1
|
He H, Su X, Yang H, Zhang Y, Duan C, Yang R, Xie F, Liu Y, Liu W. Effects of prolactin on the proliferation and hormone secretion of ovine granulosa cells in vitro. Anim Biosci 2024; 37:1712-1725. [PMID: 38665071 PMCID: PMC11366507 DOI: 10.5713/ab.23.0448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/22/2023] [Accepted: 04/01/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate the effects of prolactin (PRL) on the proliferation and apoptosis of ovine ovarian granulosa cells (GCs) and the secretion of estrogen (E2) and progesterone (P4), as well as to explore the effects of PRL on related genes and proteins. METHODS We isolated ovarian GCs from 1-year-old small-tail Han sheep and identified PRL receptor (PRLR) on ovaries and follicle stimulating hormone receptor (FSHR) on ovarian GCs, respectively, using immunohistochemistry. PRL (0, 0.05, 0.50, 5.00 μg/mL) were added to GCs in vitro along with FSH, cell proliferation was measured by cell counting Kit-8 (CCK-8) and apoptosis by flow cytometry. The measurement of E2 and P4 content by enzyme-linked immunosorbent assays after 48 h and 72 h. The expression of functional genes and proteins was identified by real-time quantitative polymerase chain reaction (RTqPCR) and Western-blot after 48 h. RESULTS PRLR was expressed in both follicular GCs and corpus luteum, whereas FSHR was expressed specifically. The proliferative activity was lower on day 1 while higher on day 4 and day 5. The apoptosis rate of GCs in the 0.05 μg/mL group was significantly higher than that in the control group after treatment with PRL for 24 h (p<0.05). Compared with the control group, the secretion of E2 in GCs was reduced significantly (p<0.05) in PRL treatment for 48 h and 72 h, while the secretion of P4 was significantly increased (p<0.05). The mRNA expression levels of PRLR, FSHR, LHR, CYP11A1, HSD3B7, and STAR were significantly higher than those in the control group (p<0.01), and the relative abundance of BCL2 in all PRL group were increased after PRL treatment. CONCLUSION PRL promoted the proliferation of GCs and supraphysiological concentrations inhibited apoptosis caused by down-regulation of BAX and up-regulation of BCL2. PRL inhibited E2 by down-regulating CYP19A1 and promoted P4 by up-regulating CYP11A1, STAR, and HSD3B7.
Collapse
Affiliation(s)
- Haiying He
- Department of Animal Science and Biotechnology, Xinjiang Agricultural University, Urumqi, Xinjiang 830052,
China
- Moyu Bibang Sheep Industry Development Co. LTD, Hotan Prefecture, Xinjiang 848100,
China
- Department of Animal Science and Biotechnology, Hebei Agricultural University, Baoding, Hebei 071000,
China
| | - Xiaohui Su
- Department of Animal Science and Biotechnology, Xinjiang Agricultural University, Urumqi, Xinjiang 830052,
China
| | - Huiguo Yang
- Moyu Bibang Sheep Industry Development Co. LTD, Hotan Prefecture, Xinjiang 848100,
China
- Animal Husbandry Institute, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830052,
China
| | - Yingjie Zhang
- Department of Animal Science and Biotechnology, Hebei Agricultural University, Baoding, Hebei 071000,
China
| | - Chunhui Duan
- Department of Animal Science and Biotechnology, Hebei Agricultural University, Baoding, Hebei 071000,
China
| | - Ruochen Yang
- Department of Animal Science and Biotechnology, Hebei Agricultural University, Baoding, Hebei 071000,
