1
|
Heidari H, Lawrence DA. An integrative exploration of environmental stressors on the microbiome-gut-brain axis and immune mechanisms promoting neurological disorders. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:233-263. [PMID: 38994870 DOI: 10.1080/10937404.2024.2378406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The microbiome-gut-brain axis is altered by environmental stressors such as heat, diet, and pollutants as well as microbes in the air, water, and soil. These stressors might alter the host's microbiome and symbiotic relationship by modifying the microbial composition or location. Compartmentalized mutualistic microbes promote the beneficial interactions in the host leading to circulating metabolites and hormones such as insulin and leptin that affect inter-organ functions. Inflammation and oxidative stress induced by environmental stressors may alter the composition, distribution, and activities of the microbes in the microbiomes such that the resultant metabolite and hormone changes are no longer beneficial. The microbiome-gut-brain axis and immune adverse changes that may accompany environmental stressors are reviewed for effects on innate and adaptive immune cells, which may make host immunity less responsive to pathogens and more reactive to self-antigens. Cardiovascular and fluid exchanges to organs might adversely alter organ functionality. Organs, especially the brain, need a consistent supply of nutrients and clearance of debris; disruption of these exchanges by stressors, and involvement of gut microbiome are discussed regarding neural dysfunctions with Alzheimer's disease, autistic spectrum disorders, viral infections, and autoimmune diseases. The focus of this review includes the manner in which environmental stressors may disrupt gut microbiota leading to adverse immune and hormonal influences on development of neuropathology related to hyperhomocysteinemia, inflammation, and oxidative stress, and how certain therapeutics may be beneficial. Strategies are explored to lessen detrimental effects of environmental stressors on central and peripheral health navigated toward (1) understanding neurological disorders and (2) promoting environmental and public health and well-being.
Collapse
Affiliation(s)
- Hajar Heidari
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
| | - David A Lawrence
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| |
Collapse
|
2
|
Chakrabarty A, Newey SE, Promi MM, Agbetiameh BK, Munro D, Brodersen PJN, Gothard G, Mahfooz K, Mengual JP, Vyazovskiy VV, Akerman CJ. sUPRa is a dual-color reporter for unbiased quantification of the unfolded protein response with cellular resolution. Sci Rep 2024; 14:14990. [PMID: 38951511 PMCID: PMC11217371 DOI: 10.1038/s41598-024-65611-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The unfolded protein response (UPR) maintains proteostasis upon endoplasmic reticulum (ER) stress, and is initiated by a range of physiological and pathological processes. While there have been advances in developing fluorescent reporters for monitoring individual signaling pathways of the UPR, this approach may not capture a cell's overall UPR activity. Here we describe a novel sensor of UPR activity, sUPRa, which is designed to report the global UPR. sUPRa displays excellent response characteristics, outperforms reporters of individual UPR pathways in terms of sensitivity and kinetics, and responds to a range of different ER stress stimuli. Furthermore, sUPRa's dual promoter and fluorescent protein design ensures that both UPR-active and inactive cells are detected, and controls for reporter copy number. Using sUPRa, we reveal UPR activation in layer 2/3 pyramidal neurons of mouse cerebral cortex following a period of sleep deprivation. sUPRa affords new opportunities for quantifying physiological UPR activity with cellular resolution.
Collapse
Affiliation(s)
- Atreyi Chakrabarty
- Department of Pharmacology, University of Oxford, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Sarah E Newey
- Department of Pharmacology, University of Oxford, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Maisha M Promi
- Department of Pharmacology, University of Oxford, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Belinda K Agbetiameh
- Department of Pharmacology, University of Oxford, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Daniella Munro
- Department of Pharmacology, University of Oxford, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Paul J N Brodersen
- Department of Pharmacology, University of Oxford, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Gemma Gothard
- Department of Pharmacology, University of Oxford, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Kashif Mahfooz
- Department of Pharmacology, University of Oxford, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Jose P Mengual
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Road, Oxford, OX1 3PT, UK
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Road, Oxford, OX1 3PT, UK
| | - Colin J Akerman
- Department of Pharmacology, University of Oxford, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
3
|
Golmohammadi M, Meibodi SAA, Al-Hawary SIS, Gupta J, Sapaev IB, Najm MAA, Alwave M, Nazifi M, Rahmani M, Zamanian MY, Moriasi G. Neuroprotective effects of resveratrol on retinal ganglion cells in glaucoma in rodents: A narrative review. Animal Model Exp Med 2024; 7:195-207. [PMID: 38808561 PMCID: PMC11228121 DOI: 10.1002/ame2.12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Glaucoma, an irreversible optic neuropathy, primarily affects retinal ganglion cells (RGC) and causes vision loss and blindness. The damage to RGCs in glaucoma occurs by various mechanisms, including elevated intraocular pressure, oxidative stress, inflammation, and other neurodegenerative processes. As the disease progresses, the loss of RGCs leads to vision loss. Therefore, protecting RGCs from damage and promoting their survival are important goals in managing glaucoma. In this regard, resveratrol (RES), a polyphenolic phytoalexin, exerts antioxidant effects and slows down the evolution and progression of glaucoma. The present review shows that RES plays a protective role in RGCs in cases of ischemic injury and hypoxia as well as in ErbB2 protein expression in the retina. Additionally, RES plays protective roles in RGCs by promoting cell growth, reducing apoptosis, and decreasing oxidative stress in H2O2-exposed RGCs. RES was also found to inhibit oxidative stress damage in RGCs and suppress the activation of mitogen-activated protein kinase signaling pathways. RES could alleviate retinal function impairment by suppressing the hypoxia-inducible factor-1 alpha/vascular endothelial growth factor and p38/p53 axes while stimulating the PI3K/Akt pathway. Therefore, RES might exert potential therapeutic effects for managing glaucoma by protecting RGCs from damage and promoting their survival.
Collapse
Affiliation(s)
- Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Ibrohim B Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan
- New Uzbekistan University, Tashkent, Uzbekistan
| | - Mazin A A Najm
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Marim Alwave
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Mozhgan Nazifi
- Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammadreza Rahmani
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gervason Moriasi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Mount Kenya University, Thika, Kenya
| |
Collapse
|
4
|
Song W, Yao C, Lu Y, Qian Q, Wu J, Shi W, Li H, Huang H, Wang W, Song W. Sleep deprivation boosts O 2·- levels in the brains of mice as visualized by a Golgi apparatus-targeted ratiometric fluorescence nanosensor. Mikrochim Acta 2024; 191:265. [PMID: 38625451 DOI: 10.1007/s00604-024-06352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
Sleep deprivation (SD) is highly prevalent in the modern technological world. Emerging evidence shows that sleep deprivation is associated with oxidative stress. At the organelle level, the Golgi apparatus actively participates in the stress response. In this study, to determine whether SD and Golgi apparatus stress are correlated, we rationally designed and fabricated a novel Golgi apparatus-targeted ratiometric nanoprobe called Golgi dots for O2·- detection. This probe exhibits high sensitivity and selectivity in cells and brain slices of sleep-deprived mice. Golgi dots can be readily synthesized by coprecipitation of Golgi-F127, an amphiphilic polymer F127 modified with a Golgi apparatus targeting moiety, caffeic acid (CA), the responsive unit for O2·-, and red emissive carbon nanodots (CDs), which act as the reference signal. The fluorescence emission spectrum of the developed nanoprobe showed an intense peak at 674 nm, accompanied by a shoulder peak at 485 nm. As O2·- was gradually added, the fluorescence at 485 nm continuously increased; in contrast, the emission intensity at 674 nm assigned to the CDs remained constant, resulting in the ratiometric sensing of O2·-. The present ratiometric nanoprobe showed high selectivity for O2·- monitoring due to the specific recognition of O2·- by CA. Moreover, the Golgi dots exhibited good linearity with respect to the O2·- concentration within 5 to 40 μM, and the limit of detection (LOD) was ~ 0.13 μM. Additionally, the Golgi dots showed low cytotoxicity and an ability to target the Golgi apparatus. Inspired by these excellent properties, we then applied the Golgi dots to successfully monitor exogenous and endogenous O2·- levels within the Golgi apparatus. Importantly, with the help of Golgi dots, we determined that SD substantially elevated O2·- levels in the brain.
Collapse
Affiliation(s)
- Wei Song
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai, 201403, China
| | - Chunxia Yao
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai, 201403, China
| | - Yangyang Lu
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai, 201403, China
| | - Qunli Qian
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai, 201403, China
| | - Jun Wu
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314001, China
| | - Wenru Shi
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Huiru Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Hong Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Weikang Wang
- Department of Chemistry, East China Normal University, Shanghai, 200241, China
| | - Weiguo Song
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai, 201403, China.
| |
Collapse
|
5
|
Gao X, Zhao T, Hao R, Zhang Z, Huang GB. Social defeat stress induces liver injury by modulating endoplasmic reticulum stress in C57BL/6J mice. Sci Rep 2024; 14:7137. [PMID: 38531904 DOI: 10.1038/s41598-024-57270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Social defeat stress is associated with endoplasmic reticulum (ER) stress, inflammation and apoptosis. ER stress is thought to contribute to many lifestyle diseases such as liver injury, cardiovascular dysfunction and depression. We investigated the expression of the ER stress markers RNA-dependent protein kinase-like ER kinase (PERK), eukaryotic translation initiation factor 2α (eIF2α) and C/EBP homologous protein (CHOP), as well as inflammatory and apoptotic factors, to assess how social defeat stress induces liver injury. Furthermore, we evaluated the effects of the ER stress inhibitor phenylbutyric acid (PBA) and ER stress inducer thapsigargin (TG) on liver injury. Adult mice were divided into the control, social defeat, social defeat + PBA, TG, PBA and TG + PBA groups. The social defeat and social defeat + PBA groups were simultaneously exposed to social defeat stress for 10 days. The social defeat + PBA, TG, PBA and TG + PBA groups were treated with PBA or TG via intraperitoneal injections. PBA was injected 1 h before the TG injection into the TG + PBA group. Liver samples from six groups of mice were analyzed by histological analysis and western blotting. Social defeat stress promoted ER stress, increased the expression of inflammatory factors and induced apoptosis in the liver of socially defeated mice, which was reversed by PBA. Moreover, ER stress induces TG-induced liver injury by initiating ER stress. Social defeat stress initiates ER stress, promotes the expression of inflammatory and apoptotic factors, and induces liver injury. PBA suppresses liver injury caused by social defeat stress and TG treatment.
