-mediated Ag-ZnO nanocomposites can be a potential candidate for photocatalytic disinfection of drug-resistant E. coli in hospital wastewater.
Collapse
Affiliation(s)
- Pankaj Kumar Jha
- Department of Sustainable Energy Management, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkla 90110, Thailand E-mail:
| | - Chonlada Pokhum
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand
| | - Pichai Soison
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand; School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, Pracha Uthit Road, Bang Mod, Bangkok 10140, Thailand
| | - Kua-Anan Techato
- Department of Sustainable Energy Management, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkla 90110, Thailand
| | - Chamorn Chawengkijwanich
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand
| |
Collapse
|
17
|
Moreno Ruiz YP, de Almeida Campos LA, Alves Agreles MA, Galembeck A, Macário Ferro Cavalcanti I. Advanced Hydrogels Combined with Silver and Gold Nanoparticles against Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:antibiotics12010104. [PMID: 36671305 PMCID: PMC9855178 DOI: 10.3390/antibiotics12010104] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
The development of multidrug-resistant (MDR) microorganisms has increased dramatically in the last decade as a natural consequence of the misuse and overuse of antimicrobials. The World Health Organization (WHO) recognizes that this is one of the top ten global public health threats facing humanity today, demanding urgent multisectoral action. The UK government foresees that bacterial antimicrobial resistance (AMR) could kill 10 million people per year by 2050 worldwide. In this sense, metallic nanoparticles (NPs) have emerged as promising alternatives due to their outstanding antibacterial and antibiofilm properties. The efficient delivery of the NPs is also a matter of concern, and recent studies have demonstrated that hydrogels present an excellent ability to perform this task. The porous hydrogel structure with a high-water retention capability is a convenient host for the incorporation of the metallic nanoparticles, providing an efficient path to deliver the NPs properly reducing bacterial infections caused by MDR pathogenic microorganisms. This article reviews the most recent investigations on the characteristics, applications, advantages, and limitations of hydrogels combined with metallic NPs for treating MDR bacteria. The mechanisms of action and the antibiofilm activity of the NPs incorporated into hydrogels are also described. Finally, this contribution intends to fill some gaps in nanomedicine and serve as a guide for the development of advanced medical products.
Collapse
Affiliation(s)
- Yolice Patricia Moreno Ruiz
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, Cidade Universitária, Recife 50740-560, Pernambuco, Brazil
| | - Luís André de Almeida Campos
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
| | - Maria Andressa Alves Agreles
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
| | - André Galembeck
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, Cidade Universitária, Recife 50740-560, Pernambuco, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
- Correspondence: ; Tel.: +55-81-98648-2081
| |
Collapse
|