China
| | - Fengmei Xie
- Department of Animal Science and Biotechnology, Xinjiang Agricultural University, Urumqi, Xinjiang 830052,
China
- Moyu Bibang Sheep Industry Development Co. LTD, Hotan Prefecture, Xinjiang 848100,
China
| | - Yueqin Liu
- Department of Animal Science and Biotechnology, Hebei Agricultural University, Baoding, Hebei 071000,
China
| | - Wujun Liu
- Department of Animal Science and Biotechnology, Xinjiang Agricultural University, Urumqi, Xinjiang 830052,
China
- Moyu Bibang Sheep Industry Development Co. LTD, Hotan Prefecture, Xinjiang 848100,
China
| |
Collapse
|
2
|
Review: Role and regulatory mechanism of inhibin in animal reproductive system. Theriogenology 2023; 202:10-20. [PMID: 36878034 DOI: 10.1016/j.theriogenology.2023.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023]
Abstract
Inhibin (INH) is a glycoprotein hormone secreted by the gonads that inhibit the synthesis and secretion of follicle-stimulating hormone (FSH). Increasing evidence indicates that INH plays a significant role in the development of the reproductive system including follicle development, ovulation rate, corpus luteum formation and ablation, steroid hormone synthesis and spermatogenesis, subsequently affecting the reproductive capacity of animals such as litter size and egg production. There are currently three main views on how INH inhibits FSH synthesis and secretion: influencing the activity of adenylate cyclase, the expression of follicle-stimulating hormone receptor or gonadotropin-releasing hormone receptor, and the competition system of inhibin-activin. This review discusses the current findings on the structure, function, and mechanism of action of INH in the reproductive system of animals.
Collapse
|
3
|
Wang Y, Guo Y, Duan C, Li J, Ji S, Yan H, Liu Y, Zhang Y. LncGSAR Controls Ovarian Granulosa Cell Steroidogenesis via Sponging MiR-125b to Activate SCAP/SREBP Pathway. Int J Mol Sci 2022; 23:ijms232012132. [PMID: 36293007 PMCID: PMC9603659 DOI: 10.3390/ijms232012132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play important roles in livestock fecundity, and many lncRNAs that affect follicular development and reproductive diseases have been identified in the ovary. However, only a few of them have been functionally annotated and mechanistically validated. In this study, we identified a new lncRNA (lncGSAR) and investigated its effects on the proliferation and steroidogenesis of ovine granulosa cells (GCs). High concentrations of glucose (add 33.6 mM glucose) caused high expression of lncGSAR in GCs by regulating its stability, and lncGSAR overexpression promoted GCs proliferation, estrogen secretion, and inhibited progesterone secretion, whereas interference with lncGASR had the opposite effect. Next, we found that the RNA molecules of lncGSAR act on MiR-125b as competitive endogenous RNA (ceRNA), and SREBP-cleavage-activating protein (SCAP) was verified as a target of MiR-125b. LncGASR overexpression increased the expression of SCAP, SREBP, and steroid hormone-related proteins, which can be attenuated by MiR-125b. Our results demonstrated that lncGSAR can act as a ceRNA to activate SCAP/SREBP signaling by sponging MiR-125b to regulate steroid hormone secretion in GCs. These findings provide new insights into the mechanisms of nutrient-regulated follicle development in ewes.