Collapse
Affiliation(s)
- XiaoLei Gao
- School of Nursing, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Tong Zhao
- Department of Psychiatry, QuZhou Third Municipal Hospital, QuZhou, China
| | - Ran Hao
- Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - ZhaoHui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Guang-Biao Huang
- Department of Psychiatry, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, No. 2088, Tiaoxi East Road, Huzhou, 313000, China.
| |
Collapse
|
6
|
Gessner NR, Peiravi M, Zhang F, Yimam S, Springer D, Harbison ST. A conserved role for frizzled in sleep architecture. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad045. [PMID: 38033424 PMCID: PMC10684271 DOI: 10.1093/sleepadvances/zpad045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Previous studies of natural variants in Drosophila melanogaster implicated the Wnt signaling receptor frizzled in sleep. Given that the Wnt signaling pathway is highly conserved across species, we hypothesized that frizzled class receptor 1 (Fzd1), the murine homolog of frizzled, would also have a role in sleep. Using a CRISPR transgenic approach, we removed most of the Fzd1 coding region from C57BL/6N mice. We used a video assay to measure sleep characteristics in Fzd1-deficient mice. As Wnt signaling is known to affect visuospatial memory, we also examined the impact of the deletion on learning and memory using the novel object recognition (NOR) paradigm. Fzd1-deficient mice had altered sleep compared to littermate controls. The mice did not respond differently to the NOR paradigm compared to controls but did display anxiety-like behavior. Our strategy demonstrates that the study of natural variation in Drosophila sleep translates into candidate genes for sleep in vertebrate species such as the mouse.
Collapse
Affiliation(s)
- Nicholas R Gessner
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Morteza Peiravi
- Murine Phenotyping Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fan Zhang
- Transgenic Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shemsiya Yimam
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Danielle Springer
- Murine Phenotyping Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan T Harbison
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Duhart JM, Inami S, Koh K. Many faces of sleep regulation: beyond the time of day and prior wake time. FEBS J 2023; 290:931-950. [PMID: 34908236 PMCID: PMC9198110 DOI: 10.1111/febs.16320] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
The two-process model of sleep regulation posits two main processes regulating sleep: the circadian process controlled by the circadian clock and the homeostatic process that depends on the history of sleep and wakefulness. The model has provided a dominant conceptual framework for sleep research since its publication ~ 40 years ago. The time of day and prior wake time are the primary factors affecting the circadian and homeostatic processes, respectively. However, it is critical to consider other factors influencing sleep. Since sleep is incompatible with other behaviors, it is affected by the need for essential behaviors such as eating, foraging, mating, caring for offspring, and avoiding predators. Sleep is also affected by sensory inputs, sickness, increased need for memory consolidation after learning, and other factors. Here, we review multiple factors influencing sleep and discuss recent insights into the mechanisms balancing competing needs.
Collapse
Affiliation(s)
- José Manuel Duhart
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
- These authors contributed equally
- Present address: Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Sho Inami
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
- These authors contributed equally
| | - Kyunghee Koh
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
| |
Collapse
|
8
|
Recovery Sleep Immediately after Prolonged Sleep Deprivation Stimulates the Transcription of Integrated Stress Response-Related Genes in the Liver of Male Rats. Clocks Sleep 2022; 4:623-632. [PMID: 36412581 PMCID: PMC9680379 DOI: 10.3390/clockssleep4040048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Sleep loss induces performance impairment and fatigue. The reactivation of human herpesvirus-6, which is related to the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), is one candidate for use as an objective biomarker of fatigue. Phosphorylated eIF2α is a key regulator in integrated stress response (ISR), an intracellular stress response system. However, the relation between sleep/sleep loss and ISR is unclear. The purpose of the current study was to evaluate the effect of prolonged sleep deprivation and recovery sleep on ISR-related gene expression in rat liver. Eight-week-old male Sprague-Dawley rats were subjected to a 96-hour sleep deprivation using a flowerpot technique. The rats were sacrificed, and the liver was collected immediately or 6 or 72 h after the end of the sleep deprivation. RT-qPCR was used to analyze the expression levels of ISR-related gene transcripts in the rat liver. The transcript levels of the Atf3, Ddit3, Hmox-1, and Ppp15a1r genes were markedly increased early in the recovery sleep period after the termination of sleep deprivation. These results indicate that both activation and inactivation of ISRs in the rat liver occur simultaneously in the early phase of recovery sleep.
Collapse
|
9
|
Electroacupuncture stimulation of HT7 alleviates sleep disruption following acute caffeine exposure by regulating BDNF-mediated endoplasmic reticulum stress in the rat medial septum. Biomed Pharmacother 2022; 155:113724. [PMID: 36156370 DOI: 10.1016/j.biopha.2022.113724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
Acupuncture stimulation can protect the brain against caffeine-induced sleep disruption. This study investigated whether electroacupuncture stimulation acupuncture point HT7 alleviates sleep disruption by regulating mBDNF and ER stress in the medial septum. Acute exposure to caffeine (15 mg/kg, i.p.) increased the wake time and decreased REM sleep, which HT7 stimulation alleviated. HT7 stimulation ameliorated the acute caffeine exposure-induced increase in the expression of BiP, an endoplasmic reticulum stress response protein, in the rat medial septum. Interestingly, HT7 stimulation induced the expression of mBDNF and pTrkB in the medial septum. The next experiment investigated whether TrkB phosphorylated by HT7 stimulation induced BiP expression in the rat medial septum. Before electroacupuncture stimulation at HT7, ANA-12 was administered to caffeine-treated rats. In rats administered ANA-12 in the medial septum, HT7 stimulation did not reduce BiP expression. These findings suggest that HT7 stimulation improves wake time and REM sleep dysfunction by regulating the BDNF-mediated endoplasmic reticulum stress response in the medial septum. These results indicate that the alleviation of endoplasmic reticulum stress in the medial septum by HT7 stimulation and the subsequent amelioration of insomnia may depend on phosphorylated TrkB activation.
Collapse
|
10
|
Standlee J, Malkani R. Sleep Dysfunction in Movement Disorders: a Window to the Disease Biology. Curr Neurol Neurosci Rep 2022; 22:565-576. [PMID: 35867306 DOI: 10.1007/s11910-022-01220-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW To comprehensively summarize the sleep pathologies associated with movement disorders, focusing on neurodegenerative diseases. RECENT FINDINGS Mounting evidence has further implicated both sleep and circadian disruption in the pathophysiology of many movement disorders. In particular, recent data illuminate the mechanisms by which poor sleep quality and circadian dysfunction can exacerbate neurodegeneration. In addition, anti-IgLON5 disease is a recently described autoimmune disease with various symptoms that can feature prominent sleep disruption and parasomnia. Many movement disorders are associated with sleep and circadian rhythm disruption. Motor symptoms can cause sleep fragmentation, resulting in insomnia and excessive daytime sleepiness. Many neurodegenerative movement disorders involve brainstem pathology in regions close to or affecting nuclei that regulate sleep and wake. Further, commonly used movement medications may exacerbate sleep concerns. Providers should screen for and address these sleep symptoms to improve function and quality of life for patients and caregivers.
Collapse
Affiliation(s)
- Jordan Standlee
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Roneil Malkani
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Jesse Brown Veterans Affairs Medical Center, Neurology Service, 820 S Damen Ave, Damen Building, 9th floor, Chicago, IL, 60612, USA.
| |
Collapse
|
11
|
Simonova VV, Guzeev MA, Ekimova IV, Pastukhov YF. Chaperone Hsp70 (HSPA1) Is Involved in the Molecular Mechanisms of Sleep Cycle Integration. Int J Mol Sci 2022; 23:4464. [PMID: 35457282 PMCID: PMC9031996 DOI: 10.3390/ijms23084464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanisms of sleep cycle integration at the beginning and the end of the inactive period are not clear. Sleep cycles with a predominance of deep slow-wave sleep (SWS) seem to be associated with accelerated protein synthesis in the brain. The inducible Hsp70 chaperone corrects protein conformational changes and has protective properties. This research explores (1) whether the Hspa1 gene encoding Hsp70 protein activates during the daily rapid-eye-movement sleep (REMS) maximum, and (2) whether a lower daily deep SWS maximum affects the Hspa1 expression level during the subsequent REMS. Combining polysomnography in male Wistar rats, RT-qPCR, and Western blotting, we reveal a three-fold Hspa1 upregulation in the nucleus reticularis pontis oralis, which regulates REMS. Hspa1 expression increases during the daily REMS maximum, 5-7 h after the natural peak of deep SWS. Using short-term selective REMS deprivation, we demonstrate that REMS rebound after deprivation exceeds the natural daily maximum, but it is not accompanied by Hspa1 upregulation. The results suggest that a high proportion of deep SWS, usually observed after sleep onset, is a necessary condition for Hspa1 upregulation during subsequent REMS. The data obtained can inform the understanding of the molecular mechanisms integrating SWS and REMS and key biological function(s) of sleep.
