1
|
Chacko Kaitholil SR, Mooney MH, Aubry A, Rezwan F, Shirali M. Insights into the influence of diet and genetics on feed efficiency and meat production in sheep. Anim Genet 2024; 55:20-46. [PMID: 38112204 PMCID: PMC10952161 DOI: 10.1111/age.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/06/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Feed costs and carcass yields affect the profitability and sustainability of sheep production. Therefore, it is crucial to select animals with a higher feed efficiency and high-quality meat production. This study focuses on the impact of dietary and genetic factors on production traits such as feed efficiency, carcass quality, and meat quality. Diets promote optimal sheep growth and development and provide sufficient protein can lead to higher-quality meat. However, establishing an optimized production system requires careful consideration and balance of dietary parameters. This includes ensuring adequate protein intake and feeding diets with higher intestinal absorption rates to enhance nutrient absorption in the gut. The study identifies specific genes, such as Callipyge, Calpastatin, and Myostatin, and the presence of causal mutations in these genes, as factors influencing animal growth rates, feed efficiency, and meat fatty acid profiles. Additionally, variants of other reported genes, including PIGY, UCP1, MEF2B, TNNC2, FABP4, SCD, FASN, ADCY8, ME1, CA1, GLIS1, IL1RAPL1, SOX5, SOX6, and IGF1, show potential as markers for sheep selection. A meta-analysis of reported heritability estimates reveals that residual feed intake (0.27 ± 0.07), hot carcass weight (0.26 ± 0.05), dressing percentage (0.23 ± 0.05), and intramuscular fat content (0.45 ± 0.04) are moderately to highly heritable traits. This suggests that these traits are less influenced by environmental factors and could be improved through genetic selection. Additionally, positive genetic correlations exist between body weight and hot carcass weight (0.91 ± 0.06), dressing percentage (0.35 ± 0.15), and shear force (0.27 ± 0.24), indicating that selecting for higher body weight could lead to favorable changes in carcass quality, and meat quality.
Collapse
Affiliation(s)
- Steffimol Rose Chacko Kaitholil
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
- Agri‐Food and Biosciences InstituteHillsboroughUK
| | - Mark H. Mooney
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | | | - Faisal Rezwan
- Department of Computer ScienceAberystwyth UniversityAberystwythUK
| | - Masoud Shirali
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
- Agri‐Food and Biosciences InstituteHillsboroughUK
| |
Collapse
|
2
|
Ghoreishifar SM, Rochus CM, Moghaddaszadeh-Ahrabi S, Davoudi P, Salek Ardestani S, Zinovieva NA, Deniskova TE, Johansson AM. Shared Ancestry and Signatures of Recent Selection in Gotland Sheep. Genes (Basel) 2021; 12:genes12030433. [PMID: 33802939 PMCID: PMC8002741 DOI: 10.3390/genes12030433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Gotland sheep, a breed native to Gotland, Sweden (an island in the Baltic Sea), split from the Gute sheep breed approximately 100 years ago, and since, has probably been crossed with other breeds. This breed has recently gained popularity, due to its pelt quality. This study estimates the shared ancestors and identifies recent selection signatures in Gotland sheep using 600 K single nucleotide polymorphism (SNP) genotype data. Admixture analysis shows that the Gotland sheep is a distinct breed, but also has shared ancestral genomic components with Gute (~50%), Karakul (~30%), Romanov (~20%), and Fjällnäs (~10%) sheep breeds. Two complementary methods were applied to detect selection signatures: A Bayesian population differentiation FST and an integrated haplotype homozygosity score (iHS). Our results find that seven significant SNPs (q-value < 0.05) using the FST analysis and 55 significant SNPs (p-value < 0.0001) using the iHS analysis. Of the candidate genes that contain significant markers, or are in proximity to them, we identify several belongings to the keratin genes, RXFP2, ADCY1, ENOX1, USF2, COX7A1, ARHGAP28, CRYBB2, CAPNS1, FMO3, and GREB1. These genes are involved in wool quality, polled and horned phenotypes, fertility, twining rate, meat quality, and growth traits. In summary, our results provide shared founders of Gotland sheep and insight into genomic regions maintained under selection after the breed was formed. These results contribute to the detection of candidate genes and QTLs underlying economic traits in sheep.
Collapse
Affiliation(s)
- Seyed Mohammad Ghoreishifar
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-11167, Iran;
| | - Christina Marie Rochus
- Animal Breeding and Genomics, Wageningen University and Research, P.O. Box 338, 6700 AH Wageningen, The Netherlands;
| | - Sima Moghaddaszadeh-Ahrabi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Islamic Azad University, Tabriz Branch, Tabriz 5157944533, Iran;
| | - Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N5E3, Canada; (P.D.); (S.S.A.)
| | - Siavash Salek Ardestani
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N5E3, Canada; (P.D.); (S.S.A.)
| | - Natalia A. Zinovieva
- L.K. Ernst Federal Research Center for Animal Husbandry, 142132 Podolsk, Russia; (N.A.Z.); (T.E.D.)
