1
|
Ralchev N, Bradyanova S, Kerekov N, Tchorbanov A, Mihaylova N. Suppression of Pathological Allergen-Specific B Cells by Protein-Engineered Molecules in a Mouse Model of Chronic House Dust Mite Allergy. Int J Mol Sci 2024; 25:13661. [PMID: 39769423 PMCID: PMC11728213 DOI: 10.3390/ijms252413661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Der p1 is one of the major allergens causing house dust mite (HDM) allergy. Pathological Der p1-specific B cells play a key role in allergic inflammation as producers of allergen-specific antibodies. Crosslinking the inhibitory FcγRIIb with the B cell receptor triggers a high-affinity suppressive signal in B cells. Selective elimination of allergen-specific cells could potentially be achieved by administering chimeric molecules that combine, through protein engineering, the FcγRIIb-targeting monoclonal 2.4G2 antibody with the epitope-carrying Dp52-71 peptides from Der p1. We tested this hypothesis, in a chronic mouse model of HDM allergy induced in BalB/c mice, using FACS and ELISA assays, along with histopathological and correlational analyses. Dp52-71chimera treatment of HDM-challenged mice led to a decrease in serum anti-HDM IgG1 antibodies, a reduction in BALF β-hexosaminidase levels, a lowered number of SiglecFhigh CD11clow eosinophils, and an improved lung PAS score. Furthermore, we observed overexpression of FcγRIIb on the surface of CD19 cells in the lungs of HDM-challenged animals, which negatively correlated with the levels of lung alveolar macrophages, neutrophils, and BALF IL-13. Taken together, these results suggest that the use of FcγRIIb overexpression, combined with the expansion of chimeric protein technology to include more epitopes, could improve the outcome of inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Nikolina Mihaylova
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.R.); (S.B.); (N.K.); (A.T.)
| |
Collapse
|
2
|
Domingo KN, Gabaldon KL, Hussari MN, Yap JM, Valmadrid LC, Robinson K, Leibel S. Impact of climate change on paediatric respiratory health: pollutants and aeroallergens. Eur Respir Rev 2024; 33:230249. [PMID: 39009406 PMCID: PMC11262702 DOI: 10.1183/16000617.0249-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/07/2024] [Indexed: 07/17/2024] Open
Abstract
Paediatric populations are particularly vulnerable to respiratory diseases caused and exacerbated by aeroallergens, pollutants and infectious agents. Worsening climate change is expected to increase the prevalence of pollutants and aeroallergens while amplifying disease severity and causing disproportionate effects in under-resourced areas. The purpose of this narrative review is to summarise the role of anthropogenic climate change in the literature examining the future impact of aeroallergens, pollutants and infectious agents on paediatric respiratory diseases with a focus on equitable disease mitigation. The aeroallergens selected for discussion include pollen, dust mites and mould as these are prevalent triggers of paediatric asthma worldwide. Human rhinovirus and respiratory syncytial virus are key viruses interacting with climate change and pollution and are primary causal agents of viral respiratory disease. Within this review, we present the propensity for aeroallergens, climate change and pollution to synergistically exacerbate paediatric respiratory disease and outline measures that can ameliorate the expected increase in morbidity and severity of disease through a health equity lens. We support shifting from fossil fuels to renewable energy worldwide, across sectors, as a primary means of reducing increases in morbidity.
