1
|
Kim GJ, Parnandi A, Eva S, Schambra H. The use of wearable sensors to assess and treat the upper extremity after stroke: a scoping review. Disabil Rehabil 2022; 44:6119-6138. [PMID: 34328803 PMCID: PMC9912423 DOI: 10.1080/09638288.2021.1957027] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 01/27/2023]
Abstract
PURPOSE To address the gap in the literature and clarify the expanding role of wearable sensor data in stroke rehabilitation, we summarized the methods for upper extremity (UE) sensor-based assessment and sensor-based treatment. MATERIALS AND METHODS The guideline outlined by the preferred reporting items for systematic reviews and meta-analysis extension for scoping reviews was used to complete this scoping review. Information pertaining to participant demographics, sensory information, data collection, data processing, data analysis, and study results were extracted from the studies for analysis and synthesis. RESULTS We included 43 articles in the final review. We organized the results into assessment and treatment categories. The included articles used wearable sensors to identify UE functional motion, categorize motor impairment/activity limitation, and quantify real-world use. Wearable sensors were also used to augment UE training by triggering sensory cues or providing instructional feedback about the affected UE. CONCLUSIONS Sensors have the potential to greatly expand assessment and treatment beyond traditional clinic-based approaches. This capability could support the quantification of rehabilitation dose, the nuanced assessment of impairment and activity limitation, the characterization of daily UE use patterns in real-world settings, and augment UE training adherence for home-based rehabilitation.IMPLICATIONS FOR REHABILITATIONSensor data have been used to assess UE functional motion, motor impairment/activity limitation, and real-world use.Sensor-assisted treatment approaches are emerging, and may be a promising tool to augment UE adherence in home-based rehabilitation.Wearable sensors may extend our ability to objectively assess UE motion beyond supervised clinical settings, and into home and community settings.
Collapse
Affiliation(s)
- Grace J. Kim
- Department of Occupational Therapy, Steinhardt School of Culture, Education and Human Development, New York University, New York, NY, USA
| | - Avinash Parnandi
- Department of Neurology, NYU Langone Grossman School of Medicine, New York, NY, USA
| | - Sharon Eva
- Department of Occupational Therapy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Heidi Schambra
- Department of Neurology, NYU Langone Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
2
|
Torriani-Pasin C, Demers M, Polese JC, Bishop L, Wade E, Hempel S, Winstein C. mHealth technologies used to capture walking and arm use behavior in adult stroke survivors: a scoping review beyond measurement properties. Disabil Rehabil 2022; 44:6094-6106. [PMID: 34297652 DOI: 10.1080/09638288.2021.1953623] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE We aimed to provide a critical review of measurement properties of mHealth technologies used for stroke survivors to measure the amount and intensity of functional skills, and to identify facilitators and barriers toward adoption in research and clinical practice. MATERIALS AND METHODS Using Arksey and O'Malley's framework, two independent reviewers determined eligibility and performed data extraction. We conducted an online consultation survey exercise with 37 experts. RESULTS Sixty-four out of 1380 studies were included. A majority reported on lower limb behavior (n = 32), primarily step count (n = 21). Seventeen studies reported on arm-hand behaviors. Twenty-two studies reported metrics of intensity, 10 reported on energy expenditure. Reliability and validity were the most frequently reported properties, both for commercial and non-commercial devices. Facilitators and barriers included: resource costs, technical aspects, perceived usability, and ecological legitimacy. Two additional categories emerged from the survey: safety and knowledge, attitude, and clinical skill. CONCLUSIONS This provides an initial foundation for a field experiencing rapid growth, new opportunities and the promise that mHealth technologies affords for envisioning a better future for stroke survivors. We synthesized findings into a set of recommendations for clinicians and clinician-scientists about how best to choose mHealth technologies for one's individual objective.Implications for RehabilitationRehabilitation professionals are encouraged to consider the measurement properties of those technologies that are used to monitor functional locomotor and object-interaction skills in the stroke survivors they serve.Multi-modal knowledge translation strategies (research synthesis, educational courses or videos, mentorship from experts, etc.) are available to rehabilitation professionals to improve knowledge, attitude, and skills pertaining to mHealth technologies.Consider the selection of commercially available devices that are proven to be valid, reliable, accurate, and responsive to the targeted clinical population.Consider usability and privacy, confidentiality and safety when choosing a specific device or smartphone application.
