1
|
Li Z, Hu Y, Zou F, Gao W, Feng S, Chen G, Yang J, Wang W, Shi C, Cai Y, Deng G, Chen X. Assessing the risk of TB progression: Advances in blood-based biomarker research. Microbiol Res 2025; 292:128038. [PMID: 39752806 DOI: 10.1016/j.micres.2024.128038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
This review addresses the significant advancements in the identification of blood-based prognostic biomarkers for tuberculosis (TB), highlighting the importance of early detection to prevent disease progression. The manuscript discusses various biomarker categories, including transcriptomic, proteomic, metabolomic, immune cell-based, cytokine-based, and antibody response-based markers, emphasizing their potential in predicting TB incidence. Despite promising results, practical application is hindered by high costs, technical complexities, and the need for extensive validation across diverse populations. Transcriptomic biomarkers, such as the Risk16 signature, show high sensitivity and specificity, while proteomic and metabolic markers provide insights into protein-level changes and biochemical alterations linked to TB. Immune cell and cytokine markers offer real-time data on the body's response to infection. The manuscript also explores the role of single-nucleotide polymorphisms in TB susceptibility and the challenges of implementing novel RNA signatures as point-of-care tests in low-resource settings. The review concludes that, while significant progress has been made, further research and development are necessary to refine these biomarkers, improve their practical application, and achieve the World Health Organization's TB elimination goals.
Collapse
Affiliation(s)
- Zhaodong Li
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yunlong Hu
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Fa Zou
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Wei Gao
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - SiWan Feng
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Guanghuan Chen
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Jing Yang
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Wenfei Wang
- National Clinical Research Center for Infectious Disease, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen 518112, China
| | - Chenyan Shi
- Department of Preventive Medicine, School of Public Health, Shenzhen University, Shenzhen 518000, China
| | - Yi Cai
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Guofang Deng
- Guangdong Key Lab for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China.
| | - Xinchun Chen
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China.
| |
Collapse
|
2
|
Perez RL, Chase J, Tanner R. Shared challenges to the control of complex intracellular neglected pathogens. Front Public Health 2024; 12:1423420. [PMID: 39324165 PMCID: PMC11422159 DOI: 10.3389/fpubh.2024.1423420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
The complex intracellular pathogens Mycobacterium tuberculosis, Mycobacterium leprae, Leishmania spp., and Burkholderia pseudomallei, which cause tuberculosis, leprosy, leishmaniasis, and melioidosis respectively, represent major health threats with a significant global burden concentrated in low- and middle-income countries. While these diseases vary in their aetiology, pathology and epidemiology, they share key similarities in the biological and sociodemographic factors influencing their incidence and impact worldwide. In particular, their occurrence in resource-limited settings has important implications for research and development, disease prevalence and associated risk factors, as well as access to diagnostics and therapeutics. In accordance with the vision of the VALIDATE (VAccine deveLopment for complex Intracellular neglecteD pAThogeEns) Network, we consider shared challenges to the effective prevention, diagnosis and treatment of these diseases as shaped by both biological and social factors, illustrating the importance of taking an interdisciplinary approach. We further highlight how a cross-pathogen perspective may provide valuable insights for understanding and addressing challenges to the control of all four pathogens.