Collapse
Affiliation(s)
- Yong Wang
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yunxia Guo
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Chunhui Duan
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Junjie Li
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Shoukun Ji
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Huihui Yan
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yueqin Liu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yingjie Zhang
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
- Correspondence: ; Tel.: +86-31-2752-8366; Fax: +86-31-2752-8886
| |
Collapse
|
4
|
Wang Y, Duan C, Guo Y, Li J, He H, Li R, Zhang Y, Liu Y. Effects of glucose on glycolysis and steroidogenesis as well as related gene expression in ovine granulosa cells in vitro. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Wang Y, Guo Y, Duan C, Yang R, Zhang L, Liu Y, Zhang Y. Long Non-Coding RNA GDAR Regulates Ovine Granulosa Cells Apoptosis by Affecting the Expression of Apoptosis-Related Genes. Int J Mol Sci 2022; 23:ijms23095183. [PMID: 35563579 PMCID: PMC9104640 DOI: 10.3390/ijms23095183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Short-term dietary supplementation of ewes during the luteal phase can increase fertility, most probably by stimulating glucose uptake by the follicles. However, the molecular mechanism of glucose regulation of follicular development has not yet been clarified, especially the further study of long non-coding RNA (lncRNA) in determining fertility during follicular development. We generated granulosa cell (GC) models of different doses of glucose (0, 2.1, 4.2, 8.4, 16.8 and 33.6 mM), and observed that the highest cell viability was recorded in the 8.4 mM group and the highest apoptosis rates were recorded in the 33.6 mM group. Therefore, a control group (n = 3, 0 mM glucose), a low glucose group (n = 3, add 8.4 mM glucose), and a high glucose group (n = 3, add 33.6 mM glucose) of GCs were created for next whole genomic RNA sequencing. In total, 18,172 novel lncRNAs and 510 annotated lncRNAs were identified in the GCs samples. Gene Ontology indicated that differentially expressed lncRNAs associated with cell apoptosis were highly enriched. Kyoto Encyclopedia of Genes and Genomes enrichment analysis of lncRNA target genes found that the apoptosis pathway and the p53 signaling pathway were both enriched. Furthermore, we focused on the function of a lncGDAR and verified that lncGDAR could influence cell apoptosis in GC development through affecting the mRNA and protein expression of apoptosis-related markers. These results provide the basis for further study of the lncRNA regulation mechanism in nutrition on female fertility.
Collapse
Affiliation(s)
- Yong Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (Y.W.); (C.D.); (R.Y.); (L.Z.); (Y.L.)
| | - Yunxia Guo
- College of Life Science, Hebei Agricultural University, Baoding 071000, China;
| | - Chunhui Duan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (Y.W.); (C.D.); (R.Y.); (L.Z.); (Y.L.)
| | - Ruochen Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (Y.W.); (C.D.); (R.Y.); (L.Z.); (Y.L.)
| | - Lechao Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (Y.W.); (C.D.); (R.Y.); (L.Z.); (Y.L.)
| | - Yueqin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (Y.W.); (C.D.); (R.Y.); (L.Z.); (Y.L.)
| | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (Y.W.); (C.D.); (R.Y.); (L.Z.); (Y.L.)
- Correspondence: ; Tel.: +86-312-7528366
| |
Collapse
|
6
|
Lu H, Zhao C, Zhu B, Zhang Z, Ge W. Loss of Inhibin Advances Follicle Activation and Female Puberty Onset but Blocks Oocyte Maturation in Zebrafish. Endocrinology 2020; 161:5921142. [PMID: 33045050 DOI: 10.1210/endocr/bqaa184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023]
Abstract
Inhibin was first characterized in mammals as a gonadal dimeric protein that inhibited pituitary follicle-stimulating hormone (FSH) secretion. As in mammals, the inhibin-specific α subunit (INHA/Inha/inha) has also been characterized in teleosts; however, its functions and physiological importance in fish reproduction remain unknown. Using CRISPR/Cas9 method, we generated an inha-deficient zebrafish line and analyzed its reproductive performance. As expected, pituitary expression of fshb increased significantly in both the young and the adult inha mutant. The expression of lhb also increased in the mutant, but only in sexually mature adults. Interestingly, the expression of activin βA (inhbaa) increased significantly in both the ovary and the testis of inha mutant, and the expression of ovarian aromatase (cyp19a1a) also increased dramatically in the mutant ovary. The juvenile female mutant showed clear signs of early follicle activation or precocious puberty onset. However, the adult female mutant was infertile with follicles arrested at the full-grown stage without final oocyte maturation and ovulation. Although follicle growth was normal overall in the mutant, the size and distribution of yolk granules in oocytes were distinct and some follicles showed granulosa cell hypertrophy. In contrast to females, inha-null males showed normal spermatogenesis and fertility. As reported in mammals, we also found sporadic tumor formation in inha mutants. Taken together, our study not only confirmed some conserved roles of inhibin across vertebrates, such as inhibition of FSH biosynthesis and tumor formation, but also revealed novel aspects of inhibin functions such as disruption of folliculogenesis and female infertility but no obvious involvement in spermatogenesis in fish.