Collapse
Affiliation(s)
- Karyssa N Domingo
- School of Medicine, University of California San Diego, La Jolla, CA, USA
- K.N. Domingo and K.L. Gabaldon contributed equally
| | - Kiersten L Gabaldon
- School of Medicine, University of California San Diego, La Jolla, CA, USA
- K.N. Domingo and K.L. Gabaldon contributed equally
| | | | - Jazmyn M Yap
- School of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Kelly Robinson
- Department of Pediatrics, Division of Allergy and Immunology, University of California San Diego, La Jolla, CA, USA
| | - Sydney Leibel
- Department of Pediatrics, Division of Allergy and Immunology, University of California San Diego, La Jolla, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Zhong Y, Su C, Wu S, Miao C, Wang B. Nasal delivery of an immunotherapeutic vaccine in thermosensitive hydrogel against allergic asthma. Int Immunopharmacol 2023; 116:109718. [PMID: 36738673 DOI: 10.1016/j.intimp.2023.109718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/22/2022] [Accepted: 01/08/2023] [Indexed: 02/05/2023]
Abstract
Asthma poses a significant threat to public health, with an estimated burden of over 334 million people worldwide. Available treatments are often inadequate. We developed a thermo-sensitive hydrogel vaccine containing allergen and FK506 that induced immune tolerance via intranasal administration to treat experimental allergic asthma. The hydrogel delivery system was formulated based on Poloxamer 407 (P407), Carbopol 974P NF, and Polyoxyl 15 hydroxystearate (Kolliphor HS15, HS15). It flowed freely at room temperature and rapidly formed a hydrogel in the nasal cavity once the temperature rose over 33 °C. Ovalbumin and FK506 were slowly released from the hydrogel form and their mucosal residence time was significantly prolonged compared to the liquid formulation. In both an OVA-induced asthma model and an HDM-induced asthma model, the vaccines formulated in hydrogel gave lower levels of eosinophilic inflammation, and airway remodeling. The reduction of lung function was ameliorated, and Foxp3-expressing CD4 + Treg cells were significantly higher. The frequency of Foxp3 + Tregs in lung-draining lymph nodes (dLNs) was correlated with the amelioration. Depletion of Foxp3 + Treg cells abolished the beneficial effects of the allergen/FK506 hydrogel vaccinations. Thus, the allergen/FK506 hydrogel formulation has the potential to be a delivery system for therapeutic allergy vaccines to induce immune tolerance.
Collapse
Affiliation(s)
- Yiwei Zhong
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Fudan-Advaccine Join-Lab for Vaccine Research, Fudan University, Shanghai, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Caixia Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Fudan-Advaccine Join-Lab for Vaccine Research, Fudan University, Shanghai, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Shuting Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Fudan-Advaccine Join-Lab for Vaccine Research, Fudan University, Shanghai, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Chunhui Miao
- Advaccine Biopharmaceutics (Suzhou) Co. Ltd, Suzhou, Jiangsu Province, China
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Fudan-Advaccine Join-Lab for Vaccine Research, Fudan University, Shanghai, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Abstract
Asthma is one of the most common chronic diseases worldwide. Besides symptomatic treatments, allergen immunotherapy (AIT) is a possible add-on treatment for asthmatic patients. In case of an immunologically proven allergen-driven mechanism of asthma, AIT represents the only etiologic treatment for allergic symptoms. AIT has proven both its efficacy and effectiveness in reducing asthma symptoms and asthma medications. It is still debated whether its prescription in severe asthmatic patients is allowed and safe. As for uncontrolled asthma, such a condition should be considered temporary, and AIT may be started as asthma becomes at least partially controlled after treatment adjustment. Finally, randomized trials and real-life studies in recent years have proven that AIT could be administered as a preventive strategy to reduce the risk of developing asthma in patients suffering from allergic rhinitis. More studies are needed to provide more precise indications on the role in clinical practice of AIT in asthmatic patients. Nevertheless, present data are already strong enough to highlight its role as a therapeutic option for allergic asthma and as a preventive strategy to stop or at least decelerate the allergic march.