Collapse
Affiliation(s)
- Rebecca Lynn Perez
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Wadham College, University of Oxford, Oxford, United Kingdom
| | - Jemima Chase
- Wadham College, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- Wadham College, University of Oxford, Oxford, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Luan X, Fan X, Li G, Li M, Li N, Yan Y, Zhao X, Liu H, Wan K. Exploring the immunogenicity of Rv2201-519: A T-cell epitope-based antigen derived from Mycobacterium tuberculosis AsnB with implications for tuberculosis infection detection and vaccine development. Int Immunopharmacol 2024; 129:111542. [PMID: 38342063 DOI: 10.1016/j.intimp.2024.111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
Research dedicated to diagnostic reagents and vaccine development for tuberculosis (TB) is challenging due to the paucity of immunodominant antigens that can predict disease risk and exhibit protective potential. Therefore, it is crucial to identify T-cell epitope-based Mycobacterium tuberculosis (MTB) antigens characterized by specific and prominent recognition by the immune system. In this study, we constructed a T-cell epitope-rich tripeptide-splicing fragment (nucleotide positions 131-194, 334-377, and 579-643) of Rv2201 (also known as the 72 kDa AsnB)from the MTB genome, ultimately yielding the recombinant protein Rv2201-519 in Escherichia coli BL21 (DE3). Subsequently, we gauged the recombinant protein's ability to detect tuberculosis infection through ELISpot and assessed its immunostimulatory effect on mouse models using flow cytometry and ELISA. Our results indicated that Rv2201-519 possessed promising sensitivity; however, the sensitivity was lower than that of a commercial diagnostic kit containing ESAT-6, CFP-10, and Rv3615c (80.56 % vs. 94.44 %). The Rv2201-519 group exhibited a propensity for a CD4+ Th1 cell immune response in inoculated BALB/c mice that manifested as higher levels of antigen-specific IgG production (IgG2a/IgG1 > 1). In comparison to Ag85B, Rv2201-519 induced a more robust Th1-type cellular immune response as evidenced by a notable rise in the ratio of IFN-γ/IL-4 and IL-12 cytokine production and increased CD4+ T cell activation with a higher percentage of CD4+IFN-γ+ T cells. Rv2201-519 also induced a higher level of IL-6 compared with Ag85B, a higher percentage of CD8+ T cells specific for Rv2201-519, and a lower percentage of CD8+IL-4+ T cells. Collectively, the current evidence suggests that Rv2201-519 could potentially serve as an immunodominant protein for tuberculosis infection screening, laying the groundwork for further evaluation in recombinant Bacillus Calmette-Guérin (BCG) and subunit vaccines against MTB challenges in future studies.
Collapse
Affiliation(s)
- Xiuli Luan
- Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing 101100, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xueting Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Guilian Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Mchao Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Na Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuhan Yan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiuqin Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Haican Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Kanglin Wan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
4
|
Naidu A, Nayak SS, Lulu S S, Sundararajan V. Advances in computational frameworks in the fight against TB: The way forward. Front Pharmacol 2023; 14:1152915. [PMID: 37077815 PMCID: PMC10106641 DOI: 10.3389/fphar.2023.1152915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Around 1.6 million people lost their life to Tuberculosis in 2021 according to WHO estimates. Although an intensive treatment plan exists against the causal agent, Mycobacterium Tuberculosis, evolution of multi-drug resistant strains of the pathogen puts a large number of global populations at risk. Vaccine which can induce long-term protection is still in the making with many candidates currently in different phases of clinical trials. The COVID-19 pandemic has further aggravated the adversities by affecting early TB diagnosis and treatment. Yet, WHO remains adamant on its "End TB" strategy and aims to substantially reduce TB incidence and deaths by the year 2035. Such an ambitious goal would require a multi-sectoral approach which would greatly benefit from the latest computational advancements. To highlight the progress of these tools against TB, through this review, we summarize recent studies which have used advanced computational tools and algorithms for-early TB diagnosis, anti-mycobacterium drug discovery and in the designing of the next-generation of TB vaccines. At the end, we give an insight on other computational tools and Machine Learning approaches which have successfully been applied in biomedical research and discuss their prospects and applications against TB.
Collapse
Affiliation(s)
| | | | | | - Vino Sundararajan
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, India
| |
Collapse
|
5
|
Sivakumaran D, Jenum S, Srivastava A, Steen VM, Vaz M, Doherty TM, Ritz C, Grewal HMS. Host blood-based biosignatures for subclinical TB and incipient TB: A prospective study of adult TB household contacts in Southern India. Front Immunol 2023; 13:1051963. [PMID: 36713386 PMCID: PMC9876034 DOI: 10.3389/fimmu.2022.1051963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
A large proportion of the global tuberculosis (TB) burden is asymptomatic and not detectable by symptom-based screening, driving the TB epidemic through continued M. tuberculosis transmission. Currently, no validated tools exist to diagnose incipient and subclinical TB. Nested within a large prospective study in household contacts of pulmonary TB cases in Southern India, we assessed 35 incipient TB and 12 subclinical TB cases, along with corresponding household active TB cases (n=11), and household controls (n=39) using high throughput methods for transcriptional and protein profiling. We split the data into training and test sets and applied a support vector machine classifier followed by a Lasso regression model to identify signatures. The Lasso regression model identified an 11-gene signature (ABLIM2, C20orf197, CTC-543D15.3, CTD-2503O16.3, HLADRB3, METRNL, RAB11B-AS1, RP4-614C10.2, RNA5SP345, RSU1P1, and UACA) that distinguished subclinical TB from incipient TB with a very good discriminatory power by AUCs in both training and test sets. Further, we identified an 8-protein signature comprising b-FGF, IFNγ, IL1RA, IL7, IL12p70, IL13, PDGF-BB, and VEGF that differentiated subclinical TB from incipient TB with good and moderate discriminatory power by AUCs in the training and test sets, respectively. The identified 11-gene signature discriminated well between the distinct stages of the TB disease spectrum, with very good discriminatory power, suggesting it could be useful for predicting TB progression in household contacts. However, the high discriminatory power could partly be due to over-fitting, and validation in other studies is warranted to confirm the potential of the immune biosignatures for identifying subclinical TB.
