1
|
Jana S, Mitra P, Panchali T, Khatun A, Das TK, Ghosh K, Pradhan S, Chakrabarti S, Roy S. Evaluating anti-inflammatory and anti-oxidative potentialities of the chloroform fraction of Asparagus racemosus roots against cisplatin induced acute kidney injury. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119084. [PMID: 39566865 DOI: 10.1016/j.jep.2024.119084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute kidney injury (AKI), a global public health concern that increases the risk of death, end-stage renal disease, and prolonged hospital admissions. As of this point, supportive measures like fluid resuscitation and replacement therapy for renal failure are the only treatments available for treating AKI. Asparagus racemosus (AR) also known as Shatavari, belongs to family Liliaceae and is considered exceptional in Ayurvedic medicine due to its versatility in treating and preventing a variety of illnesses. AIM OF THE STUDY The purpose of this study is to determine the effectiveness of chloroform fraction of Asparagus racemosus (CFAR) against cisplatin (CP) induced AKI. MATERIALS AND METHODS HPLC was used to analyze the presence of bioactive phytocompounds in CFAR using standard quercetin. Further LC-MS study indicated the existence of different bioactive compounds. Normal Rat Kidney (NRK-52E) cells were used to study the nephroprotective effect of CFAR. Cells were untreated, treated or cotreated with CP (20 μM) and CFAR (5, 25, 50, 100, 200 and 400μg/mL) for 24 h. After 24 h of treatment, cell viability assay and assay of apoptosis parameters were performed. The CFAR at the dose of 50 mg, 100 mg and 200 mg/kg/day was administered orally for 15 days and acute kidney injury was induced in rats by intraperitoneal injection of CP (10 mg/kg body weight) at the 10th day of experimentation. Biochemical studies were performed to evaluate kidney function; protein expression by Western blot and mRNA expression of related gene were studied from the kidney tissues to evaluate the effects of CFAR. Histopathological analysis was done to investigate the structural abnormalities and fibrosis of renal tissues. RESULT Our result reported that CFAR contain many bioactive phytomolecules having many pharmacological properties. Cell viability assay and assay of apoptosis reported that different doses of CFAR could reduced CP-induced cell death and cell apoptosis. The levels of kidney injury markers (BUN, sCr and eGFR), inflammatory markers (Interleukin-18, KIM-1, Cys-C, NF-kB and NGAL), and antioxidant markers (SOD, GSH, CAT, Nrf2 and Bcl2) and lipid peroxidation (MDA) were settled to a normal level by the oral administration of high doses (100 and 200 mg/kg body weight) of CFAR after intraperitoneal injection of CP as suggested by biochemical, histopathological, protein and gene expression studies. CONCLUSION In conclusion, CFAR at the high doses (100 and 200 mg/kg body weight) could able to protect the kidneys from CP induced oxidative stress and inflammation due to presence of bioactive phytomolecules that prevent the activation of oxidative stress induced signalling cascades leading to kidney damage.
Collapse
Affiliation(s)
- Sahadeb Jana
- Biodiversity and Environmental Studies Research Centre affiliated to Vidyasagar University, Midnapore City College, Bhadutala, Paschim Medinipur, 721129, West Bengal, India; Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India.
| | - Palash Mitra
- Biodiversity and Environmental Studies Research Centre affiliated to Vidyasagar University, Midnapore City College, Bhadutala, Paschim Medinipur, 721129, West Bengal, India; Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India.
| | - Titli Panchali
- Biodiversity and Environmental Studies Research Centre affiliated to Vidyasagar University, Midnapore City College, Bhadutala, Paschim Medinipur, 721129, West Bengal, India; Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India.
| | - Amina Khatun
- Biodiversity and Environmental Studies Research Centre affiliated to Vidyasagar University, Midnapore City College, Bhadutala, Paschim Medinipur, 721129, West Bengal, India; Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India.
| | - Tridip Kumar Das
- Biodiversity and Environmental Studies Research Centre affiliated to Vidyasagar University, Midnapore City College, Bhadutala, Paschim Medinipur, 721129, West Bengal, India; Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India.
| | - Kuntal Ghosh
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India.
| | - Shrabani Pradhan
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India.
| | - Sudipta Chakrabarti
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India.
| | - Suchismita Roy
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India.