Collapse
Affiliation(s)
- Camila Torriani-Pasin
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Marika Demers
- Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Janaine C Polese
- Department of Physiotherapy, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Brazil
| | - Lauri Bishop
- Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Eric Wade
- Department of Mechanical Engineering, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Susanne Hempel
- Southern California Evidence Review Center, University of Southern California, Los Angeles, CA, USA
| | - Carolee Winstein
- Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Luvizutto GJ, Silva GF, Nascimento MR, Sousa Santos KC, Appelt PA, de Moura Neto E, de Souza JT, Wincker FC, Miranda LA, Hamamoto Filho PT, de Souza LAPS, Simões RP, de Oliveira Vidal EI, Bazan R. Use of artificial intelligence as an instrument of evaluation after stroke: a scoping review based on international classification of functioning, disability and health concept. Top Stroke Rehabil 2022; 29:331-346. [PMID: 34115576 DOI: 10.1080/10749357.2021.1926149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION To understand the current practices in stroke evaluation, the main clinical decision support system and artificial intelligence (AI) technologies need to be understood to assist the therapist in obtaining better insights about impairments and level of activity and participation in persons with stroke during rehabilitation. METHODS This scoping review maps the use of AI for the functional evaluation of persons with stroke; the context involves any setting of rehabilitation. Data were extracted from CENTRAL, MEDLINE, EMBASE, LILACS, CINAHL, PEDRO Web of Science, IEEE Xplore, AAAI Publications, ACM Digital Library, MathSciNet, and arXiv up to January 2021. The data obtained from the literature review were summarized in a single dataset in which each reference paper was considered as an instance, and the study characteristics were considered as attributes. The attributes used for the multiple correspondence analysis were publication year, study type, sample size, age, stroke phase, stroke type, functional status, AI type, and AI function. RESULTS Forty-four studies were included. The analysis showed that spasticity analysis based on ML techniques was used for the cases of stroke with moderate functional status. The techniques of deep learning and pressure sensors were used for gait analysis. Machine learning techniques and algorithms were used for upper limb and reaching analyses. The inertial measurement unit technique was applied in studies where the functional status was between mild and severe. The fuzzy logic technique was used for activity classifiers. CONCLUSION The prevailing research themes demonstrated the growing utility of AI algorithms for stroke evaluation.
Collapse
Affiliation(s)
- Gustavo José Luvizutto
- Department of Applied Physical Therapy, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | | | | | | | | | - Juli Thomaz de Souza
- Department of Internal Medicine, Botucatu Medical School, Brazil
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, Brazil
| | - Fernanda Cristina Wincker
- Department of Internal Medicine, Botucatu Medical School, Brazil
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, Brazil
| | - Luana Aparecida Miranda
- Department of Internal Medicine, Botucatu Medical School, Brazil
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, Brazil
| | | | | | - Rafael Plana Simões
- Department of Bioprocesses and Biotechnology, São Paulo State University, Botucatu, SP, Brazil
| | | | - Rodrigo Bazan
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, Brazil
| |
Collapse
|
4
|
Gopal A, Hsu WY, Allen DD, Bove R. Remote Assessments of Hand Function in Neurological Disorders: Systematic Review. JMIR Rehabil Assist Technol 2022; 9:e33157. [PMID: 35262502 PMCID: PMC8943610 DOI: 10.2196/33157] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Loss of fine motor skills is observed in many neurological diseases, and remote monitoring assessments can aid in early diagnosis and intervention. Hand function can be regularly assessed to monitor loss of fine motor skills in people with central nervous system disorders; however, there are challenges to in-clinic assessments. Remotely assessing hand function could facilitate monitoring and supporting of early diagnosis and intervention when warranted. OBJECTIVE Remote assessments can facilitate the tracking of limitations, aiding in early diagnosis and intervention. This study aims to systematically review existing evidence regarding the remote assessment of hand function in populations with chronic neurological dysfunction. METHODS PubMed and MEDLINE, CINAHL, Web of Science, and Embase were searched for studies that reported remote assessment of hand function (ie, outside of traditional in-person clinical settings) in adults with chronic central nervous system disorders. We excluded studies that included participants with orthopedic upper limb dysfunction or used tools for intervention and treatment. We extracted data on