Collapse
Affiliation(s)
- Dhanasekaran Sivakumaran
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Aashish Srivastava
- Genome Core Facility, Clinical Laboratory (K2), Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Vidar M. Steen
- Genome Core Facility, Clinical Laboratory (K2), Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Mario Vaz
- Department of Physiology, St. John’s Medical College and Division of Health and Humanities, St. John’s Research Institute, Koramangala, Bangalore, India
| | | | - Christian Ritz
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Harleen M. S. Grewal
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Singhania A, Dubelko P, Kuan R, Chronister WD, Muskat K, Das J, Phillips EJ, Mallal SA, Seumois G, Vijayanand P, Sette A, Lerm M, Peters B, Lindestam Arlehamn C. CD4+CCR6+ T cells dominate the BCG-induced transcriptional signature. EBioMedicine 2021; 74:103746. [PMID: 34902786 PMCID: PMC8671872 DOI: 10.1016/j.ebiom.2021.103746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The century-old Mycobacterium bovis Bacillus Calmette-Guerin (BCG) remains the only licensed vaccine against tuberculosis (TB). Despite this, there is still a lot to learn about the immune response induced by BCG, both in terms of phenotype and specificity. METHODS We investigated immune responses in adult individuals pre and 8 months post BCG vaccination. We specifically determined changes in gene expression, cell subset composition, DNA methylome, and the TCR repertoire induced in PBMCs and CD4 memory T cells associated with antigen stimulation by either BCG or a Mycobacterium tuberculosis (Mtb)-derived peptide pool. FINDINGS Following BCG vaccination, we observed increased frequencies of CCR6+ CD4 T cells, which includes both Th1* (CXCR3+CCR6+) and Th17 subsets, and mucosal associated invariant T cells (MAITs). A large number of immune response genes and pathways were upregulated post BCG vaccination with similar patterns observed in both PBMCs and memory CD4 T cells, thus suggesting a substantial role for CD4 T cells in the cellular response to BCG. These upregulated genes and associated pathways were also reflected in the DNA methylome. We described both qualitative and quantitative changes in the BCG-specific TCR repertoire post vaccination, and importantly found evidence for similar TCR repertoires across different subjects. INTERPRETATION The immune signatures defined herein can be used to track and further characterize immune responses induced by BCG, and can serve as reference for benchmarking novel vaccination strategies.
Collapse
Affiliation(s)
- Akul Singhania
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Paige Dubelko
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Rebecca Kuan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - William D Chronister
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kaylin Muskat
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jyotirmoy Das
- Division of Infection and Inflammation, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia; Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Simon A Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia; Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Grégory Seumois
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Pandurangan Vijayanand
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Maria Lerm
- Division of Infection and Inflammation, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Cecilia Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
7
|
Morgan J, Muskat K, Tippalagama R, Sette A, Burel J, Lindestam Arlehamn CS. Classical CD4 T cells as the cornerstone of antimycobacterial immunity. Immunol Rev 2021; 301:10-29. [PMID: 33751597 PMCID: PMC8252593 DOI: 10.1111/imr.12963] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Tuberculosis is a significant health problem without an effective vaccine to combat it. A thorough understanding of the immune response and correlates of protection is needed to develop a more efficient vaccine. The immune response against Mycobacterium tuberculosis (Mtb) is complex and involves all aspects of the immune system, however, the optimal protective, non‐pathogenic T cell response against Mtb is still elusive. This review will focus on discussing CD4 T cell immunity against mycobacteria and its importance in Mtb infection with a primary focus on human studies. We will in particular discuss the large heterogeneity of immune cell subsets that have been revealed by recent immunological investigations at an unprecedented level of detail. These studies have identified specific classical CD4 T cell subsets important for immune responses against Mtb in various states of infection. We further discuss the functional attributes that have been linked to the various subsets such as upregulation of activation markers and cytokine production. Another important topic to be considered is the antigenic targets of Mtb‐specific immune responses, and how antigen reactivity is influenced by both disease state and environmental exposure(s). These are key points for both vaccines and immune diagnostics development. Ultimately, these factors are holistically considered in the definition and investigations of what are the correlates on protection and resolution of disease.