Collapse
Affiliation(s)
- Valentina V. Simonova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia; (M.A.G.); (Y.F.P.)
| | | | - Irina V. Ekimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia; (M.A.G.); (Y.F.P.)
| | | |
Collapse
|
12
|
Morawska MM, Moreira CG, Ginde VR, Valko PO, Weiss T, Büchele F, Imbach LL, Masneuf S, Kollarik S, Prymaczok N, Gerez JA, Riek R, Baumann CR, Noain D. Slow-wave sleep affects synucleinopathy and regulates proteostatic processes in mouse models of Parkinson's disease. Sci Transl Med 2021; 13:eabe7099. [PMID: 34878820 DOI: 10.1126/scitranslmed.abe7099] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Marta M Morawska
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,University of Zurich (UZH), Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Carlos G Moreira
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,ETH Zurich, Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Varun R Ginde
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Philipp O Valko
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Tobias Weiss
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Fabian Büchele
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Lukas L Imbach
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Sophie Masneuf
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Sedef Kollarik
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,University of Zurich (UZH), Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Natalia Prymaczok
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Juan A Gerez
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Roland Riek
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,University of Zurich (UZH), Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland.,Center of Competence Sleep and Health Zurich, University of Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,University of Zurich (UZH), Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland.,Center of Competence Sleep and Health Zurich, University of Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland
| |
Collapse
|
13
|
Ye H, Huang S, Song Y, Liu H, Zhao X, Zhao D, Mi F, Wang X, Zhang X, Du J, Zhu N, Zhang L, Zhao Y. Gene co-expression analysis identifies modules related to insufficient sleep in humans. Sleep Med 2021; 86:68-74. [PMID: 34464880 DOI: 10.1016/j.sleep.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/12/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Insufficient sleep and circadian rhythm disruption may cause cancer, obesity, cardiovascular disease, and cognitive impairment. The underlying mechanisms need to be elucidated. METHOD Weighted gene co-expression network analysis (WGCNA) was used to identify co-expressed modules. Connectivity Map tool was used to identify candidate drugs based on top connected genes. R ptestg package was utilized to detected module rhythmicity alteration. A hypergeometric test was used to test the enrichment of insomnia SNP signals in modules. Google Scholar was used to validate the modules and hub genes by literature. RESULTS We identified a total of 45 co-expressed modules. These modules were stable and preserved. Eight modules were correlated with sleep restriction duration. Module rhythmicity was disrupted in sleep restriction subjects. Hub genes that involve in insufficient sleep also play important roles in sleep disorders. Insomnia GWAS signals were enriched in six modules. Finally, eight drugs associated with sleep disorders were identified. CONCLUSION Systems biology method was used to identify sleep-related modules, hub genes, and candidate drugs. Module rhythmicity was altered in sleep insufficient subjects. Thiamphenicol, lisuride, timolol, and piretanide are novel candidates for sleep disorders.
Collapse
Affiliation(s)
- Hua Ye
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Shiliang Huang
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Yufei Song
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Huiwei Liu
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xiaosu Zhao
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Dan Zhao
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Fangxia Mi
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xinxue Wang
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xuesong Zhang
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Jinman Du
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Na Zhu
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Liangshun Zhang
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Yibin Zhao
- Department of Anus & Intestine Surgery, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China.
| |
Collapse
|
14
|
Poljsak B, Kovač V, Levec T, Milisav I. Nature Versus Nurture: What Can be Learned from the Oldest-Old's Claims About Longevity? Rejuvenation Res 2021; 24:262-273. [PMID: 33544039 DOI: 10.1089/rej.2020.2379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Beneficial genetic or environmental factors that influence the length and quality of life can be evaluated while studying supercentenarians. The oldest-old can withstand serious/fatal illnesses more than their peers and/or their aging rate is decreased. Supercentenarians are an interesting group of individuals whose lifestyle is not particularly healthy according to the common guidelines, namely some of them seem to have similar harmful behaviors, but still manage to stay healthier for longer, and while eventually dying from the same degenerative diseases as the general population, they develop symptoms 20-30 years later. As there are not many supercentenarians by definition, it is worthwhile to diligently collect their data to enable future meta-analyses on larger samples; much can be learned from supercentenarians' habits and lifestyle choices about the aging process. Contributions of genetics, lifestyle choices, and epigenetics to their extended life span are discussed here.
Collapse
Affiliation(s)
- Borut Poljsak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Levec
- Faculty of Health Sciences, University of Ljubljana, Chair of Public Health, Ljubljana, Slovenia
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Carroll JE, Ross KM, Horvath S, Okun M, Hobel C, Rentscher KE, Coussons-Read M, Schetter CD. Postpartum sleep loss and accelerated epigenetic aging. Sleep Health 2021; 7:362-367. [PMID: 33903077 PMCID: PMC10027398 DOI: 10.1016/j.sleh.2021.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Insufficient sleep has been linked to accelerated biological aging in adults, providing a possible mechanism through which sleep may influence disease risk. In the current paper, we test the hypothesis that short sleep in postpartum would predict older biological age in women one year post birth, as indicated by accelerated epigenetic aging. METHODS As part of a larger study of pregnancy and postpartum health (Healthy Babies Before Birth, HB3), 33 mothers provided blood samples for epigenetic aging clock estimates. intrinsic epigenetic age acceleration (IEAA), extrinsic apigenetic age acceleration, phenotypic epigenetic age acceleration (PEAA), GrimAge, DNAmPAI-1, and DNAm telomere length (TL) were calculated using established protocols. Sleep duration was categorized as insufficient sleep (<7 hours per night) or healthy sleep duration (7+ hours per night). Sleep quality was determined using the Pittsburgh Sleep Quality Index (Global score >5). RESULTS Maternal postpartum sleep duration at 6 months, but not 12 months, following a birth was predictive of older 12-month IEAA, B (SE) = 3.0 (1.2), P = .02, PEAA, B (SE) = 7.3 (2.0), P = .002, and DNAmTL, B (SE) = -0.18 (0.07), P = .01, but not other indices, all P> .127. Self-reported poor sleep quality at 6 and 12 months was not significantly related to epigenetic age. CONCLUSIONS These findings suggest that insufficient sleep duration during the early postpartum period is associated with accelerated biological aging. As the sample size is small, additional research is warranted with a larger sample size to replicate these findings.
Collapse
Affiliation(s)
- Judith E Carroll
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA.
| | - Kharah M Ross
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Steve Horvath
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, California, USA
| | - Michele Okun
- Department of Psychology, University of Colorado, Colorado Springs, Colorado Springs, Colorado, USA
| | - Calvin Hobel
- Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kelly E Rentscher
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Mary Coussons-Read
- Department of Psychology, University of Colorado, Colorado Springs, Colorado Springs, Colorado, USA
| | | |
Collapse
|
16
|
Effects of atmospheric particulate matter pollution on sleep disorders and sleep duration: a cross-sectional study in the UK biobank. Sleep Med 2020; 74:152-164. [DOI: 10.1016/j.sleep.2020.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022]
|
17
|
Abstract
PURPOSE OF REVIEW The presentation of sleep issues in childhood differs from the presentation in adulthood and may be more subtle. Sleep issues may affect children differently than adults, and distinct treatment approaches are often used in children. RECENT FINDINGS Sodium oxybate was approved by the US Food and Drug Administration (FDA) in October 2018 for an expanded indication of treatment of sleepiness or cataplexy in patients with narcolepsy type 1 or narcolepsy type 2 aged 7 years or older, with side effect and safety profiles similar to those seen in adults. Restless sleep disorder is a recently proposed entity in which restless sleep, daytime sleepiness, and often iron deficiency are observed, but children do not meet the criteria for restless legs syndrome or periodic limb movement disorder. SUMMARY Children's sleep is discussed in this article, including normal sleep patterns and effects of insufficient sleep. Sleep disorders of childhood are reviewed, including insomnia, obstructive sleep apnea, restless legs syndrome, parasomnias, narcolepsy, and Kleine-Levin syndrome. Children with neurologic issues or neurodevelopmental disorders frequently have sleep disorders arising from an interaction of heterogeneous factors. Further attention to sleep may often be warranted through a polysomnogram or referral to a pediatric sleep specialist. Sleep disorders may cause indelible effects on children's cognitive functioning, general health, and well-being, and awareness of sleep disorders is imperative for neurologists who treat children.
Collapse
|
18
|
Smith MG, Rocha S, Witte M, Basner M. On the feasibility of measuring physiologic and self-reported sleep disturbance by aircraft noise on a national scale: A pilot study around Atlanta airport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137368. [PMID: 32092522 DOI: 10.1016/j.scitotenv.2020.137368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/07/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Aircraft noise can disturb sleep and impair recuperation. Research is needed to develop exposure-response relationships that are representative of noise-exposed communities and can be used to inform noise mitigation policy in the United States. For a national field study on physiologic response to aircraft noise during sleep to be feasible, an inexpensive yet sound study methodology is needed. In the pilot study presented here, the methodology of using electrocardiography and actigraphy to monitor sleep was implemented around Atlanta Hartsfield-Jackson International Airport (ATL). The primary objective was to evaluate the quality and quantity of data that could be obtained with the following study approaches: recruiting participants by postal questionnaire, shipping them the physiologic and noise measurement equipment, and the unattended setup of the equipment and recording of data by the participants themselves. The secondary objective was to compare objective and subjective measures of sleep and health between groups exposed to different levels of nocturnal aircraft noise. We mailed 4080 questionnaires containing items on sleep, health and noise disturbance to residences around ATL that were exposed to at least 35 dB Lnight aircraft noise. From 407 questionnaire respondents, 34 participants completed five nights of unattended sleep measurements. Data of sufficient quality and quantity to investigate the effects of aircraft noise on sleep were obtained. Self-reported awakenings increased as a function of the highest maximum aircraft noise level occurring during the sleep period. Event-related physiologic awakenings increased as a function of the maximum noise level of individual aircraft noise events, although this effect was of only borderline statistical significance (p = 0.057) likely due to the low sample size of this pilot study. The approach used in the presented pilot study has been demonstrated to be feasible for the purpose of the larger-scale study among a representative population around multiple airports in the future.