Collapse
Affiliation(s)
- Davide Caimmi
- From the Department of Pulmonology, Division of Allergy, Hôpital Arnaud de Villeneuve, University Hospital of Montpellier, Université de Montpellier, Montpellier, France; and
| | - Pascal Demoly
- From the Department of Pulmonology, Division of Allergy, Hôpital Arnaud de Villeneuve, University Hospital of Montpellier, Université de Montpellier, Montpellier, France; and
| |
Collapse
|
5
|
Nogami K, Nagao M, Takase T, Yasuda Y, Yamada S, Matsunaga M, Hoshi M, Hamada K, Kuwabara Y, Tsugawa T, Fujisawa T. House Dust Mite Subcutaneous Immunotherapy and Lung Function Trajectory in Children and Adolescents with Asthma. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9040487. [PMID: 35455531 PMCID: PMC9028398 DOI: 10.3390/children9040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/27/2022]
Abstract
Background: Allergen-specific immunotherapy is currently the only disease-modifying treatment for allergic asthma, and it has been shown to improve control of asthma while reducing both drug use and asthma exacerbations. However, its effects on lung function—especially its long-term effects—remain controversial. We aimed to identify factors associated with a possible beneficial effect of allergen-specific immunotherapy on lung function in asthma by retrospectively evaluating the long-term changes in lung function in children with asthma who received house dust mite subcutaneous immunotherapy (HDM-SCIT). Methods: We enrolled children with asthma who had undergone HDM-SCIT for more than 1 year. Clinical information and lung function measurements were retrieved from the electronic chart system. To characterize the trajectory of lung function change, we performed linear regression analysis to evaluate the maximal expiratory flow at 50% of the forced vital capacity during two periods: before and during HDM-SCIT. Slopes from a least-squares regression line for the two periods, i.e., S1 before HDM-SCIT and S2 during HDM-SCIT, were compared. The subjects were then classified into two groups: an improving group (Group I) defined as S2 − S1 > 0, and a declining group (Group D) defined as S2 − S1 < 0. The clinical factors at the start of HDM-SCIT were compared between the two groups. Results: A total of 16 patients were analyzed. Eight patients were classified into each of Group I and Group D. The mean ages were 10.5 and 11.8 years, and the mean treatment periods were 4.1 and 3.9 years. Group I had a significantly lower blood eosinophil count and a significantly higher HDM-specific IgE level than Group D. Logistic regression showed a strong relationship between those two markers and the lung function trajectory. Conclusion: Control of the blood eosinophil count in highly HDM-sensitized patients may increase the beneficial effect of HDM-SCIT on lung function.
Collapse
Affiliation(s)
- Kazutaka Nogami
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo-shi 060-8543, Japan; (K.N.); (T.T.)
- Allergy Center and Department of Clinical Research, Mie National Hospital, Tsu 514-0125, Japan; (M.N.); (T.T.); (Y.Y.); (S.Y.); (M.M.); (M.H.); (K.H.); (Y.K.)
| | - Mizuho Nagao
- Allergy Center and Department of Clinical Research, Mie National Hospital, Tsu 514-0125, Japan; (M.N.); (T.T.); (Y.Y.); (S.Y.); (M.M.); (M.H.); (K.H.); (Y.K.)
| | - Takafumi Takase
- Allergy Center and Department of Clinical Research, Mie National Hospital, Tsu 514-0125, Japan; (M.N.); (T.T.); (Y.Y.); (S.Y.); (M.M.); (M.H.); (K.H.); (Y.K.)
| | - Yasuaki Yasuda
- Allergy Center and Department of Clinical Research, Mie National Hospital, Tsu 514-0125, Japan; (M.N.); (T.T.); (Y.Y.); (S.Y.); (M.M.); (M.H.); (K.H.); (Y.K.)
| | - Shingo Yamada
- Allergy Center and Department of Clinical Research, Mie National Hospital, Tsu 514-0125, Japan; (M.N.); (T.T.); (Y.Y.); (S.Y.); (M.M.); (M.H.); (K.H.); (Y.K.)
| | - Mayumi Matsunaga
- Allergy Center and Department of Clinical Research, Mie National Hospital, Tsu 514-0125, Japan; (M.N.); (T.T.); (Y.Y.); (S.Y.); (M.M.); (M.H.); (K.H.); (Y.K.)
| | - Miyuki Hoshi
- Allergy Center and Department of Clinical Research, Mie National Hospital, Tsu 514-0125, Japan; (M.N.); (T.T.); (Y.Y.); (S.Y.); (M.M.); (M.H.); (K.H.); (Y.K.)
| | - Kana Hamada
- Allergy Center and Department of Clinical Research, Mie National Hospital, Tsu 514-0125, Japan; (M.N.); (T.T.); (Y.Y.); (S.Y.); (M.M.); (M.H.); (K.H.); (Y.K.)
| | - Yu Kuwabara
- Allergy Center and Department of Clinical Research, Mie National Hospital, Tsu 514-0125, Japan; (M.N.); (T.T.); (Y.Y.); (S.Y.); (M.M.); (M.H.); (K.H.); (Y.K.)
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon 791-0295, Japan
| | - Takeshi Tsugawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo-shi 060-8543, Japan; (K.N.); (T.T.)
| | - Takao Fujisawa
- Allergy Center and Department of Clinical Research, Mie National Hospital, Tsu 514-0125, Japan; (M.N.); (T.T.); (Y.Y.); (S.Y.); (M.M.); (M.H.); (K.H.); (Y.K.)