Collapse
Affiliation(s)
- Jeffrey Morgan
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kaylin Muskat
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Rashmi Tippalagama
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Julie Burel
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | |
Collapse
|
8
|
Bekken GK, Ritz C, Selvam S, Jesuraj N, Hesseling AC, Doherty TM, Grewal HMS, Vaz M, Jenum S. Identification of subclinical tuberculosis in household contacts using exposure scores and contact investigations. BMC Infect Dis 2020; 20:96. [PMID: 32005136 PMCID: PMC6995184 DOI: 10.1186/s12879-020-4800-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background The goal of tuberculosis elimination put forward in the End TB Strategy prioritizes diagnosis and treatment of incipient and subclinical TB, recently defined by key stakeholders as “asymptomatic, early pre-clinical disease during which pathology evolves”. Regarded as indicative of a high risk of TB progression, considerable efforts have been made to identify these cases through exploration of biomarkers. The present study aimed to evaluate simple scoring systems for TB exposure as screening tools for subclinical TB, the only identifiable of the incipient and subclinical disease states, in a contact investigation (CI) setting of low HIV-prevalence. Methods Nested within a large prospective study in household contacts (HHCs) of smear positive pulmonary TB cases in South-India conducted 2010–2012, we assessed 1) the association between the Tuberculosis Contact Score (TCS) and the Infectivity Score, with established tools for Mycobacterium tuberculosis (Mtb) infection, corrected for established TB risk factors, and 2) the capability of the TB exposure scores to identify subclinical TB defined by Mtb-culture positivity in sputum or gastric aspirate (subjects < 5 years) specimen. Results Of 525 HHCs, 29 were Mtb-culture positive and 96.6% of these asymptomatic. The TCS and the Infectivity Score associated with positive Tuberculin Skin Test and QuantiFeron TB-Gold In-tube assay (QFT) results in multivariate analyses (TCS: ORTST 1.16, 95% CI: 1.01, 1.33; ORQFT 1.33 95% CI: 1.16, 1.51. Infectivity Score: ORTST 1.39, 95% CI: 1.10, 1.76; ORQFT 1.41 95% CI: 1.16, 1.71). The Infectivity Score showed a moderate capability to identify subclinical TB (AUC of 0.61, 95% CI: 0.52, 0.70). Conclusions Although our results did not identify an easily applicable screening tool for subclinical TB, the present study indicates that focusing on TB-related symptoms in CI settings may be of limited value for early identification of HHCs with high risk for TB progression.
Collapse
Affiliation(s)
- Gry Klouman Bekken
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Christian Ritz
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Sumithra Selvam
- Division of Epidemiology, Biostatistics and Population Health, St. John's Research Institute, Koramangala, Bangalore, 560 034, India
| | - Nelson Jesuraj
- Paediatrics and Neonatology, Trinity hospital, Palakkad, Kerala, India
| | - Anneke C Hesseling
- Department of Pediatrics and Child Health, Desmond Tutu TB Center, Stellenbosch University, Cape Town, South Africa
| | | | - Harleen M S Grewal
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, N-5021, Bergen, Norway
| | - Mario Vaz
- Division of Health and Humanities, St. John's Research Institute, Koramangala, Bangalore, 560 034, India
| | - Synne Jenum
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway. .,Department of Infectious Diseases, Oslo University Hospital, Pb 4956 Nydalen, 0424, Oslo, Norway.
| |
Collapse
|
9
|
Plotkin SA. Updates on immunologic correlates of vaccine-induced protection. Vaccine 2019; 38:2250-2257. [PMID: 31767462 DOI: 10.1016/j.vaccine.2019.10.046] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
Correlates of protection (CoPs) are increasingly important in the development and licensure of vaccines. Although the study of CoPs was initially directed at identifying a single immune function that could explain vaccine efficacy, it has become increasingly clear that there are often multiple functions responsible for efficacy. This review is meant to supplement prior articles on the subject, illustrating both simple and complex CoPs.
