1
|
Chellappa SL, Gao L, Qian J, Vujovic N, Li P, Hu K, Scheer FAJL. Daytime eating during simulated night work mitigates changes in cardiovascular risk factors: secondary analyses of a randomized controlled trial. Nat Commun 2025; 16:3186. [PMID: 40199860 PMCID: PMC11978778 DOI: 10.1038/s41467-025-57846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
Effective countermeasures against the adverse cardiovascular effects of circadian misalignment, such as effects experienced due to night work or jet lag, remain to be established in humans. Here, we aim to test whether eating only during daytime can mitigate such adverse effects vs. eating during the night and day (typical for night shift workers) under simulated night work (secondary analysis of NCT02291952). This single-blind, parallel-arm trial randomized 20 healthy participants (non-shift workers) to simulated night work with meals consumed during night and day (Nighttime Meal Control Group) or only during daytime (Daytime Meal Intervention Group). The primary outcomes were pNN50 (percentage consecutive heartbeat intervals >50 ms), RMSSD (root mean square of successive heartbeat differences), and LF/HF (low/high cardiac frequency). The secondary outcome was blood concentrations of prothrombotic factor plasminogen activator inhibitor-1 (PAI-1). These measures were assessed under Constant Routine conditions, before (baseline) and after (postmisalignment) simulated night work. The meal timing intervention significantly modified the impact of simulated night work on cardiac vagal modulation and PAI-1 (pFDR = 0.001). In the Control Group, the postmisalignment Constant Routine showed a decrease in pNN50 by 25.7% (pFDR = 0.008) and RMMSD by 14.3% (pFDR = 0.02), and an increase in LF/HF by 5.5% (pFDR = 0.04) and PAI-1 by 23.9% (pFDR = 0.04), vs. the baseline Constant Routine. In the Intervention Group, there were no significant changes in these outcomes. For exploratory outcomes, the intervention significantly modified the impact of simulated night work on blood pressure (P < 0.05), with no significant change in the Control Group, and a significant reduction by 6-8% (P < 0.01) in the Intervention Group; without significant effects for heart rate or cortisol. These findings indicate that daytime eating, despite mistimed sleep, may mitigate changes in cardiovascular risk factors and offer translational evidence for developing a behavioral strategy to help minimize the adverse changes in cardiovascular risk factors in individuals exposed to circadian misalignment, such as shift workers.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
- School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK.
| | - Lei Gao
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jingyi Qian
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Nina Vujovic
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Peng Li
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Kun Hu
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Frank A J L Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Bu F, Bone JK, Fancourt D. Will things feel better in the morning? A time-of-day analysis of mental health and wellbeing from nearly 1 million observations. BMJ MENTAL HEALTH 2025; 28:e301418. [PMID: 39904722 PMCID: PMC11795389 DOI: 10.1136/bmjment-2024-301418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Mood is known to change over seasons of the year, days of the week, and even over the course of the day (diurnally). But although broader mental health and well-being also vary over months and weeks, it is unclear whether there are diurnal changes in how people experience and report their mental health. OBJECTIVE To assess time-of-day association with depression, anxiety, well-being and loneliness. METHODS The study analysed data from 49 218 adults drawn from the University College London COVID-19 Social Study, which gathered detailed repeated measurements from the same participants across time over a 2-year period (March 2020-March 2022, 18.5 observation per person). Data were analysed using linear mixed-effects models. FINDINGS There is a clear time-of-day pattern in self-reported mental health and well-being, with people generally waking up feeling best and feeling worst around midnight. There is also an association with day of the week and season, with particularly strong evidence for better mental health and well-being in the summer. Time-of-day patterns are moderated by day, with more variation in mental health and individual well-being during weekends compared with weekdays. Loneliness is relatively more stable. CONCLUSIONS Generally, things do seem better in the morning. Hedonic and eudemonic well-being have the most variation, and social well-being is most stable. CLINICAL IMPLICATIONS Our findings indicate the importance of considering time, day and season in research design, analyses, intervention delivery, and the planning and provision of public health services.
