1
|
Nair VV, Kish BR, Oshima H, Wright AM, Wen Q, Schwichtenberg AJ, Tong Y. Amplitude fluctuations of cerebrovascular oscillations and CSF movement desynchronize during NREM3 sleep. J Cereb Blood Flow Metab 2025:271678X251337637. [PMID: 40370321 DOI: 10.1177/0271678x251337637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Fluctuations in cerebral blood volume (CBV) are a dominant mechanism aiding cerebrospinal fluid (CSF) movement in the brain during wakefulness and non-rapid eye movement (NREM) sleep. However, it is unclear if the amplitudes of CBV oscillations also change in proportion to the changes in amplitude of CSF movement across specific NREM sleep states. It is also not known if the coupling strength between them varies between NREM sleep states. To investigate these relationships, we measured cerebral hemodynamics and craniad CSF movement at the fourth ventricle simultaneously during wakefulness and NREM sleep states using concurrent Electroencephalography and functional Magnetic Resonance Imaging. We found that the amplitude fluctuations of cerebral hemodynamics and CSF oscillations desynchronize from one another only during deep NREM3 state, despite the strong mechanical coupling between CBV changes and CSF movement, which was consistent across all states. This suggests the existence of a different mechanism, linked to the cortical interstitial volume/resistance change, that regulates the NREM3 CSF inflow into the brain.
Collapse
Affiliation(s)
- Vidhya V Nair
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Brianna R Kish
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Hideyuki Oshima
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Japan
| | - Adam M Wright
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qiuting Wen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A J Schwichtenberg
- Department of Human Development and Family Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Yunjie Tong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Yang L, Wang Z. Applications and advances of combined fMRI-fNIRs techniques in brain functional research. Front Neurol 2025; 16:1542075. [PMID: 40170894 PMCID: PMC11958174 DOI: 10.3389/fneur.2025.1542075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
Understanding the intricate functions of the human brain requires multimodal approaches that integrate complementary neuroimaging techniques. This review systematically examines the integration of functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRs) in brain functional research, addressing their synergistic potential, methodological advancements, clinical and neuroscientific applications, and persistent challenges. We conducted a comprehensive literature review of 63 studies (from PubMed and Web of Science up to September 2024) using keyword combinations such as fMRI, fNIRs, and multimodal imaging. Our analysis reveals three key findings: (1) Methodological Synergy: Combining fMRI's high spatial resolution with fNIRs's superior temporal resolution and portability enables robust spatiotemporal mapping of neural activity, validated across motor, cognitive, and clinical tasks. Additionally, this study examines experimental paradigms and data processing techniques essential for effective multimodal neuroimaging. (2) Applications: The review categorizes integration methodologies into synchronous and asynchronous detection modes, highlighting their respective applications in spatial localization, validation of efficacy, and mechanism discovery. Synchronous and asynchronous integration modes have advanced research in neurological disorders (e.g., stroke, Alzheimer's), social cognition, and neuroplasticity, while novel hyperscanning paradigms extend applications to naturalistic, interactive settings. (3) Challenges: Hardware incompatibilities (e.g., electromagnetic interference in MRI environments), experimental limitations (e.g., restricted motion paradigms), and data fusion complexities hinder widespread adoption. The future direction emphasizes hardware innovation (such as fNIR probe compatible with MRI), standardized protocol and data integration driven by machine learning, etc. to solve the depth limitation of fNIR and infer subcortical activities. This synthesis underscores the transformative potential of fMRI-fNIRs integration in bridging spatial and temporal gaps in neuroimaging, while enhancing diagnostic and therapeutic strategies and paving the way for future innovations in brain research.