Collapse
Affiliation(s)
- Stanley A Plotkin
- Emeritus Professor of Pediatrics, University of Pennsylvania, Vaxconsult, 4650 Wismer Rd., Doylestown, PA 18902, United States.
| |
Collapse
|
10
|
Dynamic Changes of Th1 Cytokines and the Clinical Significance of the IFN- γ/TNF- α Ratio in Acute Brucellosis. Mediators Inflamm 2019; 2019:5869257. [PMID: 31686983 PMCID: PMC6800922 DOI: 10.1155/2019/5869257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/28/2019] [Indexed: 12/26/2022] Open
Abstract
Background T-helper type 1 (Th1) cells and Th1-produced cytokines play essential roles in the immune response to foreign pathogens, such as Brucella spp. The aim of this study was to evaluate the dynamic changes of Th1 cells and Th1-produced cytokines in patients with acute brucellosis and their impact on clinical decision-making. Methods Fifty-one individuals with acute brucellosis and 17 healthy subjects were enrolled in this study. The brucellosis patients were diagnosed based on clinical symptoms, laboratory tests, and clinical examination. The levels of serum gamma-interferon (IFN-γ) and tumor necrosis factor-alpha (TNF-α), along with the percentage of Th1 cells, were determined by flow cytometry bead arrays (CBA). Results The frequency of Th1 cells, along with the levels of IFN-γ and TNF-α, was negatively correlated with the clinical parameters. The mean serum levels of IFN-γ and TNF-α and the frequency of Th1 cells were significantly higher in the brucellosis patients in comparison with the healthy subjects (p < 0.05). Besides, the cytokine levels were not significantly different between the positive and negative blood culture groups. IFN-γ levels significantly decreased from 6 months to 12 months post treatment (p < 0.05). However, the IFN-γ levels remained higher than those of the healthy subjects by 12 months post treatment (p < 0.05). The IFN-γ/TNF-α ratio was significantly higher in severe cases than in nonsevere cases (p < 0.05). Conclusions The IFN-γ levels secreted by Th1 cells remain significantly higher than those of healthy subjects more than 12 months after treatment with antibiotics. This finding is different from similar studies. The IFN-γ/TNF-α ratio may be a feasible parameter for assessing clinical severity, yet further longitudinal studies of the immunization and inflammatory reaction of brucellosis are needed in larger patient populations.
Collapse
|
11
|
Das J, Verma D, Gustafsson M, Lerm M. Identification of DNA methylation patterns predisposing for an efficient response to BCG vaccination in healthy BCG-naïve subjects. Epigenetics 2019; 14:589-601. [PMID: 31010371 PMCID: PMC6557603 DOI: 10.1080/15592294.2019.1603963] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/19/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
The protection against tuberculosis induced by the Bacille Calmette Guérin (BCG) vaccine is unpredictable. In our previous study, altered DNA methylation pattern in peripheral blood mononuclear cells (PBMCs) in response to BCG was observed in a subgroup of individuals, whose macrophages killed mycobacteria effectively ('responders'). These macrophages also showed production of Interleukin-1β (IL-1β) in response to mycobacterial stimuli before vaccination. Here, we hypothesized that the propensity to respond to the BCG vaccine is reflected in the DNA methylome. We mapped the differentially methylated genes (DMGs) in PBMCs isolated from responders/non-responders at the time point before vaccination aiming to identify possible predictors of BCG responsiveness. We identified 43 DMGs and subsequent bioinformatic analyses showed that these were enriched for actin-modulating pathways, predicting differences in phagocytosis. This could be validated by experiments showing that phagocytosis of mycobacteria, which is an event preceding mycobacteria-induced IL-1β production, was strongly correlated with the DMG pattern.
Collapse
Affiliation(s)
- Jyotirmoy Das
- Department of Clinical and Experimental Medicine (IKE), Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Deepti Verma
- Department of Clinical and Experimental Medicine (IKE), Division of Cell Biology (CELLB), Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Department of Physics, Chemistry and Biology (IFM) Bioinformatics (BION), Linköping University, Linköping, Sweden
| | - Maria Lerm
- Department of Clinical and Experimental Medicine (IKE), Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Ottenhoff THM. Correlates of vaccine adjuvanticity, vaccine activity, protective immunity and disease in human infectious disease and cancer. Semin Immunol 2018; 39:1-3. [PMID: 30318307 DOI: 10.1016/j.smim.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tom H M Ottenhoff
- Dept. Infectious Diseases, Leiden University Medical Center, P.O. Box 9600, 2300RC, Leiden, the Netherlands.
| |
Collapse
|