Collapse
Affiliation(s)
- Michael G Smith
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Sarah Rocha
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Maryam Witte
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Mathias Basner
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Goetting DL, Mansfield R, Soto R, Buskirk CV. Cellular damage, including wounding, drives C. elegans stress-induced sleep. J Neurogenet 2020; 34:430-439. [PMID: 32362197 DOI: 10.1080/01677063.2020.1752203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Across animal phyla, sleep is associated with increased cellular repair, suggesting that cellular damage may be a core component of sleep pressure. In support of this notion, sleep in the nematode Caenorhabditis elegans can be triggered by damaging conditions, including noxious heat, high salt, and ultraviolet light exposure. It is not clear, however, whether this stress-induced sleep (SIS) is a direct consequence of cellular damage, or of a resulting energy deficit, or whether it is triggered simply by the sensation of noxious conditions. Here, we show that thermosensation is dispensable for heat-induced sleep, that osmosensation is dispensable for salt-induced sleep, and that wounding is also a sleep trigger, together indicating that SIS is not triggered by sensation of noxious environments. We present evidence that genetic variation in cellular repair pathways impacts sleep amount, and that SIS involves systemic monitoring of cellular damage. We show that the low-energy sensor AMP-activated protein kinase (AMPK) is not required for SIS, suggesting that energy deficit is not the primary sleep trigger. Instead, AMPK-deficient animals display enhanced SIS responses, and pharmacological activation of AMPK reduces SIS, suggesting that ATP-dependent repair of cellular damage mitigates sleep pressure.
Collapse
Affiliation(s)
- Desiree L Goetting
- Department of Biology, California State University Northridge, Los Angeles, CA, USA
| | - Richard Mansfield
- Department of Biology, California State University Northridge, Los Angeles, CA, USA
| | - Rony Soto
- Department of Biology, California State University Northridge, Los Angeles, CA, USA
| | - Cheryl Van Buskirk
- Department of Biology, California State University Northridge, Los Angeles, CA, USA
| |
Collapse
|
20
|
Xia Q, Wang X, Liu Y, Shen Z, Ge Z, Huang H, Li X, Wang Y. An endoplasmic reticulum-targeted two-photon fluorescent probe for bioimaging of HClO generated during sleep deprivation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117992. [PMID: 31935654 DOI: 10.1016/j.saa.2019.117992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
With the development of social society, sleep deprivation has become a serious and common issue. Previous studies documented that there is a correlation between sleep deprivation and oxidative stress. However, the information of sleep deprivation related ROS has rarely been obtained. Also, it has been demonstrated that sleep deprivation can induce endoplasmic reticulum (ER) stress. As such, for a better understanding of sleep deprivation as well as its related diseases, it is important to develop probes with ER-targeting ability for detecting ROS generated in this process. Herein, a novel two-photon fluorescent molecular probe, JX-1, was designed for sensing HClO in live cells and zebrafish. The investigation data showed that in addition to real-time response (about 150 s), the probe also exhibited high sensitivity and selectivity. Moreover, the probe JX-1 demonstrated two-photon fluorescence, low cytotoxicity and ER targeting ability. These prominent properties enabled the utilization of the probe for monitoring exogenous and endogenous HClO in both live cells and zebrafish. Using this useful tool, it was found that sleep deprivation can induce the generation of HClO in zebrafish.
Collapse
Affiliation(s)
- Qineng Xia
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xiaoyan Wang
- Zhejiang Sian International Hospital, Jiaxing 314031, China
| | - Yanan Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhangfeng Shen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhigang Ge
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xi Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yangang Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
21
|
Gusev EY, Zotova NV. Cellular Stress and General Pathological Processes. Curr Pharm Des 2020; 25:251-297. [PMID: 31198111 DOI: 10.2174/1381612825666190319114641] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
From the viewpoint of the general pathology, most of the human diseases are associated with a limited number of pathogenic processes such as inflammation, tumor growth, thrombosis, necrosis, fibrosis, atrophy, pathological hypertrophy, dysplasia and metaplasia. The phenomenon of chronic low-grade inflammation could be attributed to non-classical forms of inflammation, which include many neurodegenerative processes, pathological variants of insulin resistance, atherosclerosis, and other manifestations of the endothelial dysfunction. Individual and universal manifestations of cellular stress could be considered as a basic element of all these pathologies, which has both physiological and pathophysiological significance. The review examines the causes, main phenomena, developmental directions and outcomes of cellular stress using a phylogenetically conservative set of genes and their activation pathways, as well as tissue stress and its role in inflammatory and para-inflammatory processes. The main ways towards the realization of cellular stress and its functional blocks were outlined. The main stages of tissue stress and the classification of its typical manifestations, as well as its participation in the development of the classical and non-classical variants of the inflammatory process, were also described. The mechanisms of cellular and tissue stress are structured into the complex systems, which include networks that enable the exchange of information with multidirectional signaling pathways which together make these systems internally contradictory, and the result of their effects is often unpredictable. However, the possible solutions require new theoretical and methodological approaches, one of which includes the transition to integral criteria, which plausibly reflect the holistic image of these processes.
Collapse
Affiliation(s)
- Eugeny Yu Gusev
- Laboratory of the Immunology of Inflammation, Institute of Immunology and Physiology, Yekaterinburg, Russian Federation
| | - Natalia V Zotova
- Laboratory of the Immunology of Inflammation, Institute of Immunology and Physiology, Yekaterinburg, Russian Federation.,Department of Medical Biochemistry and Biophysics, Ural Federal University named after B.N.Yeltsin, Yekaterinburg, Russian Federation
| |
Collapse
|
22
|
Abstract
Sleep is a universal phenomenon occurring in all species studied thus far. Sleep loss results in adverse physiological effects at both the organismal and cellular levels suggesting an adaptive role for sleep in the maintenance of overall health. This review examines the bidirectional relationship between sleep and cellular stress. Cellular stress in this review refers to a shift in cellular homeostasis in response to an external stressor. Studies that illustrate the fact that sleep loss induces cellular stress and those that provide evidence that cellular stress in turn promotes sleep will be discussed.
Collapse
Affiliation(s)
- Julie A Williams
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nirinjini Naidoo
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Sleep Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
23
|
Laing EE, Möller-Levet CS, Dijk DJ, Archer SN. Identifying and validating blood mRNA biomarkers for acute and chronic insufficient sleep in humans: a machine learning approach. Sleep 2019; 42:5106128. [PMID: 30247731 PMCID: PMC6335875 DOI: 10.1093/sleep/zsy186] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 12/18/2022] Open
Abstract
Acute and chronic insufficient sleep are associated with adverse health outcomes and risk of accidents. There is therefore a need for biomarkers to monitor sleep debt status. None are currently available. We applied elastic net and ridge regression to transcriptome samples collected in 36 healthy young adults during acute total sleep deprivation and following 1 week of either chronic insufficient (<6 hr) or sufficient sleep (~8.6 hr) to identify panels of mRNA biomarkers of sleep debt status. The size of identified panels ranged from 9 to 74 biomarkers. Panel performance, assessed by leave-one-subject-out cross-validation and independent validation, varied between sleep debt conditions. Using between-subject assessments based on one blood sample, the accuracy of classifying "acute sleep loss" was 92%, but only 57% for classifying "chronic sleep insufficiency." A reasonable accuracy for classifying "chronic sleep insufficiency" could only be achieved by a within-subject comparison of blood samples. Biomarkers for sleep debt status showed little overlap with previously identified biomarkers for circadian phase. Biomarkers for acute and chronic sleep loss also showed little overlap but were associated with common functions related to the cellular stress response, such as heat shock protein activity, the unfolded protein response, protein ubiquitination and endoplasmic reticulum-associated protein degradation, and apoptosis. This characteristic response of whole blood to sleep loss can further aid our understanding of how sleep insufficiencies negatively affect health. Further development of these novel biomarkers for research and clinical practice requires validation in other protocols and age groups.