Collapse
Affiliation(s)
- Feifei Bu
- Research Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, London, UK
| | - Jessica K Bone
- Research Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, London, UK
| | - Daisy Fancourt
- Research Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, London, UK
| |
Collapse
|
3
|
d’Almeida NA, Tipping M. Flight to insight: maximizing the potential of Drosophila models of C9orf72-FTD. Front Mol Neurosci 2024; 17:1434443. [PMID: 38915937 PMCID: PMC11194461 DOI: 10.3389/fnmol.2024.1434443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024] Open
Abstract
Advancements in understanding the pathogenesis of C9orf72-associated frontotemporal dementia (C9orf72-FTD) have highlighted the role of repeat-associated non-ATG (RAN) translation and dipeptide repeat proteins (DPRs), with Drosophila melanogaster models providing valuable insights. While studies have primarily focused on RAN translation and DPR toxicity, emerging areas of investigation in fly models have expanded to neuronal dysfunction, autophagy impairment, and synaptic dysfunction, providing potential directions for new therapeutic targets and mechanisms of neurodegeneration. Despite this progress, there are still significant gaps in Drosophila models of C9orf72-FTD, namely in the areas of metabolism and circadian rhythm. Metabolic dysregulation, particularly lipid metabolism, autophagy, and insulin signaling, has been implicated in disease progression with findings from animal models and human patients with C9orf72 repeat expansions. Moreover, circadian disruptions have been observed in C9of72-FTD, with alterations in rest-activity patterns and cellular circadian machinery, suggesting a potential role in disease pathophysiology. Drosophila models offer unique opportunities to explore these aspects of C9orf72-FTD and identify novel therapeutic targets aimed at mitigating neurodegeneration.
Collapse
|
4
|
Meyer N, Lok R, Schmidt C, Kyle SD, McClung CA, Cajochen C, Scheer FAJL, Jones MW, Chellappa SL. The sleep-circadian interface: A window into mental disorders. Proc Natl Acad Sci U S A 2024; 121:e2214756121. [PMID: 38394243 PMCID: PMC10907245 DOI: 10.1073/pnas.2214756121] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Sleep, circadian rhythms, and mental health are reciprocally interlinked. Disruption to the quality, continuity, and timing of sleep can precipitate or exacerbate psychiatric symptoms in susceptible individuals, while treatments that target sleep-circadian disturbances can alleviate psychopathology. Conversely, psychiatric symptoms can reciprocally exacerbate poor sleep and disrupt clock-controlled processes. Despite progress in elucidating underlying mechanisms, a cohesive approach that integrates the dynamic interactions between psychiatric disorder with both sleep and circadian processes is lacking. This review synthesizes recent evidence for sleep-circadian dysfunction as a transdiagnostic contributor to a range of psychiatric disorders, with an emphasis on biological mechanisms. We highlight observations from adolescent and young adults, who are at greatest risk of developing mental disorders, and for whom early detection and intervention promise the greatest benefit. In particular, we aim to a) integrate sleep and circadian factors implicated in the pathophysiology and treatment of mood, anxiety, and psychosis spectrum disorders, with a transdiagnostic perspective; b) highlight the need to reframe existing knowledge and adopt an integrated approach which recognizes the interaction between sleep and circadian factors; and c) identify important gaps and opportunities for further research.