| |
Collapse
|
2
|
Kavya P, Theijeswini RC, Gayathri M. Phytochemical analysis, identification of bioactive compounds using GC-MS, in vitro and in silico hypoglycemic potential, in vitro antioxidant potential, and in silico ADME analysis of Chlorophytum comosum root and leaf. Front Chem 2024; 12:1458505. [PMID: 39345858 PMCID: PMC11427758 DOI: 10.3389/fchem.2024.1458505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Chlorophytum comosum is a plant with medicinal potential traditionally used to treat different diseases. The present study aimed to determine the bioactive compounds, hypoglycemic and antioxidant potential of C. comosum root and leaf. The ethyl acetate extracts of C. comosum root and leaf were analyzed by GC-MS to determine the bioactive compounds. The hypoglycemic potential of the extracts was evaluated by α-amylase, α-glucosidase, glucose diffusion inhibitory assays, and glucose adsorption assay. The ethyl acetate extract of C. comosum root inhibited α-amylase, α-glucosidase, and glucose diffusion in a concentration-dependent manner with IC50 values of 205.39 ± 0.15, 179.34 ± 0.3 and 535.248 μg/mL, respectively, and the leaf extract inhibited α-amylase and α-glucosidase enzymes with IC50 values of 547.99 ± 0.09, and 198.18 ± 0.25 μg/mL respectively. C. comosum root and leaf extracts also improved glucose adsorption. Heptadecanoic acid and dodecanoic acid were identified as potential compounds with hypoglycemic properties through molecular docking. The extracts were also assessed for their antioxidant activity using DPPH, ABTS, and FRAP assays. C. comosum root and leaf extracts were also able to scavenge DPPH radicals with IC50 values of 108.37 ± 0.06 and 181.79 ± 0.09 µM and ABTS radicals with IC50 values of 126.24 ± 0.13 and 264.409 ± 0.08 µM, respectively. The root and leaf extracts also reduced the ferricyanide complex to ferrocyanide with higher reducing powers of 2.24 ± 0.02 and 1.65 ± 0.03, respectively. The results showed that the ethyl acetate extract of C. comosum root has significant antioxidant and hypoglycemic potential compared to the leaf extract. Thus, it can also be studied to isolate the potential compounds with antihyperglycemic activities.
Collapse
Affiliation(s)
- P Kavya
- Department of Bio Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - R C Theijeswini
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - M Gayathri
- Department of Bio Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Wang M, Xu XR, Bai QX, Wu LH, Yang XP, Yang DQ, Kuang HX. Dichroa febrifuga Lour.: A review of its botany, traditional use, phytochemistry, pharmacological activities, toxicology, and progress in reducing toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118093. [PMID: 38537842 DOI: 10.1016/j.jep.2024.118093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dichroa febrifuga Lour., a toxic but extensively used traditional Chinese medicine with a remarkable effect, is commonly called "Changshan" in China. It has been used to treat malaria and many other parasitic diseases. AIM OF THE REVIEW The study aims to provide a current overview of the progress in the research on traditional use, phytochemistry, pharmacological activities, toxicology, and methods of toxicity reduction of D. febrifuga. Additionally, further research directions and development prospects for the plant were put forward. MATERIALS AND METHODS The article uses "Dichroa febrifuga Lour." "D. febrifuga" as the keyword and all relevant information on D. febrifuga was collected from electronic searches (Elsevier, PubMed, ACS, CNKI, Google Scholar, and Baidu Scholar), doctoral and master's dissertations and classic books about Chinese herbs. RESULTS 30 chemical compounds, including alkaloids, terpenoids, flavonoids and other kinds, were isolated and identified from D. febrifuga. Modern pharmacological studies have shown that these components have a variety of pharmacological activities, including anti-malarial activities, anti-inflammatory activities, anti-tumor activities, anti-parasitic activities and anti-oomycete activities. Meanwhile, alkaloids, as the material basis of its efficacy, are also the source of its toxicity. It can cause multiple organ damage, including liver, kidney and heart, and cause adverse reactions such as nausea and vomiting, abdominal pain and diarrhea. In the current study, the toxicity can be reduced by modifying the structure of the compound, processing and changing the dosage forms. CONCLUSIONS There are few studies on the chemical constituents of D. febrifuga, so the components and their structure characterization contained in it can become the focus of future research. In view of the toxicity of D. febrifuga, there are many methods to reduce it, but the safety and rationality of these methods need further study.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Xin-Rui Xu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Li-Hong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Xin-Peng Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - De-Qiang Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
4
|
Naznin M, Alam R, Alam MB, Jung MJ, Lee SH, Kim S. Biological activities, identification, method development, and validation for analysis of polyphenolic compounds in Nymphaea rubra flowers and leaves by UHPLC-Q-cIM-TOF-MS and UHPLC-TQ-MS. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:799-816. [PMID: 38297293 DOI: 10.1002/pca.3329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Nymphaea rubra belongs to the Nymphaea family and is regarded as a vegetable used in traditional medicine to cure several ailments. These species are rich in phenolic acid, flavonoids, and hydrolysable tannin. OBJECTIVE This study aimed to assess the biological activities of Nymphaea rubra flowers (NRF) and leaves (NRL) by identifying and quantifying their polyphenolic compounds using ultra-performance liquid chromatography coupled to quadrupole cyclic ion mobility time-of-flight mass spectrometry (UHPLC-Q-cIM-TOF-MS) and triple quadrupole mass spectrometry (UHPLC-TQ-MS). METHODOLOGY NRF and NRL powder was extracted with methanol and fractionated using hexane, ethylacetate, and water. Antioxidant and α-glucosidase, and tyrosinase enzyme inhibitory activities were evaluated. The polyphenolic components of NRF and NRL were identified and quantified using UHPLC-Q-cIM-TOF-MS and UHPLC-TQ-MS. The method was validated using linearity, precision, accuracy, limit of detection (LOD), and lower limit of quantification (LLOQ). RESULTS Bioactive substances and antioxidants were highest in the ethylacetate fraction of flowers and leaves. Principal component analysis showed how solvent and plant components affect N. rubra's bioactivity and bioactive compound extraction. A total of 67 compounds were identified, and among them 21 significant polyphenols were quantified. Each calibration curve had R2 > 0.998. The LOD and LLOQ varied from 0.007 to 0.09 μg/mL and from 0.01 to 0.1 μg/mL, respectively. NRF contained a significant amount of gallic acid (10.1 mg/g), while NRL contained abundant pentagalloylglucose (2.8 mg/g). CONCLUSION The developed method is simple, rapid, and selective for the identification and quantification of bioactive molecules. These findings provide a scientific basis for N. rubra's well-documented biological effects.