Collapse
Affiliation(s)
- Emma E Laing
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Carla S Möller-Levet
- Bioinformatics Core Facility, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Simon N Archer
- Surrey Sleep Research Centre, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
24
|
Guo X, Keenan BT, Sarantopoulou D, Lim DC, Lian J, Grant GR, Pack AI. Age attenuates the transcriptional changes that occur with sleep in the medial prefrontal cortex. Aging Cell 2019; 18:e13021. [PMID: 31549781 PMCID: PMC6826131 DOI: 10.1111/acel.13021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/13/2019] [Accepted: 07/14/2019] [Indexed: 12/29/2022] Open
Abstract
Sleep abnormalities are common with aging. Studies show that sleep plays important roles in brain functions, and loss of sleep is associated with increased risks for neurological diseases. Here, we used RNA sequencing to explore effects of age on transcriptome changes between sleep and sleep deprivation (SD) in medial prefrontal cortex and found that transcriptional changes with sleep are attenuated in old. In particular, old mice showed a 30% reduction in the number of genes significantly altered between sleep/wake and, in general, had smaller magnitudes of changes in differentially expressed genes compared to young mice. Gene ontology analysis revealed differential age effects on certain pathways. Compared to young mice, many of the wake‐active functions were similarly induced by SD in old mice, whereas many of the sleep‐active pathways were attenuated in old mice. We found similar magnitude of changes in synaptic homeostasis genes (Fos, Arc, and Bdnf) induced by SD, suggesting intact synaptic upscaling on the transcript level during extended wakefulness with aging. However, sleep‐activated processes, such as DNA repair, synaptogenesis, and axon guidance, were sensitive to the effect of aging. Old mice expressed elevated levels of immune response genes when compared to young mice, and enrichment analysis using cell‐type‐specific markers indicated upregulation of microglia and oligodendrocyte genes in old mice. Moreover, gene sets of the two cell types showed age‐specific sleep/wake regulation. Ultimately, this study enhances understanding of the transcriptional changes with sleep and aging, providing potential molecular targets for future studies of age‐related sleep abnormalities and neurological disorders.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Brendan T. Keenan
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics University of Pennsylvania Philadelphia Pennsylvania
| | - Diane C. Lim
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Jie Lian
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics University of Pennsylvania Philadelphia Pennsylvania
- Department of Genetics University of Pennsylvania Philadelphia Pennsylvania
| | - Allan I. Pack
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| |
Collapse
|
25
|
Abstract
Background Wolfram syndrome is a rare disorder associated with diabetes mellitus, diabetes insipidus, optic nerve atrophy, hearing and vision loss, and neurodegeneration. Sleep complaints are common but have not been studied with objective measures. Our goal was to assess rates of sleep apnea and objective and self-reported measures of sleep quality, and to determine the relationship of sleep pathology to other clinical variables in Wolfram syndrome patients. Methods Genetically confirmed Wolfram syndrome patients were evaluated at the 2015 and 2016 Washington University Wolfram Syndrome Research Clinics. Patients wore an actigraphy device and a type III ambulatory sleep study device and completed the Epworth Sleepiness Scale (ESS), the Pittsburgh Sleep Quality Index (PSQI) and/or the Pediatric Sleep Questionnaire (PSQ). PSQI and PSQ questionnaire data were compared to a previously collected group of controls. Patients were characterized clinically with the Wolfram Unified Rating Scale (WURS) and a subset underwent magnetic resonance imaging (MRI) for brain volume measurements. Results Twenty-one patients were evaluated ranging from age 8.9–29.7 years. Five of 17 (29%) adult patients fit the criteria for obstructive sleep apnea (OSA; apnea-hypopnea index [AHI] ≥ 5) and all 4 of 4 (100%) children aged 12 years or younger fit the criteria for obstructive sleep apnea (AHI’s ≥ 1). Higher AHI was related to greater disease severity (higher WURS Physical scores). Higher mixed apnea scores were related to lower brainstem and cerebellar volumes. Patients’ scores on the PSQ were higher than those of controls, indicating greater severity of childhood obstructive sleep-related breathing disorders. Conclusions Wolfram syndrome patients had a high rate of OSA. Further study would be needed to assess how these symptoms change over time. Addressing sleep disorders in Wolfram syndrome patients would likely improve their overall health and quality of life.
Collapse
|
26
|
Carroll JE, Irwin MR, Seeman TE, Diez-Roux AV, Prather AA, Olmstead R, Epel E, Lin J, Redline S. Obstructive sleep apnea, nighttime arousals, and leukocyte telomere length: the Multi-Ethnic Study of Atherosclerosis. Sleep 2019; 42:zsz089. [PMID: 30994174 PMCID: PMC6612669 DOI: 10.1093/sleep/zsz089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
STUDY OBJECTIVES Sleep disturbances and sleep apnea are associated with increased vulnerability to age-related disease, altering molecular pathways affecting biological aging. Telomere length captures one component of biological aging. We evaluated whether objectively assessed sleep and sleep apnea relate to leukocyte telomere length (LTL) in the Multi-Ethnic Study of Atherosclerosis (MESA). METHODS Men and women aged 44-84 years (n = 672) from the MESA Stress and MESA Sleep studies underwent polysomnography and 7 day actigraphy (at Exam 5) and assessment of LTL (at baseline [Exam 1] and about 10 years later [Exam 5]). RESULTS General linear models adjusting for age, sex, race/ethnicity, BMI, physical activity, and smoking found that severe obstructive sleep apnea (OSA; apnea-hypopnea index > 30) was cross-sectionally associated with shorter LTL (p = 0.007). Modest associations of shorter LTL with less rapid eye movement sleep, more stage 1 sleep, wake after sleep onset >30 min, and long sleep duration were found, but these effects were diminished after adjusting for lifestyle and OSA. Exploratory analyses found that higher arousal index at Exam 5 was associated with greater LTL decline over the prior 10 years (p = 0.004). CONCLUSIONS OSA was associated with shorter LTL. Individuals with high-arousal frequency had greater leukocyte telomere attrition over the prior decade. These findings suggest that sleep apnea and sleep fragmentation are associated with accelerated biological aging.
Collapse
Affiliation(s)
- Judith E Carroll
- Department of Psychiatry and Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA
| | - Michael R Irwin
- Department of Psychiatry and Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA
| | - Teresa E Seeman
- Department of Medicine, Division of Geriatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Ana V Diez-Roux
- Department of Epidemiology, School of Public Health, Drexel University, Philadelphia, PA
| | - Aric A Prather
- Department of Psychiatry, Univeristy of California, San Francisco, CA
| | - Richard Olmstead
- Department of Psychiatry and Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA
| | - Elissa Epel
- Department of Psychiatry, Univeristy of California, San Francisco, CA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA
| | - Susan Redline
- Department of Medicine, Brigham and Women’s Hospital and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
27
|
Lehtonen Š, Sonninen TM, Wojciechowski S, Goldsteins G, Koistinaho J. Dysfunction of Cellular Proteostasis in Parkinson's Disease. Front Neurosci 2019; 13:457. [PMID: 31133790 PMCID: PMC6524622 DOI: 10.3389/fnins.2019.00457] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
Despite decades of research, current therapeutic interventions for Parkinson’s disease (PD) are insufficient as they fail to modify disease progression by ameliorating the underlying pathology. Cellular proteostasis (protein homeostasis) is an essential factor in maintaining a persistent environment for neuronal activity. Proteostasis is ensured by mechanisms including regulation of protein translation, chaperone-assisted protein folding and protein degradation pathways. It is generally accepted that deficits in proteostasis are linked to various neurodegenerative diseases including PD. While the proteasome fails to degrade large protein aggregates, particularly alpha-synuclein (α-SYN) in PD, drug-induced activation of autophagy can efficiently remove aggregates and prevent degeneration of dopaminergic (DA) neurons. Therefore, maintenance of these mechanisms is essential to preserve all cellular functions relying on a correctly folded proteome. The correlations between endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) that aims to restore proteostasis within the secretory pathway are well-established. However, while mild insults increase the activity of chaperones, prolonged cell stress, or insufficient adaptive response causes cell death. Modulating the activity of molecular chaperones, such as protein disulfide isomerase which assists refolding and contributes to the removal of unfolded proteins, and their associated pathways may offer a new approach for disease-modifying treatment. Here, we summarize some of the key concepts and emerging ideas on the relation of protein aggregation and imbalanced proteostasis with an emphasis on PD as our area of main expertise. Furthermore, we discuss recent insights into the strategies for reducing the toxic effects of protein unfolding in PD by targeting the ER UPR pathway.
Collapse
Affiliation(s)
- Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tuuli-Maria Sonninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sara Wojciechowski
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gundars Goldsteins
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Sleep Disturbance as a Potential Modifiable Risk Factor for Alzheimer's Disease. Int J Mol Sci 2019; 20:ijms20040803. [PMID: 30781802 PMCID: PMC6412395 DOI: 10.3390/ijms20040803] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbance is a common symptom in patients with various neurodegenerative diseases, including Alzheimer’s disease (AD), and it can manifest in the early stages of the disease. Impaired sleep in patients with AD has been attributed to AD pathology that affects brain regions regulating the sleep–wake or circadian rhythm. However, recent epidemiological and experimental studies have demonstrated an association between impaired sleep and an increased risk of AD. These studies have led to the idea of a bidirectional relationship between AD and impaired sleep; in addition to the conventional concept that impaired sleep is a consequence of AD pathology, various evidence strongly suggests that impaired sleep is a risk factor for the initiation and progression of AD. Despite this recent progress, much remains to be elucidated in order to establish the benefit of therapeutic interventions against impaired sleep to prevent or alleviate the disease course of AD. In this review, we provide an overview of previous studies that have linked AD and sleep. We then highlight the studies that have tested the causal relationship between impaired sleep and AD and will discuss the molecular and cellular mechanisms underlying this link. We also propose future works that will aid the development of a novel disease-modifying therapy and prevention of AD via targeting impaired sleep through non-pharmacological and pharmacological interventions.