Collapse
Affiliation(s)
- Nicholas Meyer
- Insomnia and Behavioural Sleep Medicine Clinic, University College London Hospitals NHS Foundation Trust, LondonWC1N 3HR, United Kingdom
- Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King’s College London, LondonSE5 8AF, United Kingdom
| | - Renske Lok
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
| | - Christina Schmidt
- Sleep & Chronobiology Group, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology, Speech and Language, University of Liège, Liège4000, Belgium
| | - Simon D. Kyle
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA15219
| | - Christian Cajochen
- Centre for Chronobiology, Department for Adult Psychiatry, Psychiatric Hospital of the University of Basel, BaselCH-4002, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, BaselCH-4055, Switzerland
| | - Frank A. J. L. Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
- Division of Sleep Medicine, Harvard Medical School, Boston, MA02115
| | - Matthew W. Jones
- School of Physiology, Pharmacology and Neuroscience, Faculty of Health and Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - Sarah L. Chellappa
- School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| |
Collapse
|
5
|
Klerman EB, Wright KP, Duffy JF, Scheer FAJL, Chang AM, Czeisler CA, Rajaratnam SM. A perspective on the Festschrift of Charles A. Czeisler, PhD MD. Sleep Health 2024; 10:S4-S10. [PMID: 38331654 PMCID: PMC11031332 DOI: 10.1016/j.sleh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Affiliation(s)
- Elizabeth B Klerman
- Department of Neurology, Massachusetts General Hospital, Boston, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology., University of Colorado Boulder, USA
| | - Jeanne F Duffy
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Frank A J L Scheer
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anne-Marie Chang
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Charles A Czeisler
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Shantha Mw Rajaratnam
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| |
Collapse
|
6
|
Borisenkov MF, Tserne TA, Popov SV, Smirnov VV, Dorogina OI, Pecherkina AA, Symaniuk EE. Association of Chrononutrition Indices with Anthropometric Parameters, Academic Performance, and Psychoemotional State of Adolescents: A Cross-Sectional Study. Nutrients 2023; 15:4521. [PMID: 37960174 PMCID: PMC10647400 DOI: 10.3390/nu15214521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Adolescents are an at-risk group for circadian misalignment. The contribution of sleep-wake rhythm instability to the psychoemotional, cognitive, and weight disorders of adolescents has been studied in sufficient detail. At the same time, there is insufficient information about the association between chrononutrition indices and the well-being of adolescents. The aim of this study is to investigate the relationship between chrononutrition indices and academic achievement, psychoemotional state, and anthropometric indicators in adolescents. The study involved 12,759 students in grades 6-11 of secondary schools, aged 14.2 ± 1.7 years old; 57.2% of whom were girls. Participants provided personal data, frequency and time of meals during the day and at night, on weekdays and weekends, and completed the Zung Self-Rating Depression Scale and the Yale Food Addiction Scale. There is a U-shaped association between eating mid-phase (EPFc), eating jetlag (EJL), and eating window (EW) with GPA, ZSDSI, and FA. At the same time, the frequency of night eating (NE) is linearly associated with the studied parameters. NE is the strongest predictor of ZSDSI (β = 0.24), FA (β = 0.04), and GPA (β = -0.22). EPFc, EJL, and EW practically do not differ in the strength of their association with the studied indicators. ZSDSI is most closely associated with the chrononutrition indices. There is a weak negative association between BMI and EW (β = -0.03) and NE (β = -0.04). Thus, circadian eating disorders are more often observed in adolescents with poor academic performance, high levels of depression, and food addiction.
Collapse
Affiliation(s)
- Mikhail F. Borisenkov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia; (T.A.T.); (S.V.P.); (V.V.S.)
| | - Tatyana A. Tserne
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia; (T.A.T.); (S.V.P.); (V.V.S.)
| | - Sergey V. Popov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia; (T.A.T.); (S.V.P.); (V.V.S.)
| | - Vasily V. Smirnov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia; (T.A.T.); (S.V.P.); (V.V.S.)
| | - Olga I. Dorogina
- Ural Institute of Humanities, Ural Federal University, 620000 Yekaterinburg, Russia; (O.I.D.); (E.E.S.)
| | - Anna A. Pecherkina
- Ural Institute of Humanities, Ural Federal University, 620000 Yekaterinburg, Russia; (O.I.D.); (E.E.S.)
| | - Elvira E. Symaniuk
- Ural Institute of Humanities, Ural Federal University, 620000 Yekaterinburg, Russia; (O.I.D.); (E.E.S.)
| |
Collapse
|