- Correspondence: ; Tel.: +81-59-232-2531
| |
Collapse
|
6
|
Krammer S, Sicorschi Gutu C, Grund JC, Chiriac MT, Zirlik S, Finotto S. Regulation and Function of Interferon-Lambda (IFNλ) and Its Receptor in Asthma. Front Immunol 2021; 12:731807. [PMID: 34899691 PMCID: PMC8660125 DOI: 10.3389/fimmu.2021.731807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
Asthma is a chronic respiratory disease affecting people of all ages, especially children, worldwide. Origins of asthma are suggested to be placed in early life with heterogeneous clinical presentation, severity and pathophysiology. Exacerbations of asthma disease can be triggered by many factors, including viral respiratory tract infections. Rhinovirus (RV) induced respiratory infections are the predominant cause of the common cold and also play a crucial role in asthma development and exacerbations. Rhinovirus mainly replicates in epithelial cells lining the upper and lower respiratory tract. Type III interferons, also known as interferon-lambda (IFNλ), are potent immune mediators of resolution of infectious diseases but they are known to be involved in autoimmune diseases as well. The protective role of type III IFNs in antiviral, antibacterial, antifungal and antiprotozoal functions is of major importance for our innate immune system. The IFNλ receptor (IFNλR) is expressed in selected types of cells like epithelial cells, thus orchestrating a specific immune response at the site of viruses and bacteria entry into the body. In asthma, IFNλ restricts the development of TH2 cells, which are induced in the airways of asthmatic patients. Several studies described type III IFNs as the predominant type of interferon increased after infection caused by respiratory viruses. It efficiently reduces viral replication, viral spread into the lungs and viral transmission from infected to naive individuals. Several reports showed that bronchial epithelial cells from asthmatic subjects have a deficient response of type III interferon after RV infection ex vivo. Toll like Receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) expressed on infectious agents, and induce the development of antiviral and antibacterial immunity. We recently discovered that activation of TLR7/8 resulted in enhanced IFNλ receptor mRNA expression in PBMCs of healthy and asthmatic children, opening new therapeutic frontiers for rhinovirus-induced asthma. This article reviews the recent advances of the literature on the regulated expression of type III Interferons and their receptor in association with rhinovirus infection in asthmatic subjects.
Collapse
Affiliation(s)
- Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Cristina Sicorschi Gutu
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina C Grund
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mircea T Chiriac
- Medical Clinic 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sabine Zirlik
- Medical Clinic 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.,Medical Clinic 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
7
|
Boonpiyathad T, Lao-Araya M, Chiewchalermsri C, Sangkanjanavanich S, Morita H. Allergic Rhinitis: What Do We Know About Allergen-Specific Immunotherapy? FRONTIERS IN ALLERGY 2021; 2:747323. [PMID: 35387059 PMCID: PMC8974870 DOI: 10.3389/falgy.2021.747323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 01/23/2023] Open
Abstract
Allergic rhinitis (AR) is an IgE-mediated disease that is characterized by Th2 joint inflammation. Allergen-specific immunotherapy (AIT) is indicated for AR when symptoms remain uncontrolled despite medication and allergen avoidance. AIT is considered to have been effective if it alleviated allergic symptoms, decreased medication use, improved the quality of life even after treatment cessation, and prevented the progression of AR to asthma and the onset of new sensitization. AIT can be administered subcutaneously or sublingually, and novel routes are still being developed, such as intra-lymphatically and epicutaneously. AIT aims at inducing allergen tolerance through modification of innate and adaptive immunologic responses. The main mechanism of AIT is control of type 2 inflammatory cells through induction of various functional regulatory cells such as regulatory T cells (Tregs), follicular T cells (Tfr), B cells (Bregs), dendritic cells (DCregs), innate lymphoid cells (IL-10+ ILCs), and natural killer cells (NKregs). However, AIT has a number of disadvantages: the long treatment period required to achieve greater efficacy, high cost, systemic allergic reactions, and the absence of a biomarker for predicting treatment responders. Currently, adjunctive therapies, vaccine adjuvants, and novel vaccine technologies are being studied to overcome the problems associated with AIT. This review presents an updated overview of AIT, with a special focus on AR.
