1
|
Bolivar-Wagers S, Larson JH, Jin S, Blazar BR. Cytolytic CD4 + and CD8 + Regulatory T-Cells and Implications for Developing Immunotherapies to Combat Graft-Versus-Host Disease. Front Immunol 2022; 13:864748. [PMID: 35493508 PMCID: PMC9040077 DOI: 10.3389/fimmu.2022.864748] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 02/03/2023] Open
Abstract
Regulatory T-cells (Treg) are critical for the maintenance of immune homeostasis and tolerance induction. While the immunosuppressive mechanisms of Treg have been extensively investigated for decades, the mechanisms responsible for Treg cytotoxicity and their therapeutic potential in regulating immune responses have been incompletely explored and exploited. Conventional cytotoxic T effector cells (Teffs) are known to be important for adaptive immune responses, particularly in the settings of viral infections and cancer. CD4+ and CD8+ Treg subsets may also share similar cytotoxic properties with conventional Teffs. Cytotoxic effector Treg (cyTreg) are a heterogeneous population in the periphery that retain the capacity to suppress T-cell proliferation and activation, induce cellular apoptosis, and migrate to tissues to ensure immune homeostasis. The latter can occur through several cytolytic mechanisms, including the Granzyme/Perforin and Fas/FasL signaling pathways. This review focuses on the current knowledge and recent advances in our understanding of cyTreg and their potential application in the treatment of human disease, particularly Graft-versus-Host Disease (GVHD).
Collapse
Affiliation(s)
| | | | | | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
2
|
Gibson MS, Allan AJ, Sanderson ND, Birch J, Gubbins S, Ellis SA, Hammond JA. Two Lineages of KLRA with Contrasting Transcription Patterns Have Been Conserved at a Single Locus during Ruminant Speciation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2455-2463. [PMID: 32213565 PMCID: PMC7167460 DOI: 10.4049/jimmunol.1801363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/22/2020] [Indexed: 01/29/2023]
Abstract
Cattle possess the most diverse repertoire of NK cell receptor genes among all mammals studied to date. Killer cell receptor genes encoded within the NK complex and killer cell Ig-like receptor genes encoded within the leukocyte receptor complex have both been expanded and diversified. Our previous studies identified two divergent and polymorphic KLRA alleles within the NK complex in the Holstein-Friesian breed of dairy cattle. By examining a much larger cohort and other ruminant species, we demonstrate the emergence and fixation of two KLRA allele lineages (KLRA*01 and -*02) at a single locus during ruminant speciation. Subsequent recombination events between these allele lineages have increased the frequency of KLRA*02 extracellular domains. KLRA*01 and KLRA*02 transcription levels contrasted in response to cytokine stimulation, whereas homozygous animals consistently transcribed higher levels of KLRA, regardless of the allele lineage. KLRA*02 mRNA levels were also generally higher than KLRA*01 Collectively, these data point toward alternative functional roles governed by KLRA genotype and allele lineage. On a background of high genetic diversity of NK cell receptor genes, this KLRA allele fixation points to fundamental and potentially differential function roles.