Collapse
Affiliation(s)
- Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu, South Korea
| | - Rafiqul Alam
- Department of Chemistry, Kyungpook National University, Daegu, South Korea
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, South Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu, South Korea
| | - Maeng-Joon Jung
- Department of Chemistry, Kyungpook National University, Daegu, South Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, South Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu, South Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, South Korea
- Mass Spectrometry Converging Research Center and Green-Nano Materials Research Center, Daegu, South Korea
| |
Collapse
|
5
|
Belahcene S, Kebsa W, Akingbade TV, Umar HI, Omoboyowa DA, Alshihri AA, Abo Mansour A, Alhasaniah AH, Oraig MA, Bakkour Y, Leghouchi E. Chemical Composition Antioxidant and Anti-Inflammatory Activities of Myrtus communis L. Leaf Extract: Forecasting ADMET Profiling and Anti-Inflammatory Targets Using Molecular Docking Tools. Molecules 2024; 29:849. [PMID: 38398601 PMCID: PMC10893115 DOI: 10.3390/molecules29040849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Compounds derived from natural sources continue to serve as chemical scaffolds for designing prophylactic/therapeutic options for human healthcare. In this study, we aimed to systematically unravel the chemical profile and antioxidant and anti-inflammatory activities of myrtle methanolic extract (MMEx) using in vitro, in vivo, and in silico approaches. High levels of TPC (415.85 ± 15.52 mg GAE/g) and TFC (285.80 ± 1.64 mg QE/g) were observed. Mass spectrophotometry (GC-MS) analysis revealed the presence of 1,8-cineole (33.80%), α-pinene (10.06%), linalool (4.83%), p-dimethylaminobenzophenone (4.21%), thunbergol (4%), terpineol (3.60%), cis-geranyl acetate (3.25%), and totarol (3.30%) as major compounds. MMEx induced pronounced dose-dependent inhibition in all assays, and the best antioxidant activity was found with H2O2, with an IC50 of 17.81 ± 3.67 µg.mL-1. MMEx showed a good anti-inflammatory effect in vivo by limiting the development of carrageenan-induced paw edema. The pharmacokinetic profiles of the active molecules were determined using the SwissADME website, followed by virtual screening against anti-inflammatory targets including phospholipase A2 (PLA-2), cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and NF-κB. A pharmacokinetic study revealed that the molecules have good absorption, distribution, and metabolism profiles, with negative organ toxicity. Among the compounds identified by GC-MS analysis, pinostrobin chalcone, cinnamyl cinnamate, hedycaryol, totarol, and p-dimethylaminobenzophenone were observed to have good binding scores, thus appreciable anti-inflammatory potential. Our study reveals that MMEx from Algerian Myrtus communis L. can be considered to be a promising candidate for alleviating many health complaints associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Samia Belahcene
- Laboratory of Biotechnology, Environment and Health, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria
| | - Widad Kebsa
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria;
| | - Tomilola Victor Akingbade
- Computer-Aided Therapeutic Discovery and Design Platform, Federal University of Technology, PMB 704 Akure, Gaga 340110, Nigeria; (T.V.A.); (H.I.U.)
| | - Haruna Isiyaku Umar
- Computer-Aided Therapeutic Discovery and Design Platform, Federal University of Technology, PMB 704 Akure, Gaga 340110, Nigeria; (T.V.A.); (H.I.U.)
| | - Damilola Alex Omoboyowa
- Phyto-Medicine and Computational Biology Laboratory, Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko 57257, Nigeria
| | - Abdulaziz A. Alshihri
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia;
| | - Adel Abo Mansour
- Department of Clinical Laboratory Sciences, College of Applied Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Sciences, Najran University, Najran 1988, Saudi Arabia
| | - Mohammed A. Oraig
- Radiology Department, Khamis Mushayt General Hospital, Khamis Mushayt 62433, Saudi Arabia;
| | - Youssef Bakkour
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia;
| | - Essaid Leghouchi
- Laboratory of Biotechnology, Environment and Health, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria
| |
Collapse
|