| | - Tatiana E. Deniskova
- L.K. Ernst Federal Research Center for Animal Husbandry, 142132 Podolsk, Russia; (N.A.Z.); (T.E.D.)
| | - Anna M. Johansson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
- Correspondence:
| |
Collapse
|
3
|
Grochowska E, Lisiak D, Akram MZ, Adeniyi OO, Lühken G, Borys B. Association of a polymorphism in exon 3 of the IGF1R gene with growth, body size, slaughter and meat quality traits in Colored Polish Merino sheep. Meat Sci 2020; 172:108314. [PMID: 32987303 DOI: 10.1016/j.meatsci.2020.108314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
This study aimed to genotype the polymorphism (c.654G > A) in the exon 3 of the insulin-like growth factor 1 receptor gene (IGF1R) and to analyze its association with growth, body size, slaughter and meat quality traits in Colored Polish Merino sheep. In total, 67 traits were analyzed. The IGF1R polymorphism was genotyped using the polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) method. The MIXED procedure of the SAS software was used to assess the genotypic effects of the polymorphism (c.654G > A) on production traits of interest. The IGF1R c.654G > A genotypes were found to have a significant effect on the average daily gain between the 56th and 78th day of life, cold carcass, leg part, leg cut, fore shank, and kidney weights, as well as eye of loin depth, intramuscular fat content, and water-holding capacity of meat. The results suggest that the studied polymorphism may provide useful information for marker-assisted selection for increased meat performance in Colored Polish Merino sheep.
Collapse
Affiliation(s)
- E Grochowska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Mazowiecka 28 St, 85-084 Bydgoszcz, Poland.
| | - D Lisiak
- Department of Meat and Fat Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36 St., 02-532 Warsaw, Poland
| | - M Z Akram
- Department of Animal Production and Technologies, Niğde Ömer Halisdemir University, 51240 Niğde, Turkey
| | - O O Adeniyi
- Institute of Animal Breeding and Genetics, Justus-Liebig University, Ludwigstrasse 21, 35390 Giessen, Germany
| | - G Lühken
- Institute of Animal Breeding and Genetics, Justus-Liebig University, Ludwigstrasse 21, 35390 Giessen, Germany
| | - B Borys
- National Research Institute of Animal Production, Experimental Station Kołuda Wielka, Parkowa 1 St., 88-160 Janikowo, Poland
| |
Collapse
|
4
|
Single Loci and Haplotypes in CAPN1 and CAST Genes are Associated with Growth, Biometrics, and in Vivo Carcass Traits in Santa Inês Sheep. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
µ-calpain (CAPN1) and calpastatin (CAST) genes play key roles in protein turnover. The present study aimed to identify the variants in these genes associated with growth and ultrasound carcass traits in Santa Inês sheep. A sample of 192 no full sibling Santa Inês lambs was used. Fragments of the CAST and CAPN1 genes were amplified and next-generation sequencing was performed in the MiSeq platform. Variants in the CAPN1 and CAST sequences were then detected using bioinformatic tools. Withers and croup heights, body length, thoracic and croup widths, thoracic and leg girths, body depth, carcass fat score, rib eye area, fat thickness, body weights were recorded at weaning and at 140 days post-weaning, and average daily gain post-weaning was calculated. Both single-locus and haplotype association analyses were performed with the model as follows: farm (2 levels), year (4 levels), the month of birth (12 levels), and the covariate age of the animal. The fragments amplified included 4,514 bp between the 20th and 23rd exons of CAST as well as 3,927 bp between the 12th and 21st exons of CAPN1. In these regions, 58 (CAST) and 45 (CAPN1) variants were identified. In the CAST gene, the single-locus analysis revealed 22 suggestive additive effects (P<0.05) on several growth and carcass traits. Moreover, haplotype substitutions were associated with rib eye area (–0.689±0.290), average daily gain (–23.6±10.4), thoracic girth (–2.72±1.27), body length (–3.38±1.49), and leg girth (–2.84±1.37). Regarding the CAPN1 gene, the single-locus analysis identified seven suggestive additive effects, while only one haplotype replacement effect on fat thickness (–0.0143±0.0053) was detected. The results of the present study suggest that variants in the CAPN1 and CAST genes are associated with growth and ultrasound carcass traits in Santa Inês sheep, which may be a source of information to improve knowledge regarding the genetic control of these traits.