Collapse
|
29
|
Liu H, Chen A. Roles of sleep deprivation in cardiovascular dysfunctions. Life Sci 2019; 219:231-237. [PMID: 30630005 DOI: 10.1016/j.lfs.2019.01.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/14/2018] [Accepted: 01/06/2019] [Indexed: 01/09/2023]
Abstract
It is widely recognized that inadequate sleep is associated with multiple acute and chronic diseases and results in increased mortality and morbidity for cardiovascular diseases. In recent years, there has been increasing interest in sleep related investigations. Emerging evidence indicates that sleep deprivation changes the biological phenotypes of DNA, RNA and protein levels, but the underlying mechanisms are not clear. We summarized the current research on the detrimental roles of sleep deprivation on the heart and elucidated the underlying mechanisms of sleep deficiency to improve our understanding of sleep deprivation and the emerging strategies to target this process for therapeutic benefit.
Collapse
Affiliation(s)
- Haiqiong Liu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China
| | - Aihua Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China.
| |
Collapse
|
30
|
Ahmadian N, Hejazi S, Mahmoudi J, Talebi M. Tau Pathology of Alzheimer Disease: Possible Role of Sleep Deprivation. Basic Clin Neurosci 2018; 9:307-316. [PMID: 30719245 PMCID: PMC6360494 DOI: 10.32598/bcn.9.5.307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/17/2017] [Accepted: 02/18/2018] [Indexed: 12/24/2022] Open
Abstract
Sleep deprivation is a common complaint in modern societies. Insufficient sleep has increased the risk of catching neurodegenerative diseases such as Alzheimer’s. Several studies have indicated that restricted sleep increases the level of deposition of β-amyloid and formation of neurofibrillary tangles, the major brain microstructural hallmarks for Alzheimer disease. The mechanisms by which sleep deprivation affects the pathology of Alzheimer disease has not yet been fully and definitively identified. However, risk factors like apolipoprotein E risk alleles, kinases and phosphatases dysregulation, reactive oxygen species, endoplasmic reticulum damages, glymphatic system dysfunctions and orexinergic system inefficacy have been identified as the most important factors which mediates between the two conditions. In this review, these factors are briefly discussed.
Collapse
Affiliation(s)
- Nahid Ahmadian
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Hejazi
- Department of Anatomy, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Talebi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Naidoo N, Zhu J, Galante RJ, Lian J, Strus E, Lee A, Keenan BT, Pack AI. Reduction of the molecular chaperone binding immunoglobulin protein (BiP) accentuates the effect of aging on sleep-wake behavior. Neurobiol Aging 2018; 69:10-25. [PMID: 29843048 DOI: 10.1016/j.neurobiolaging.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
Abstract
Sleep and wake quality, quantity, and architecture become modified with aging. Sleep and wake quality decline coinciding with increased fragmentation of both states across aging. We have previously shown that this age-related decline in sleep-wake quality is associated with increased endoplasmic reticular (ER) stress and decreased expression of the major ER chaperone binding immunoglobulin protein (BiP). BiP, also known as glucose-regulated protein 78, plays a key role in controlling the cellular response to ER stress, acting as a regulator of a protein homeostatic signaling pathway known as the unfolded protein response. Induction of BiP during cellular stress is part of an adaptive prosurvival mechanism. Here, using mice heterozygous for BiP, we investigated the effect of reduced BiP expression on sleep-wake behavior across aging; complete knockdown of BiP is embryonic lethal. We report that BiP heterozygosity accentuates the aging sleep-wake phenotype. Sleep and wake fragmentation was more pronounced in the BiP heterozygotes across the 3 ages examined. In mice lacking 1 functional copy of BiP, we observed an age-related significant reduction in wake bout duration and increase in wake bout numbers during the active period, as well as an increase in non rapid eye movement and rapid eye movement bout numbers accompanied by reduced bout durations of both non rapid eye movement and rapid eye movement during the sleep period. In addition, we observed increased ER stress in orexin neurons and occurrence of aggregates immunopositive for orexin at the terminals and projections of orexin neurons in the middle-aged BiP heterozygotes. Taken together, our data indicate that a reduction in the molecular chaperone BiP impacts sleep architecture across aging and that orexin processing is likely to be affected.
Collapse
Affiliation(s)
- Nirinjini Naidoo
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Sleep Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jingxu Zhu
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Raymond J Galante
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jie Lian
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ewa Strus
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Lee
- Department of Biochemistry and Molecular Biology, University of Southern California, Keck, School of Medicine, USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Brendan T Keenan
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allan I Pack
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Sleep Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice. J Neurosci 2018; 38:3911-3928. [PMID: 29581380 PMCID: PMC5907054 DOI: 10.1523/jneurosci.2513-17.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 01/13/2023] Open
Abstract
Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we performed chronic electrophysiological recordings of cortical neural activity during waking, sleep, and after sleep deprivation from young and older mice. We found that all main hallmarks of cortical activity during spontaneous sleep and recovery sleep after sleep deprivation were largely intact in older mice, suggesting that the well-described age-related changes in global sleep are unlikely to arise from a disruption of local network dynamics within the neocortex.
Collapse
|
33
|
Proteome Stability as a Key Factor of Genome Integrity. Int J Mol Sci 2017; 18:ijms18102036. [PMID: 28937603 PMCID: PMC5666718 DOI: 10.3390/ijms18102036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
DNA damage is constantly produced by both endogenous and exogenous factors; DNA lesions then trigger the so-called DNA damaged response (DDR). This is a highly synchronized pathway that involves recognition, signaling and repair of the damage. Failure to eliminate DNA lesions is associated with genome instability, a driving force in tumorigenesis. Proteins carry out the vast majority of cellular functions and thus proteome quality control (PQC) is critical for the maintenance of cellular functionality. PQC is assured by the proteostasis network (PN), which under conditions of proteome instability address the triage decision of protein fold, hold, or degrade. Key components of the PN are the protein synthesis modules, the molecular chaperones and the two main degradation machineries, namely the autophagy-lysosome and the ubiquitin-proteasome pathways; also, part of the PN are a number of stress-responsive cellular sensors including (among others) heat shock factor 1 (Hsf1) and the nuclear factor erythroid 2-related factor 2 (Nrf2). Nevertheless, the lifestyle- and/or ageing-associated gradual accumulation of stressors results in increasingly damaged and unstable proteome due to accumulation of misfolded proteins and/or protein aggregates. This outcome may then increase genomic instability due to reduced fidelity in processes like DNA replication or repair leading to various age-related diseases including cancer. Herein, we review the role of proteostatic machineries in nuclear genome integrity and stability, as well as on DDR responses.
Collapse
|
34
|
Sanders J, Scholz M, Merutka I, Biron D. Distinct unfolded protein responses mitigate or mediate effects of nonlethal deprivation of C. elegans sleep in different tissues. BMC Biol 2017; 15:67. [PMID: 28844202 PMCID: PMC5572162 DOI: 10.1186/s12915-017-0407-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Disrupting sleep during development leads to lasting deficits in chordates and arthropods. To address lasting impacts of sleep deprivation in Caenorhabditis elegans, we established a nonlethal deprivation protocol. RESULTS Deprivation triggered protective insulin-like signaling and two unfolded protein responses (UPRs): the mitochondrial (UPRmt) and the endoplasmic reticulum (UPRER) responses. While the latter is known to be triggered by sleep deprivation in rodent and insect brains, the former was not strongly associated with sleep deprivation previously. We show that deprivation results in a feeding defect when the UPRmt is deficient and in UPRER-dependent germ cell apoptosis. In addition, when the UPRER is deficient, deprivation causes excess twitching in vulval muscles, mirroring a trend caused by loss of egg-laying command neurons. CONCLUSIONS These data show that nonlethal deprivation of C. elegans sleep causes proteotoxic stress. Unless mitigated, distinct types of deprivation-induced proteotoxicity can lead to anatomically and genetically separable lasting defects. The relative importance of different UPRs post-deprivation likely reflects functional, developmental, and genetic differences between the respective tissues and circuits.
Collapse
Affiliation(s)
- Jarred Sanders
- Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA.
| | - Monika Scholz
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Ilaria Merutka
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - David Biron
- Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.,Department of Physics, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
35
|
Nikonova EV, Gilliland JDA, Tanis KQ, Podtelezhnikov AA, Rigby AM, Galante RJ, Finney EM, Stone DJ, Renger JJ, Pack AI, Winrow CJ. Transcriptional Profiling of Cholinergic Neurons From Basal Forebrain Identifies Changes in Expression of Genes Between Sleep and Wake. Sleep 2017; 40:3608773. [PMID: 28419375 PMCID: PMC6075396 DOI: 10.1093/sleep/zsx059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Study objective To assess differences in gene expression in cholinergic basal forebrain cells between sleeping and sleep-deprived mice sacrificed at the same time of day. Methods Tg(ChAT-eGFP)86Gsat mice expressing enhanced green fluorescent protein (eGFP) under control of the choline acetyltransferase (Chat) promoter were utilized to guide laser capture of cholinergic cells in basal forebrain. Messenger RNA expression levels in these cells were profiled using microarrays. Gene expression in eGFP(+) neurons was compared (1) to that in eGFP(-) neurons and to adjacent white matter, (2) between 7:00 am (lights on) and 7:00 pm (lights off), (3) between sleep-deprived and sleeping animals at 0, 3, 6, and 9 hours from lights on. Results There was a marked enrichment of ChAT and other markers of cholinergic neurons in eGFP(+) cells. Comparison of gene expression in these eGFP(+) neurons between 7:00 am and 7:00 pm revealed expected differences in the expression of clock genes (Arntl2, Per1, Per2, Dbp, Nr1d1) as well as mGluR3. Comparison of expression between spontaneous sleep and sleep-deprived groups sacrificed at the same time of day revealed a number of transcripts (n = 55) that had higher expression in sleep deprivation compared to sleep. Genes upregulated in sleep deprivation predominantly were from the protein folding pathway (25 transcripts, including chaperones). Among 42 transcripts upregulated in sleep was the cold-inducible RNA-binding protein. Conclusions Cholinergic cell signatures were characterized. Whether the identified genes are changing as a consequence of differences in behavioral state or as part of the molecular regulatory mechanism remains to be determined.