Collapse
Affiliation(s)
- Mark S Gibson
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom
| | - Alasdair J Allan
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom
| | | | - James Birch
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom
| | - Simon Gubbins
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom
| | - Shirley A Ellis
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom
| | - John A Hammond
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom
| |
Collapse
|
3
|
Schwartz JC, Gibson MS, Heimeier D, Koren S, Phillippy AM, Bickhart DM, Smith TPL, Medrano JF, Hammond JA. The evolution of the natural killer complex; a comparison between mammals using new high-quality genome assemblies and targeted annotation. Immunogenetics 2017; 69:255-269. [PMID: 28180967 PMCID: PMC5350243 DOI: 10.1007/s00251-017-0973-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/25/2017] [Indexed: 11/27/2022]
Abstract
Natural killer (NK) cells are a diverse population of lymphocytes with a range of biological roles including essential immune functions. NK cell diversity is in part created by the differential expression of cell surface receptors which modulate activation and function, including multiple subfamilies of C-type lectin receptors encoded within the NK complex (NKC). Little is known about the gene content of the NKC beyond rodent and primate lineages, other than it appears to be extremely variable between mammalian groups. We compared the NKC structure between mammalian species using new high-quality draft genome assemblies for cattle and goat; re-annotated sheep, pig, and horse genome assemblies; and the published human, rat, and mouse lemur NKC. The major NKC genes are largely in the equivalent positions in all eight species, with significant independent expansions and deletions between species, allowing us to propose a model for NKC evolution during mammalian radiation. The ruminant species, cattle and goats, have independently evolved a second KLRC locus flanked by KLRA and KLRJ, and a novel KLRH-like gene has acquired an activating tail. This novel gene has duplicated several times within cattle, while other activating receptor genes have been selectively disrupted. Targeted genome enrichment in cattle identified varying levels of allelic polymorphism between the NKC genes concentrated in the predicted extracellular ligand-binding domains. This novel recombination and allelic polymorphism is consistent with NKC evolution under balancing selection, suggesting that this diversity influences individual immune responses and may impact on differential outcomes of pathogen infection and vaccination.
Collapse
Affiliation(s)
- John C Schwartz
- Livestock Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Mark S Gibson
- Livestock Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082, Lisbon, Portugal
| | - Dorothea Heimeier
- Livestock Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Derek M Bickhart
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | | | - Juan F Medrano
- Department of Animal Science, University of California, Davis, Davis, CA, 95616, USA
| | - John A Hammond
- Livestock Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
| |
Collapse
|
4
|
Li ZY, Song ZH, Meng CY, Yang DD, Yang Y, Peng JP. IFN-γ modulates Ly-49 receptors on NK cells in IFN-γ-induced pregnancy failure. Sci Rep 2015; 5:18159. [PMID: 26655673 PMCID: PMC4676035 DOI: 10.1038/srep18159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/13/2015] [Indexed: 01/25/2023] Open
Abstract
We have previously shown that interferon gamma (IFN-γ) induces aberrant CD49b+ natural killer (NK) cell recruitment by regulating CX3CL1 and eventually provokes foetal loss. In this study, we show that IFN-γ also modulates Ly-49 receptors on NK cells during pregnancy failure. The percentages of Ly-49A+ and Ly-49G2+ NK cells in the uteri of the IFN-γ-treated group were significantly lower than those observed in the control group. Moreover, the median fluorescence intensity (MFI) values of Ly-49A and Ly-49G2 expression on NK cells in the uteri of the IFN-γ-treated group were significantly lower than those of the control group. Using isolated spleen leucocytes, we further found that IFN-γ significantly reduced the percentage of Ly-49A+ NK cells in vitro. However, CX3CL1 was not involved in the modulation of Ly-49 receptors, and the expression of CX3CR1 was not regulated by IFN-γ in spleen leucocytes. Collectively, our data indicate that IFN-γ can modulate Ly-49 receptors on NK cells and this process may play a role in IFN-γ-induced pregnancy failure. Thus, we provide a new line of evidence correlating the deleterious effects of IFN-γ with its role in regulating NK cell Ly-49 receptors during pregnancy failure.
Collapse
Affiliation(s)
- Zhong-Yin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Zhi-Hui Song
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Chao-Yang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Dan-Dan Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Ying Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Jing-Pian Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
5
|
Ellis SA, Hammond JA. The functional significance of cattle major histocompatibility complex class I genetic diversity. Annu Rev Anim Biosci 2013; 2:285-306. [PMID: 25384144 DOI: 10.1146/annurev-animal-022513-114234] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Current concerns about food security highlight the importance of maintaining productive and disease-resistant livestock populations. Major histocompatibility complex (MHC) class I genes have a central role in immunity. A high level of diversity in these genes allows populations to survive despite exposure to rapidly evolving pathogens. This review aims to describe the key features of MHC class I genetic diversity in cattle and to discuss their role in disease resistance. Discussion centers on data derived from the cattle genome sequence and studies addressing MHC class I gene expression and function. The impact of intensive selection on MHC diversity is also considered. A high level of complexity in MHC class I genes and functionally related gene families is revealed. This highlights the need for increased efforts to determine key genetic components that govern cattle immune responses to disease, which is increasingly important in the face of changing human and environmental demands.