Collapse
Affiliation(s)
- Huijie Lu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Cheng Zhao
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bo Zhu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhiwei Zhang
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
7
|
Cui Z, Liu L, Zhu Q, Wang Y, Yin H, Li D, Tian Y, Shu G, Zhao X. Inhibin A regulates follicular development via hormone secretion and granulosa cell behaviors in laying hens. Cell Tissue Res 2020; 381:337-350. [PMID: 32377876 DOI: 10.1007/s00441-020-03207-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/20/2020] [Indexed: 12/27/2022]
Abstract
Inhibin A regulates follicular development, and its expression level is related to physiological activities, such as the recruitment, selection, and predominance during follicular development. Therefore, examining inhibin A and its regulatory effects on the reproductive performance of poultry is crucial. In this study, we measured the mRNA and protein abundances of INHA and INHBA in the chicken reproductive system and determined the hormone secretion and apoptosis of follicular granulosa cells (GCs) after being treated with inhibin A protein, and flow cytometry was performed to analyze GC apoptosis in INHA-specific small RNA interference (siRNA). We detected that INHA and INHBA were mainly expressed in chicken follicles. The highest INHA mRNA abundance was found in the fifth largest preovulatory follicle (F5) (P < 0.05). INHBA mRNA expression in the largest preovulatory follicle (F1) was significantly higher than those in other follicles (P < 0.05). Similar results were found for INHA and INHBA protein expression in those follicles (P < 0.05). Treatment with inhibin A protein increased the activity of GCs in a dose-dependent manner (P < 0.05), which was characterized by decreased gene expression of pro-apoptotic factors Bax and Caspase-3 (P < 0.05) and increased expression of proliferation genes Bcl-2 and PCNA (P < 0.05). Additionally, inhibin A significantly increased the secretion of progesterone and estradiol (P < 0.05). RNAi-mediated knockdown of INHA increased apoptosis in GCs via a Caspase-3-dependent mitochondrial pathway.
Collapse
Affiliation(s)
- Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Department of Animal Science, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
| |
Collapse
|
8
|
Kalds P, Zhou S, Cai B, Liu J, Wang Y, Petersen B, Sonstegard T, Wang X, Chen Y. Sheep and Goat Genome Engineering: From Random Transgenesis to the CRISPR Era. Front Genet 2019; 10:750. [PMID: 31552084 PMCID: PMC6735269 DOI: 10.3389/fgene.2019.00750] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Sheep and goats are valuable livestock species that have been raised for their production of meat, milk, fiber, and other by-products. Due to their suitable size, short gestation period, and abundant secretion of milk, sheep and goats have become important model animals in agricultural, pharmaceutical, and biomedical research. Genome engineering has been widely applied to sheep and goat research. Pronuclear injection and somatic cell nuclear transfer represent the two primary procedures for the generation of genetically modified sheep and goats. Further assisted tools have emerged to enhance the efficiency of genetic modification and to simplify the generation of genetically modified founders. These tools include sperm-mediated gene transfer, viral vectors, RNA interference, recombinases, transposons, and endonucleases. Of these tools, the four classes of site-specific endonucleases (meganucleases, ZFNs, TALENs, and CRISPRs) have attracted wide attention due to their DNA double-strand break-inducing role, which enable desired DNA modifications based on the stimulation of native cellular DNA repair mechanisms. Currently, CRISPR systems dominate the field of genome editing. Gene-edited sheep and goats, generated using these tools, provide valuable models for investigations on gene functions, improving animal breeding, producing pharmaceuticals in milk, improving animal disease resistance, recapitulating human diseases, and providing hosts for the growth of human organs. In addition, more promising derivative tools of CRISPR systems have emerged such as base editors which enable the induction of single-base alterations without any requirements for homology-directed repair or DNA donor. These precise editors are helpful for revealing desirable phenotypes and correcting genetic diseases controlled by single bases. This review highlights the advances of genome engineering in sheep and goats over the past four decades with particular emphasis on the application of CRISPR/Cas9 systems.
Collapse
Affiliation(s)
- Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ying Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | | | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|