Collapse
Affiliation(s)
- Elena V Nikonova
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Jason DA Gilliland
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA
| | - Keith Q Tanis
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Alexei A Podtelezhnikov
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Alison M Rigby
- Department of Neuroscience, Merck & Co., Inc., West Point, PA
| | - Raymond J Galante
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA
| | - Eva M Finney
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - David J Stone
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - John J Renger
- Department of Neuroscience, Merck & Co., Inc., West Point, PA
| | - Allan I Pack
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
36
|
Kang DW, Lee CU, Lim HK. Role of Sleep Disturbance in the Trajectory of Alzheimer's Disease. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2017; 15:89-99. [PMID: 28449556 PMCID: PMC5426492 DOI: 10.9758/cpn.2017.15.2.89] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022]
Abstract
Sleep disturbances such as insomnia, hypersomnia, and circadian rhythm disturbance are common in normal elderly and Alzheimer’s disease (AD) patients. To date, special attention has been paid to sleep disturbance in the clinical course of AD insofar as the interaction of sleep disturbance with the pathogenesis of AD may impact the clinical course and cognitive function of AD patients. This review covers the bidirectional relationship between sleep disturbance and AD pathogenesis; the associations between sleep disturbance and AD-specific neurotransmitters, brain structure, and aspects of sleep disturbance in each phase of AD; and the effects of sleep disturbance on the cognitive functions of patients in each phase of AD. We consider several factors required to exactly interpret the results and suggest a direction for future studies on the role of sleep disturbance in AD.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Psychiatry, Seoul Saint Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul Saint Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Saint Vincent's Hospital, College of Medicine, Catholic University of Korea, Suwon, Korea
| |
Collapse
|
37
|
Minakawa EN, Miyazaki K, Maruo K, Yagihara H, Fujita H, Wada K, Nagai Y. Chronic sleep fragmentation exacerbates amyloid β deposition in Alzheimer's disease model mice. Neurosci Lett 2017; 653:362-369. [PMID: 28554860 DOI: 10.1016/j.neulet.2017.05.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/20/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
Abstract
Sleep fragmentation due to intermittent nocturnal arousal resulting in a reduction of total sleep time and sleep efficiency is a common symptom among people with Alzheimer's disease (AD) and elderly people with normal cognitive function. Although epidemiological studies have indicated an association between sleep fragmentation and elevated risk of AD, a relevant disease model to elucidate the underlying mechanisms was lacking owing to technical limitations. Here we successfully induced chronic sleep fragmentation in AD model mice using a recently developed running-wheel-based device and demonstrate that chronic sleep fragmentation increases amyloid β deposition. Notably, the severity of amyloid β deposition exhibited a significant positive correlation with the extent of sleep fragmentation. These findings provide a useful contribution to the development of novel treatments that decelerate the disease course of AD in the patients, or decrease the risk of developing AD in healthy elderly people through the improvement of sleep quality.
Collapse
Affiliation(s)
- Eiko N Minakawa
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Koyomi Miyazaki
- Physiologically Active Substances Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Kazushi Maruo
- Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan.
| | - Hiroko Yagihara
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Hiromi Fujita
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan; Translational Medical Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan.
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan; Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
38
|
Yoshino H, Kumai Y, Kashiwakura I. Effects of endoplasmic reticulum stress on apoptosis induction in radioresistant macrophages. Mol Med Rep 2017; 15:2867-2872. [PMID: 28447729 DOI: 10.3892/mmr.2017.6298] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/19/2017] [Indexed: 11/06/2022] Open
Abstract
Macrophages are important in the host's immune defense against pathogens. However, recent evidence has demonstrated that macrophages are also involved in the development of disease, including cancer. Therefore, it is important to regulate apoptosis in tumor‑related macrophages for effective cancer treatment. In the present study, the effect of endoplasmic reticulum (ER) stress on apoptosis induction was examined in human monocytic cell‑derived macrophages. Radiation therapy in cancer results in irradiating macrophages as well as cancer cells in the tumor microenvironment. Since ER stress has been demonstrated to sensitize cancer cells to radiation, it was hypothesized that ER stress may induce a similar effect in macrophages. Therefore, the effect of combination treatment with ER stress inducers and ionizing radiation on macrophage apoptosis was examined. Treatment of macrophages with ER stress inducers thapsigargin and tunicamycin, enhanced unfolded protein responses, including phosphorylation of eukaryotic initiation factor 2‑α and increased expression of binding immunoglobulin protein. Furthermore, treatment with thapsigargin and tunicamycin induced apoptosis in macrophages compared with untreated cells, although ionizing radiation did not. The thapsigargin-induced apoptosis in macrophages was demonstrated to be caspase‑3‑dependent. Finally, combination treatment with thapsigargin and ionizing radiation, did not result in any significant change in macrophage apoptosis. The present study demonstrated that ER stress regulated apoptosis in radioresistant macrophages and that ionizing radiation had no added effect on ER stress‑induced apoptosis in macrophages.
Collapse
Affiliation(s)
- Hironori Yoshino
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036‑8564, Japan
| | - Yu Kumai
- Department of Radiological Technology, Hirosaki University School of Health Sciences, Hirosaki, Aomori 036‑8564, Japan
| | - Ikuo Kashiwakura
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036‑8564, Japan
| |
Collapse
|
39
|
Sleep and Development in Genetically Tractable Model Organisms. Genetics 2017; 203:21-33. [PMID: 27183564 DOI: 10.1534/genetics.116.189589] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/21/2016] [Indexed: 12/21/2022] Open
Abstract
Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses.
Collapse
|
40
|
Epigenetic Aging and Immune Senescence in Women With Insomnia Symptoms: Findings From the Women's Health Initiative Study. Biol Psychiatry 2017; 81:136-144. [PMID: 27702440 PMCID: PMC5536960 DOI: 10.1016/j.biopsych.2016.07.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/11/2016] [Accepted: 07/10/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Insomnia symptoms are associated with vulnerability to age-related morbidity and mortality. Cross-sectional data suggest that accelerated biological aging may be a mechanism through which sleep influences risk. A novel method for determining age acceleration using epigenetic methylation to DNA has demonstrated predictive utility as an epigenetic clock and prognostic of age-related morbidity and mortality. METHODS We examined the association of epigenetic age and immune cell aging with sleep in the Women's Health Initiative study (N = 2078; mean 64.5 ± 7.1 years of age) with assessment of insomnia symptoms (restlessness, difficulty falling asleep, waking at night, trouble getting back to sleep, and early awakenings), sleep duration (short sleep 5 hours or less; long sleep greater than 8 hours), epigenetic age, naive T cell (CD8+CD45RA+CCR7+), and late differentiated T cells (CD8+CD28-CD45RA-). RESULTS Insomnia symptoms were related to advanced epigenetic age (β ± SE = 1.02 ± 0.37, p = .005) after adjustments for covariates. Insomnia symptoms were also associated with more late differentiated T cells (β ± SE = 0.59 ± 0.21, p = .006), but not with naive T cells. Self-reported short and long sleep duration were unrelated to epigenetic age. Short sleep, but not long sleep, was associated with fewer naive T cells (p < .005) and neither was related to late differentiated T cells. CONCLUSIONS Symptoms of insomnia were associated with increased epigenetic age of blood tissue and were associated with higher counts of late differentiated CD8+ T cells. Short sleep was unrelated to epigenetic age and late differentiated cell counts, but was related to a decline in naive T cells. In this large population-based study of women in the United States, insomnia symptoms are implicated in accelerated aging.
Collapse
|
41
|
Khabirova E, Chen KF, O'Neill JS, Crowther DC. Flyglow: Single-fly observations of simultaneous molecular and behavioural circadian oscillations in controls and an Alzheimer's model. Sci Rep 2016; 6:33759. [PMID: 27658441 PMCID: PMC5034315 DOI: 10.1038/srep33759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/02/2016] [Indexed: 12/02/2022] Open
Abstract
Circadian rhythms are essential for health and are frequently disturbed in disease. A full understanding of the causal relationships between behavioural and molecular circadian rhythms requires simultaneous longitudinal observations over time in individual organisms. Current experimental paradigms require the measurement of each rhythm separately across distinct populations of experimental organisms, rendering the comparability of the resulting datasets uncertain. We therefore developed FLYGLOW, an assay using clock gene controlled luciferase expression detected by exquisitely sensitive EM-CCD imaging, to enable simultaneous quantification of parameters including locomotor, sleep consolidation and molecular rhythms in single flies over days/weeks. FLYGLOW combines all the strengths of existing techniques, and also allows powerful multiparametric paired statistics. We found the age-related transition from rhythmicity to arrhythmicity for each parameter occurs unpredictably, with some flies showing loss of one or more rhythms during middle-age. Using single-fly correlation analysis of rhythm robustness and period we demonstrated the independence of the peripheral clock from circadian behaviours in wild type flies as well as in an Alzheimer’s model. FLYGLOW is a useful tool for investigating the deterioration of behavioural and molecular rhythms in ageing and neurodegeneration. This approach may be applied more broadly within behavioural neurogenetics research.