Collapse
Affiliation(s)
- Shirley A Ellis
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, United Kingdom; ,
| | | |
Collapse
|
6
|
Michael HT, Ito D, McCullar V, Zhang B, Miller JS, Modiano JF. Isolation and characterization of canine natural killer cells. Vet Immunol Immunopathol 2013; 155:211-7. [PMID: 23876304 DOI: 10.1016/j.vetimm.2013.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 11/28/2022]
Abstract
NK cells are non-T, non-B lymphocytes that kill target cells without previous activation. The immunophenotype and function of these cells in humans and mice are well defined, but canine NK cells remain incompletely characterized. Our objectives were to isolate and culture canine peripheral blood NK cells, and to define their immunophenotype and killing capability. PBMC were obtained from healthy dogs and T cells were depleted by immunomagnetic separation. The residual cells were cultured in media supplemented with IL-2, IL-15 or both, or with mouse embryonic liver (EL) feeder cells. Non-T, non-B lymphocytes survived and expanded in these cultures. IL-2 was necessary and sufficient for survival; the addition of IL-15 was necessary for expansion, but IL-15 alone did not support survival. Culture with EL cells and IL-2 also fostered survival and expansion. The non-T, non-B lymphocytes uniformly expressed CD45, MHC I, and showed significant cytotoxic activity against CTAC targets. Expression of MHC II, CD11/18 was restricted to subsets of these cells. The data show that cells meeting the criteria for NK cells in other species, i.e., non-T, non-B lymphocytes with cytotoxic activity, can be expanded from canine PBMC by T-cell depletion and culture with cytokines or feeder cells.
Collapse
Affiliation(s)
- Helen T Michael
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1352 Boyd Avenue, St. Paul, MN 55108, United States.
| | | | | | | | | | | |
Collapse
|
7
|
Schenkel AR, Kingry LC, Slayden RA. The ly49 gene family. A brief guide to the nomenclature, genetics, and role in intracellular infection. Front Immunol 2013; 4:90. [PMID: 23596445 PMCID: PMC3627126 DOI: 10.3389/fimmu.2013.00090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/04/2013] [Indexed: 12/19/2022] Open
Abstract
Understanding the Ly49 gene family can be challenging in terms of nomenclature and genetic organization. The Ly49 gene family has two major gene nomenclature systems, Ly49 and Killer Cell Lectin-like Receptor subfamily A (klra). Mice from different strains have varying numbers of these genes with strain specific allelic variants, duplications, deletions, and pseudogene sequences. Some members activate NK lymphocytes, invariant NKT (iNKT) lymphocytes and γδ T lymphocytes while others inhibit killing activity. One family member, Ly49Q, is expressed only on myeloid cells and is not found on NK, iNKT, or γδ T cells. There is growing evidence that these receptors may regulate not just the immune response to viruses, but other intracellular pathogens as well. Thus, this review’s primary goal is to provide a guide for researchers first encountering the Ly49 gene family and a foundation for future studies on the role that these gene products play in the immune response, particularly the response to intracellular viral and bacterial pathogens.