Collapse
Affiliation(s)
- Tadech Boonpiyathad
- Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
- *Correspondence: Tadech Boonpiyathad
| | - Mongkol Lao-Araya
- Faculty of Medicine, Department of Pediatrics, Chiang Mai University, Chiang Mai, Thailand
| | - Chirawat Chiewchalermsri
- Department of Medicine, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Sasipa Sangkanjanavanich
- Faculty of Medicine Ramathibodi Hospital, Department of Medicine, Mahidol University, Bangkok, Thailand
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
8
|
Rupani H, Fong WCG, Kyyaly A, Kurukulaaratchy RJ. Recent Insights into the Management of Inflammation in Asthma. J Inflamm Res 2021; 14:4371-4397. [PMID: 34511973 PMCID: PMC8421249 DOI: 10.2147/jir.s295038] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
The present prevailing inflammatory paradigm in asthma is of T2-high inflammation orchestrated by key inflammatory cells like Type 2 helper lymphocytes, innate lymphoid cells group 2 and associated cytokines. Eosinophils are key components of this T2 inflammatory pathway and have become key therapeutic targets. Real-world evidence on the predominant T2-high nature of severe asthma is emerging. Various inflammatory biomarkers have been adopted in clinical practice to aid asthma characterization including airway measures such as bronchoscopic biopsy and lavage, induced sputum analysis, and fractional exhaled nitric oxide. Blood measures like eosinophil counts have also gained widespread usage and multicomponent algorithms combining different parameters are now appearing. There is also growing interest in potential future biomarkers including exhaled volatile organic compounds, micro RNAs and urinary biomarkers. Additionally, there is a growing realisation that asthma is a heterogeneous state with numerous phenotypes and associated treatable traits. These may show particular inflammatory patterns and merit-specific management approaches that could improve asthma patient outcomes. Inhaled corticosteroids (ICS) remain the mainstay of asthma management but their use earlier in the course of disease is being advocated. Recent evidence suggests potential roles for ICS in combination with long-acting beta-agonists (LABA) for as needed use in mild asthma whilst maintenance and reliever therapy regimes have gained widespread acceptance. Other anti-inflammatory strategies including ultra-fine particle ICS, leukotriene receptor antagonists and macrolide antibiotics may show efficacy in particular phenotypes too. Monoclonal antibody biologic therapies have recently entered clinical practice with significant impacts on asthma outcomes. Understanding of the efficacy and use of those agents is becoming clearer with a growing body of real-world evidence as is their potential applicability to other treatable comorbid traits. In conclusion, the evolving understanding of T2 driven inflammation alongside a treatable traits disease model is enhancing therapeutic approaches to address inflammation in asthma.
Collapse
Affiliation(s)
- Hitasha Rupani
- Department of Respiratory Medicine, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Wei Chern Gavin Fong
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight NHS Trust, Isle of Wight, UK
| | - Aref Kyyaly
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight NHS Trust, Isle of Wight, UK
| | - Ramesh J Kurukulaaratchy
- Department of Respiratory Medicine, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight NHS Trust, Isle of Wight, UK
- NIHR Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
9
|
Abstract
Die Allergenimmuntherapie (AIT) ist – neben der oft nicht suffizient durchzuführenden Allergenmeidung – die einzige kausale Therapie Ig(Immunglobulin)E-vermittelter Allergien gegen Aeroallergene und Hymenopterengifte. Sie kann je nach Allergen als subkutane Injektion (subkutane Immuntherapie [SCIT]) oder über eine sublinguale Applikation (sublinguale Immuntherapie [SLIT]) erfolgen, kürzlich wurde zudem auch ein Verfahren zur oralen Immuntherapie zur Behandlung der Nahrungsmittelallergie zugelassen. Neben der korrekten Indikationsstellung (positive Anamnese und Diagnostik einer IgE-vermittelten Allergie, Allergenkarenz nicht ausreichend möglich) sind mögliche Kontraindikationen und Risikofaktoren zu beachten. Zudem kann es unter einer AIT zu – potenziell auch lebensgefährlichen – Nebenwirkungen kommen. Im Folgenden sollen häufig gestellte Fragen und Fakten zur Entscheidungsfindung für die Durchführung und zum Risikomanagement der AIT beleuchtet und unter Berücksichtigung der aktuellen Datenlage diskutiert werden.
Collapse
|