the evaluated hand function domains, validity and reliability, feasibility, and stage of development. RESULTS In total, 74 studies met the inclusion criteria for Parkinson disease (n=57, 77% studies), stroke (n=9, 12%), multiple sclerosis (n=6, 8%), spinal cord injury (n=1, 1%), and amyotrophic lateral sclerosis (n=1, 1%). Three assessment modalities were identified: external device (eg, wrist-worn accelerometer), smartphone or tablet, and telerehabilitation. The feasibility and overall participant acceptability were high. The most common hand function domains assessed included finger tapping speed (fine motor control and rigidity), hand tremor (pharmacological and rehabilitation efficacy), and finger dexterity (manipulation of small objects required for daily tasks) and handwriting (coordination). Although validity and reliability data were heterogeneous across studies, statistically significant correlations with traditional in-clinic metrics were most commonly reported for telerehabilitation and smartphone or tablet apps. The most readily implementable assessments were smartphone or tablet-based. CONCLUSIONS The findings show that remote assessment of hand function is feasible in neurological disorders. Although varied, the assessments allow clinicians to objectively record performance in multiple hand function domains, improving the reliability of traditional in-clinic assessments. Remote assessments, particularly via telerehabilitation and smartphone- or tablet-based apps that align with in-clinic metrics, facilitate clinic to home transitions, have few barriers to implementation, and prompt remote identification and treatment of hand function impairments.
Collapse
Affiliation(s)
- Arpita Gopal
- Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Wan-Yu Hsu
- Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Diane D Allen
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco/San Francisco State University, San Francisco, CA, United States
| | - Riley Bove
- Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
5
|
Associative patterns in health data: exploring new techniques. HEALTH AND TECHNOLOGY 2022. [DOI: 10.1007/s12553-021-00635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Recognizing Physical Activities for Spinal Cord Injury Rehabilitation Using Wearable Sensors. SENSORS 2021; 21:s21165479. [PMID: 34450921 PMCID: PMC8398510 DOI: 10.3390/s21165479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/24/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022]
Abstract
The research area of activity recognition is fast growing with diverse applications. However, advances in this field have not yet been used to monitor the rehabilitation of individuals with spinal cord injury. Noteworthily, relying on patient surveys to assess adherence can undermine the outcomes of rehabilitation. Therefore, this paper presents and implements a systematic activity recognition method to recognize physical activities applied by subjects during rehabilitation for spinal cord injury. In the method, raw sensor data are divided into fragments using a dynamic segmentation technique, providing higher recognition performance compared to the sliding window, which is a commonly used approach. To develop the method and build a predictive model, a machine learning approach was adopted. The proposed method was evaluated on a dataset obtained from a single wrist-worn accelerometer. The results demonstrated the effectiveness of the proposed method in recognizing all of the activities that were examined, and it achieved an overall accuracy of 96.86%.
Collapse
|
7
|
Dynamic Segmentation for Physical Activity Recognition Using a Single Wearable Sensor. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Data segmentation is an essential process in activity recognition when using machine learning techniques. Previous studies on physical activity recognition have mostly relied on the sliding window approach for segmentation. However, choosing a fixed window size for multiple activities with different durations may affect recognition accuracy, especially when the activities belong to the same category (i.e., dynamic or static). This paper presents and verifies a new method for dynamic segmentation of physical activities performed during the rehabilitation of individuals with spinal cord injuries. To adaptively segment the raw data, signal characteristics are analyzed to determine the suitable type of boundaries. Then, the algorithm identifies the time boundaries to represent the start- and endpoints of each activity. To verify the method and build a predictive model, an experiment was conducted in which data were collected using a single wrist-worn accelerometer sensor. The experimental results were compared with the sliding window approach, indicating that the proposed method outperformed the sliding window approach in terms of overall accuracy, which exceeded 5%, as well as model robustness. The results also demonstrated efficient physical activity segmentation using the proposed method, resulting in high classification performance for all activities considered.