Collapse
Affiliation(s)
- Lirui Yang
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
- Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, Beijing, China
- National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices, Interdiscipline of Medicine and Engineering, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zehua Wang
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
- Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, Beijing, China
- National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices, Interdiscipline of Medicine and Engineering, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Center for Medical Device Evaluation, NMPA, Beijing, China
| |
Collapse
|
3
|
Xin M, Bi F, Wang C, Huang Y, Xu Y, Liang S, Cai T, Xu X, Dong L, Li T, Wang X, Fang Y, Xu Z, Wang M, Song X, Zheng Y, Sun W, Li L. The circadian rhythm: A new target of natural products that can protect against diseases of the metabolic system, cardiovascular system, and nervous system. J Adv Res 2025; 69:495-514. [PMID: 38631431 PMCID: PMC11954810 DOI: 10.1016/j.jare.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The treatment of metabolic system, cardiovascular system, and nervous system diseases remains to be explored. In the internal environment of organisms, the metabolism of substances such as carbohydrates, lipids and proteins (including biohormones and enzymes) exhibit a certain circadian rhythm to maintain the energy supply and material cycle needed for the normal activities of organisms. As a key factor for the health of organisms, the circadian rhythm can be disrupted by pathological conditions, and this disruption accelerates the progression of diseases and results in a vicious cycle. The current treatments targeting the circadian rhythm for the treatment of metabolic system, cardiovascular system, and nervous system diseases have certain limitations, and the identification of safer and more effective circadian rhythm regulators is needed. AIM OF THE REVIEW To systematically assess the possibility of using the biological clock as a natural product target for disease intervention, this work reviews a range of evidence on the potential effectiveness of natural products targeting the circadian rhythm to protect against diseases of the metabolic system, cardiovascular system, and nervous system. This manuscript focuses on how natural products restore normal function by affecting the amplitude of the expression of circadian factors, sleep/wake cycles and the structure of the gut microbiota. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This work proposes that the circadian rhythm, which is regulated by the amplitude of the expression of circadian rhythm-related factors and the sleep/wake cycle, is crucial for diseases of the metabolic system, cardiovascular system and nervous system and is a new target for slowing the progression of diseases through the use of natural products. This manuscript provides a reference for the molecular modeling of natural products that target the circadian rhythm and provides a new perspective for the time-targeted action of drugs.
Collapse
Affiliation(s)
- Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China
| | - Fangjie Bi
- Heart Center, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yuhong Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yujia Xu
- Department of Echocardiography, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueke Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053 China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| |
Collapse
|
4
|
Ryman SG, Vakhtin AA, Mayer AR, van der Horn HJ, Shaff NA, Nitschke SR, Julio KR, Tarawneh RM, Rosenberg GA, Diaz SV, Pirio Richardson SE, Lin HC. Abnormal Cerebrovascular Activity, Perfusion, and Glymphatic Clearance in Lewy Body Diseases. Mov Disord 2024; 39:1258-1268. [PMID: 38817039 PMCID: PMC11341260 DOI: 10.1002/mds.29867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
Cerebrovascular activity is not only crucial to optimal cerebral perfusion, but also plays an important role in the glymphatic clearance of interstitial waste, including α-synuclein. This highlights a need to evaluate how cerebrovascular activity is altered in Lewy body diseases. This review begins by discussing how vascular risk factors and cardiovascular autonomic dysfunction may serve as upstream or direct influences on cerebrovascular activity. We then discuss how patients with Lewy body disease exhibit reduced and delayed cerebrovascular activity, hypoperfusion, and reductions in measures used to capture cerebrospinal fluid flow, suggestive of a reduced capacity for glymphatic clearance. Given the lack of an existing framework, we propose a model by which these processes may foster α-synuclein aggregation and neuroinflammation. Importantly, this review highlights several avenues for future research that may lead to treatments early in the disease course, prior to neurodegeneration. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sephira G Ryman
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, The University of New Mexico, Albuquerque, New Mexico, USA
- Center for Memory and Aging, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Andrei A Vakhtin
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Andrew R Mayer
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Harm Jan van der Horn
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Nicholas A Shaff