Collapse
Affiliation(s)
- Alan Rowe Schenkel
- Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins, CO, USA
| | | | | |
Collapse
|
8
|
Parham P, Norman PJ, Abi-Rached L, Guethlein LA. Human-specific evolution of killer cell immunoglobulin-like receptor recognition of major histocompatibility complex class I molecules. Philos Trans R Soc Lond B Biol Sci 2012; 367:800-11. [PMID: 22312047 DOI: 10.1098/rstb.2011.0266] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In placental mammals, natural killer (NK) cells are a population of lymphocytes that make unique contributions to immune defence and reproduction, functions essential for survival of individuals, populations and species. Modulating these functions are conserved and variable NK-cell receptors that recognize epitopes of major histocompatibility complex (MHC) class I molecules. In humans, for example, recognition of human leucocyte antigen (HLA)-E by the CD94:NKG2A receptor is conserved, whereas recognition of HLA-A, B and C by the killer cell immunoglobulin-like receptors (KIRs) is diversified. Competing demands of the immune and reproductive systems, and of T-cell and NK-cell immunity-combined with the segregation on different chromosomes of variable NK-cell receptors and their MHC class I ligands-drive an unusually rapid evolution that has resulted in unprecedented levels of species specificity, as first appreciated from comparison of mice and humans. Counterparts to human KIR are present only in simian primates. Observed in these species is the coevolution of KIR and the four MHC class I epitopes to which human KIR recognition is restricted. Unique to hominids is the emergence of the MHC-C locus as a supplier of specialized and superior ligands for KIR. This evolutionary trend is most highly elaborated in the chimpanzee. Unique to the human KIR locus are two groups of KIR haplotypes that are present in all human populations and subject to balancing selection. Group A KIR haplotypes resemble chimpanzee KIR haplotypes and are enriched for genes encoding KIR that bind HLA class I, whereas group B KIR haplotypes are enriched for genes encoding receptors with diminished capacity to bind HLA class I. Correlating with their balance in human populations, B haplotypes favour reproductive success, whereas A haplotypes favour successful immune defence. Evolution of the B KIR haplotypes is thus unique to the human species.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
9
|
Inngjerdingen M, Kveberg L, Naper C, Vaage JT. Natural killer cell subsets in man and rodents. ACTA ACUST UNITED AC 2012; 78:81-8. [PMID: 21726202 DOI: 10.1111/j.1399-0039.2011.01714.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
NK cells are important contributors to the early immune defence against infected or transformed cells. They are rapidly activated in response to cytokines, whereby they exert their effector functions. NK cell responses are controlled by a multitude of receptors, which are expressed by subpopulations of NK cells with distinct phenotypes and functionalities. Direct comparisons between species are often difficult because of differences in the expression of NK cell receptors and other markers. In addition, NK cells change their phenotype and effector functions during differentiation, by tissue-specific factors, or upon activation, complicating interpretations. We will here review the similarities and differences between the major NK cell subsets in man and two well-characterized rodent models.
Collapse
Affiliation(s)
- M Inngjerdingen
- Department of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway.
| | | | | | | |
Collapse
|
10
|
Parham P, Norman PJ, Abi-Rached L, Guethlein LA. Variable NK cell receptors exemplified by human KIR3DL1/S1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:11-9. [PMID: 21690332 PMCID: PMC3223120 DOI: 10.4049/jimmunol.0902332] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Variegated expression of variable NK cell receptors for polymorphic MHC class I broadens the range of an individual's NK cell response and the capacity for populations and species to survive disease epidemics and population bottlenecks. On evolutionary time scales, this component of immunity is exceptionally dynamic, unstable, and short-lived, being dependent on coevolution of ligands and receptors subject to varying, competing selection pressures. Consequently these systems of variable NK cell receptors are largely species specific and have recruited different classes of glycoprotein, even within the primate order of mammals. Such disparity helps to explain substantial differences in NK cell biology between humans and animal models, for which the population genetics is largely ignored. KIR3DL1/S1, which recognizes the Bw4 epitope of HLA-A and -B and is the most extensively studied of the variable NK cell receptors, exemplifies how variation in all possible parameters of function is recruited to diversify the human NK cell response.
Collapse
MESH Headings
- Alleles
- Animals
- Disease Models, Animal
- Evolution, Molecular
- HLA-B Antigens/genetics
- HLA-B Antigens/immunology
- HLA-B Antigens/metabolism
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Phylogeny
- Receptors, KIR3DL1/genetics
- Receptors, KIR3DL1/immunology
- Receptors, KIR3DL1/metabolism
- Receptors, KIR3DS1/genetics
- Receptors, KIR3DS1/immunology
- Receptors, KIR3DS1/metabolism
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, USA
| | - Paul J. Norman
- Department of Structural Biology, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, USA
| | - Laurent Abi-Rached
- Department of Structural Biology, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, USA
| | - Lisbeth A. Guethlein
- Department of Structural Biology, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|