Collapse
|
8
|
Rast FM, Labruyère R. Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments. J Neuroeng Rehabil 2020; 17:148. [PMID: 33148315 PMCID: PMC7640711 DOI: 10.1186/s12984-020-00779-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent advances in wearable sensor technologies enable objective and long-term monitoring of motor activities in a patient's habitual environment. People with mobility impairments require appropriate data processing algorithms that deal with their altered movement patterns and determine clinically meaningful outcome measures. Over the years, a large variety of algorithms have been published and this review provides an overview of their outcome measures, the concepts of the algorithms, the type and placement of required sensors as well as the investigated patient populations and measurement properties. METHODS A systematic search was conducted in MEDLINE, EMBASE, and SCOPUS in October 2019. The search strategy was designed to identify studies that (1) involved people with mobility impairments, (2) used wearable inertial sensors, (3) provided a description of the underlying algorithm, and (4) quantified an aspect of everyday life motor activity. The two review authors independently screened the search hits for eligibility and conducted the data extraction for the narrative review. RESULTS Ninety-five studies were included in this review. They covered a large variety of outcome measures and algorithms which can be grouped into four categories: (1) maintaining and changing a body position, (2) walking and moving, (3) moving around using a wheelchair, and (4) activities that involve the upper extremity. The validity or reproducibility of these outcomes measures was investigated in fourteen different patient populations. Most of the studies evaluated the algorithm's accuracy to detect certain activities in unlabeled raw data. The type and placement of required sensor technologies depends on the activity and outcome measure and are thoroughly described in this review. The usability of the applied sensor setups was rarely reported. CONCLUSION This systematic review provides a comprehensive overview of applications of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments. It summarizes the state-of-the-art, it provides quick access to the relevant literature, and it enables the identification of gaps for the evaluation of existing and the development of new algorithms.
Collapse
Affiliation(s)
- Fabian Marcel Rast
- Swiss Children’s Rehab, University Children’s Hospital Zurich, Mühlebergstrasse 104, 8910 Affoltern am Albis, Switzerland
- Children’s Research Center, University Children’s Hospital of Zurich, University of Zurich, Zurich, Switzerland
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Rob Labruyère
- Swiss Children’s Rehab, University Children’s Hospital Zurich, Mühlebergstrasse 104, 8910 Affoltern am Albis, Switzerland
- Children’s Research Center, University Children’s Hospital of Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Heydarian H, Adam M, Burrows T, Collins C, Rollo ME. Assessing Eating Behaviour Using Upper Limb Mounted Motion Sensors: A Systematic Review. Nutrients 2019; 11:E1168. [PMID: 31137677 PMCID: PMC6566929 DOI: 10.3390/nu11051168] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 01/08/2023] Open
Abstract
Wearable motion tracking sensors are now widely used to monitor physical activity, and have recently gained more attention in dietary monitoring research. The aim of this review is to synthesise research to date that utilises upper limb motion tracking sensors, either individually or in combination with other technologies (e.g., cameras, microphones), to objectively assess eating behaviour. Eleven electronic databases were searched in January 2019, and 653 distinct records were obtained. Including 10 studies found in backward and forward searches, a total of 69 studies met the inclusion criteria, with 28 published since 2017. Fifty studies were conducted exclusively in laboratory settings, 13 exclusively in free-living settings, and three in both settings. The most commonly used motion sensor was an accelerometer (64) worn on the wrist (60) or lower arm (5), while in most studies (45), accelerometers were used in combination with gyroscopes. Twenty-six studies used commercial-grade smartwatches or fitness bands, 11 used professional grade devices, and 32 used standalone sensor chipsets. The most used machine learning approaches were Support Vector Machine (SVM, n = 21), Random Forest (n = 19), Decision Tree (n = 16), Hidden Markov Model (HMM, n = 10) algorithms, and from 2017 Deep Learning (n = 5). While comparisons of the detection models are not valid due to the use of different datasets, the models that consider the sequential context of data across time, such as HMM and Deep Learning, show promising results for eating activity detection. We discuss opportunities for future research and emerging applications in the context of dietary assessment and monitoring.
Collapse
Affiliation(s)
- Hamid Heydarian
- School of Electrical Engineering and Computing, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Marc Adam
- School of Electrical Engineering and Computing, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Physical Activity and Nutrition, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Tracy Burrows
- Priority Research Centre for Physical Activity and Nutrition, The University of Newcastle, Callaghan, NSW 2308, Australia.
- School of Health Sciences, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Clare Collins
- Priority Research Centre for Physical Activity and Nutrition, The University of Newcastle, Callaghan, NSW 2308, Australia.
- School of Health Sciences, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Megan E Rollo
- Priority Research Centre for Physical Activity and Nutrition, The University of Newcastle, Callaghan, NSW 2308, Australia.
- School of Health Sciences, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|