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Stephanie R Nitschke
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Kayla R Julio
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Rawan M Tarawneh
- Center for Memory and Aging, The University of New Mexico, Albuquerque, New Mexico, USA
- Cognitive Neurology Section, Department of Neurology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Gary A Rosenberg
- Center for Memory and Aging, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Shanna V Diaz
- Department of Internal Medicine, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Sarah E Pirio Richardson
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, The University of New Mexico, Albuquerque, New Mexico, USA
- New Mexico VA Health Care System, Albuquerque, New Mexico, USA
| | - Henry C Lin
- Department of Internal Medicine, The University of New Mexico, Albuquerque, New Mexico, USA
- New Mexico VA Health Care System, Albuquerque, New Mexico, USA
| |
Collapse
|
5
|
van der Voort EC, Tong Y, van Grinsven EE, Zwanenburg JJM, Philippens MEP, Bhogal AA. CO 2 as an engine for neurofluid flow: Exploring the coupling between vascular reactivity, brain clearance, and changes in tissue properties. NMR IN BIOMEDICINE 2024; 37:e5126. [PMID: 38403795 PMCID: PMC11236526 DOI: 10.1002/nbm.5126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 02/27/2024]
Abstract
The brain relies on an effective clearance mechanism to remove metabolic waste products for the maintenance of homeostasis. Recent studies have focused on elucidating the forces that drive the motion of cerebrospinal fluid (CSF), responsible for removal of these waste products. We demonstrate that vascular responses evoked using controlled manipulations of partial pressure of carbon dioxide (PaCO2) levels, serve as an endogenous driver of CSF clearance from the brain. To demonstrate this, we retrospectively surveyed our database, which consists of brain metastases patients from whom blood oxygen level-dependent (BOLD) images were acquired during targeted hypercapnic and hyperoxic respiratory challenges. We observed a correlation between CSF inflow signal around the fourth ventricle and CO2-induced changes in cerebral blood volume. By contrast, no inflow signal was observed in response to the nonvasoactive hyperoxic stimulus, validating our measurements. Moreover, our results establish a link between the rate of the hemodynamic response (to elevated PaCO2) and peritumoral edema load, which we suspect may affect CSF flow, consequently having implications for brain clearance. Our expanded perspective on the factors involved in neurofluid flow underscores the importance of considering both cerebrovascular responses, as well as the brain mechanical properties, when evaluating CSF dynamics in the context of disease processes.
Collapse
Affiliation(s)
| | - Yunjie Tong
- Purdue University, West Lafayette, Indiana, USA
| | | | | | | | - Alex A. Bhogal
- Center for Image Sciences, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Camberos-Barraza J, Camacho-Zamora A, Bátiz-Beltrán JC, Osuna-Ramos JF, Rábago-Monzón ÁR, Valdez-Flores MA, Angulo-Rojo CE, Guadrón-Llanos AM, Picos-Cárdenas VJ, Calderón-Zamora L, Norzagaray-Valenzuela CD, Cárdenas-Torres FI, De la Herrán-Arita AK. Sleep, Glial Function, and the Endocannabinoid System: Implications for Neuroinflammation and Sleep Disorders. Int J Mol Sci 2024; 25:3160. [PMID: 38542134 PMCID: PMC10970053 DOI: 10.3390/ijms25063160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 11/11/2024] Open
Abstract
The relationship between sleep, glial cells, and the endocannabinoid system represents a multifaceted regulatory network with profound implications for neuroinflammation and cognitive function. The molecular underpinnings of sleep modulation by the endocannabinoid system and its influence on glial cell activity are discussed, shedding light on the reciprocal relationships that govern these processes. Emphasis is placed on understanding the role of glial cells in mediating neuroinflammatory responses and their modulation by sleep patterns. Additionally, this review examines how the endocannabinoid system interfaces with glia-immune signaling to regulate inflammatory cascades within the central nervous system. Notably, the cognitive consequences of disrupted sleep, neuroinflammation, and glial dysfunction are addressed, encompassing implications for neurodegenerative disorders, mood disturbances, and cognitive decline. Insights into the bidirectional modulation of cognitive function by the endocannabinoid system in the context of sleep and glial activity are explored, providing a comprehensive perspective on the potential mechanisms underlying cognitive impairments associated with sleep disturbances. Furthermore, this review examines potential therapeutic avenues targeting the endocannabinoid system to mitigate neuroinflammation, restore glial homeostasis, and normalize sleep patterns. The identification of novel therapeutic targets within this intricate regulatory network holds promise for addressing conditions characterized by disrupted sleep, neuroinflammation, and cognitive dysfunction. This work aims to examine the complexities of neural regulation and identify potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | - Juan F. Osuna-Ramos
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80019, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|