Collapse
|
5
|
Di Gerlando R, Sutera AM, Mastrangelo S, Tolone M, Portolano B, Sottile G, Bagnato A, Strillacci MG, Sardina MT. Genome-wide association study between CNVs and milk production traits in Valle del Belice sheep. PLoS One 2019; 14:e0215204. [PMID: 31013280 PMCID: PMC6478285 DOI: 10.1371/journal.pone.0215204] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 03/28/2019] [Indexed: 11/19/2022] Open
Abstract
Copy number variation (CNV) is a major source of genomic structural variation. The aim of this study was to detect genomic CNV regions (CNVR) in Valle del Belice dairy sheep population and to identify those affecting milk production traits. The GO analysis identified possible candidate genes and pathways related to the selected traits. We identified CNVs in 416 individuals genotyped using the Illumina OvineSNP50 BeadChip array. The CNV association using a correlation-trend test model was examined with the Golden Helix SVS 8.7.0 tool. Significant CNVs were detected when their adjusted p-value was <0.01 after false discovery rate (FDR) correction. We identified 7,208 CNVs, which gave 365 CNVRs after aggregating overlapping CNVs. Thirty-one CNVRs were significantly associated with one or more traits included in the analysis. All CNVRs, except those on OAR19, overlapped with quantitative trait loci (QTL), even if they were not directly related to the traits of interest. A total of 222 genes were annotated within the significantly associated CNVRs, most of which played important roles in biological processes related to milk production and health-related traits. Identification of the genes in the CNVRs associated with the studied traits will provide the basis for further investigation of their role in the metabolic pathways related to milk production and health traits.
Collapse
Affiliation(s)
- Rosalia Di Gerlando
- Università degli Studi di Palermo, Dipartimento di Scienze Agrarie, Alimentari e Forestali, Italy
| | - Anna Maria Sutera
- Università degli Studi di Palermo, Dipartimento di Scienze Agrarie, Alimentari e Forestali, Italy
| | - Salvatore Mastrangelo
- Università degli Studi di Palermo, Dipartimento di Scienze Agrarie, Alimentari e Forestali, Italy
| | - Marco Tolone
- Università degli Studi di Palermo, Dipartimento di Scienze Agrarie, Alimentari e Forestali, Italy
| | - Baldassare Portolano
- Università degli Studi di Palermo, Dipartimento di Scienze Agrarie, Alimentari e Forestali, Italy
| | - Gianluca Sottile
- Università degli Studi di Palermo, Dipartimento di Scienze Economiche, Aziendali e Statistiche, Italy
| | - Alessandro Bagnato
- Università degli Studi di Milano, Dipartimento di Medicina Veterinaria, Italy
| | | | - Maria Teresa Sardina
- Università degli Studi di Palermo, Dipartimento di Scienze Agrarie, Alimentari e Forestali, Italy
| |
Collapse
|
6
|
Genotypic and allelic effects of the myostatin gene (MSTN) on carcass, meat quality, and biometric traits in Colored Polish Merino sheep. Meat Sci 2018; 151:4-17. [PMID: 30658164 DOI: 10.1016/j.meatsci.2018.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/23/2022]
Abstract
The aim of this study was to identify polymorphisms in the first intron and c.*1232G>A position of the MSTN gene and analyze associations between the detected alleles/genotypes and carcass, meat quality, and biometric traits in Colored Polish Merino sheep. We analyzed 44 traits using the MIXED procedure of the SAS software. Five alleles (MSTN-A, MSTN-B, MSTN-C, MSTN-E and MSTN-E1) were detected. Significant genotypic effects were detected with regard to chest depth (live lamb) and fat depth over ribs, drip loss, subjective meat flavor and color, whereas significant allelic effects were found for chest depth (live lamb), pre-slaughter weight, hot carcass weight, cold carcass dressing out, leg depth (carcass), eye of loin width and area, intramuscular fat (IMF) content, water-holding capacity, and subjective meat tenderness, flavor and color. The results suggest MSTN gene polymorphisms may be considered a genetic marker of carcass quality, meat quality, and biometric traits in sheep.
Collapse
|
7
|
Characterization of the Goose CAPN3 Gene and its Expression Pattern in Muscle Tissues of Sichuan White Geese at Different Growth Stages. J Poult Sci 2018; 55:172-181. [PMID: 32055171 PMCID: PMC6756500 DOI: 10.2141/jpsa.0170150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/01/2017] [Indexed: 02/01/2023] Open
Abstract
Calpain 3 (CAPN3), also known as p94, is associated with multiple production traits in domestic animals. However, the molecular characteristics of the CAPN3 gene and its expression profile in goose tissues have not been reported. In this study, CAPN3 cDNA of the Sichuan white goose was cloned, sequenced, and characterized. The CAPN3 full-length cDNA sequence consists of a 2,316-bp coding sequence (CDS) that encodes 771 amino acids with a molecular mass of 89,019 kDa. The protein was predicted to have no signal peptide, but several N-glycosylation, O-glycosylation, and phosphorylation sites. The secondary structure of CAPN3 was predicted to be 38.65% α-helical. Sequence alignment showed that CAPN3 of Sichuan white goose shared more than 90% amino acid sequence similarity with those of Japanese quail, turkey, helmeted guineafowl, duck, pigeon, and chicken. Phylogenetic tree analysis showed that goose CAPN3 has a close genetic relationship and small evolutionary distance with those of the birds. qRT-PCR analysis showed that in 15-day-old animals, the expression level of CAPN3 was significantly higher in breast muscle than in thigh tissues. These results serve as a foundation for further investigations of the function of the goose CAPN3 gene.
Collapse
|