Collapse
Affiliation(s)
- Eleonora Khabirova
- University of Cambridge, Department of Genetics, Downing Site, Cambridge, CB2 3EH, United Kingdom
| | - Ko-Fan Chen
- University of Cambridge, Department of Genetics, Downing Site, Cambridge, CB2 3EH, United Kingdom.,UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | - John S O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Damian C Crowther
- University of Cambridge, Department of Genetics, Downing Site, Cambridge, CB2 3EH, United Kingdom.,AstraZeneca, Neuroscience, Sir Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, United Kingdom
| |
Collapse
|
42
|
|
43
|
The Unfolded Protein Response and Cholesterol Biosynthesis Link Luman/CREB3 to Regenerative Axon Growth in Sensory Neurons. J Neurosci 2016; 35:14557-70. [PMID: 26511246 DOI: 10.1523/jneurosci.0012-15.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We recently revealed that the axon endoplasmic reticulum resident transcription factor Luman/CREB3 (herein called Luman) serves as a unique retrograde injury signal in regulation of the intrinsic elongating form of sensory axon regeneration. Here, evidence supports that Luman contributes to axonal regeneration through regulation of the unfolded protein response (UPR) and cholesterol biosynthesis in adult rat sensory neurons. One day sciatic nerve crush injury triggered a robust increase in UPR-associated mRNA and protein expression in both neuronal cell bodies and the injured axons. Knockdown of Luman expression in 1 d injury-conditioned neurons by siRNA attenuated axonal outgrowth to 48% of control injured neurons and was concomitant with reduced UPR- and cholesterol biosynthesis-associated gene expression. UPR PCR-array analysis coupled with qRT-PCR identified and confirmed that four transcripts involved in cholesterol regulation were downregulated >2-fold by the Luman siRNA treatment of the injury-conditioned neurons. Further, the Luman siRNA-attenuated outgrowth could be significantly rescued by either cholesterol supplementation or 2 ng/ml of the UPR inducer tunicamycin, an amount determined to elevate the depressed UPR gene expression to a level equivalent of that observed with crush injury. Using these approaches, outgrowth increased significantly to 74% or 69% that of injury-conditioned controls, respectively. The identification of Luman as a regulator of the injury-induced UPR and cholesterol at levels that benefit the intrinsic ability of axotomized adult rat sensory neurons to undergo axonal regeneration reveals new therapeutic targets to bolster nerve repair.
Collapse
|
44
|
Carroll JE, Cole SW, Seeman TE, Breen EC, Witarama T, Arevalo JM, Ma J, Irwin MR. Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans. Brain Behav Immun 2016; 51:223-229. [PMID: 26336034 PMCID: PMC4679552 DOI: 10.1016/j.bbi.2015.08.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/28/2015] [Accepted: 08/30/2015] [Indexed: 12/11/2022] Open
Abstract
Age-related disease risk has been linked to short sleep duration and sleep disturbances; however, the specific molecular pathways linking sleep loss with diseases of aging are poorly defined. Key cellular events seen with aging, which are thought to contribute to disease, may be particularly sensitive to sleep loss. We tested whether one night of partial sleep deprivation (PSD) would increase leukocyte gene expression indicative of DNA damage responses (DDR), the senescence-associated secretory phenotype (SASP), and senescence indicator p16(INK4a) in older adult humans, who are at increased risk for cellular senescence. Community-dwelling older adults aged 61-86years (n=29; 48% male) underwent an experimental partial sleep deprivation (PSD) protocol over 4 nights, including adaptation, an uninterrupted night of sleep, partial sleep deprivation (sleep restricted 3-7AM), and a subsequent full night of sleep. Blood samples were obtained each morning to assess peripheral blood mononuclear cell (PBMC) gene expression using Illumina HT-12 arrays. Analyses of microarray results revealed that SASP (p<.05) and DDR (p=.08) gene expression were elevated from baseline to PSD nights. Gene expression changes were also observed from baseline to PSD in NFKB2, NBS1 and CHK2 (all p's<.05). The senescence marker p16(INK4a) (CDKN2A) was increased 1day after PSD compared to baseline (p<.01), however confirmatory RT-PCR did not replicate this finding. One night of partial sleep deprivation activates PBMC gene expression patterns consistent with biological aging in this older adult sample. PSD enhanced the SASP and increased the accumulation of damage that initiates cell cycle arrest and promotes cellular senescence. These findings causally link sleep deprivation to the molecular processes associated with biological aging.
Collapse
Affiliation(s)
- Judith E. Carroll
- University of California, Los Angeles, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior
| | - Steven W. Cole
- University of California, Los Angeles, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior,Department of Medicine, Division of Hematology-Oncology, UCLA School of Medicine
| | - Teresa E. Seeman
- University of California, Los Angeles, Department of Geriatrics, David Geffen School of Medicine
| | - Elizabeth C. Breen
- University of California, Los Angeles, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior
| | - Tuff Witarama
- University of California, Los Angeles, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior
| | - Jesusa M.G. Arevalo
- Department of Medicine, Division of Hematology-Oncology, UCLA School of Medicine
| | - Jeffrey Ma
- Department of Medicine, Division of Hematology-Oncology, UCLA School of Medicine
| | - Michael R. Irwin
- University of California, Los Angeles, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior
| |
Collapse
|
45
|
Arble DM, Bass J, Behn CD, Butler MP, Challet E, Czeisler C, Depner CM, Elmquist J, Franken P, Grandner MA, Hanlon EC, Keene AC, Joyner MJ, Karatsoreos I, Kern PA, Klein S, Morris CJ, Pack AI, Panda S, Ptacek LJ, Punjabi NM, Sassone-Corsi P, Scheer FA, Saxena R, Seaquest ER, Thimgan MS, Van Cauter E, Wright KP. Impact of Sleep and Circadian Disruption on Energy Balance and Diabetes: A Summary of Workshop Discussions. Sleep 2015; 38:1849-60. [PMID: 26564131 DOI: 10.5665/sleep.5226] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 12/21/2022] Open
Abstract
A workshop was held at the National Institute for Diabetes and Digestive and Kidney Diseases with a focus on the impact of sleep and circadian disruption on energy balance and diabetes. The workshop identified a number of key principles for research in this area and a number of specific opportunities. Studies in this area would be facilitated by active collaboration between investigators in sleep/circadian research and investigators in metabolism/diabetes. There is a need to translate the elegant findings from basic research into improving the metabolic health of the American public. There is also a need for investigators studying the impact of sleep/circadian disruption in humans to move beyond measurements of insulin and glucose and conduct more in-depth phenotyping. There is also a need for the assessments of sleep and circadian rhythms as well as assessments for sleep-disordered breathing to be incorporated into all ongoing cohort studies related to diabetes risk. Studies in humans need to complement the elegant short-term laboratory-based human studies of simulated short sleep and shift work etc. with studies in subjects in the general population with these disorders. It is conceivable that chronic adaptations occur, and if so, the mechanisms by which they occur needs to be identified and understood. Particular areas of opportunity that are ready for translation are studies to address whether CPAP treatment of patients with pre-diabetes and obstructive sleep apnea (OSA) prevents or delays the onset of diabetes and whether temporal restricted feeding has the same impact on obesity rates in humans as it does in mice.
Collapse
Affiliation(s)
- Deanna M Arble
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Joseph Bass
- Department of Medicine, Endocrinology Division, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Cecilia Diniz Behn
- Department of Applied Mathematics & Statistics, Colorado School of Mines, Golden, CO
| | - Matthew P Butler
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR
| | - Etienne Challet
- Institute for Cellular and Integrative Neuroscience, CNRS, University of Strasbourg, France
| | - Charles Czeisler
- Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA
| | | | - Joel Elmquist
- Departments of Internal Medicine, Pharmacology and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Switzerland
| | | | - Erin C Hanlon
- Department of Medicine, The University of Chicago, Chicago, IL
| | - Alex C Keene
- Department of Biology, University of Nevada, Reno, NV
| | | | - Ilia Karatsoreos
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA
| | - Philip A Kern
- Department of Medicine, Division of Endocrinology and Center for Clinical and Translational Sciences, University of Kentucky, Lexington, KY
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine in St. Louis, St. Louis, MO
| | | | - Allan I Pack
- Division of Sleep Medicine/Department of Medicine and Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Louis J Ptacek
- Department of Neurology, Howard Hughes Medical Institute, University of California, San Francisco, CA
| | - Naresh M Punjabi
- Department of Medicine, The Johns Hopkins University, Baltimore, MD
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA
| | - Frank A Scheer
- Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA
| | - Richa Saxena
- Department of Anesthesia, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Elizabeth R Seaquest
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Matthew S Thimgan
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO
| | - Eve Van Cauter
- Sleep, Metabolism and Health Center, The University of Chicago, Chicago, IL
| | - Kenneth P Wright
- Department of Integrative Physiology, University of Colorado, Boulder, CO.,Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
46
|
Depletion of cardiac 14-3-3η protein adversely influences pathologic cardiac remodeling during myocardial infarction after coronary artery ligation in mice. Int J Cardiol 2015; 202:146-53. [PMID: 26386943 DOI: 10.1016/j.ijcard.2015.08.142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 08/15/2015] [Accepted: 08/19/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND/OBJECTIVES 14-3-3η protein, a dimeric phosphoserine-binding protein, provides protection against adverse cardiac remodeling during pressure-overload induced heart failure in mice. To identify its role in myocardial infarction (MI), we have used mice with cardio-specific expression of dominant-negative 14-3-3η protein mutant (DN14-3-3) and performed the surgical ligation of left anterior descending coronary artery. METHODS We have performed echocardiography to assess cardiac function, protein expression analysis using Western blotting, mRNA expression by real time-reverse transcription polymerase chain reaction and histopathological analyses. RESULTS DN14-3-3 mice with MI displayed reduced survival, left ventricular ejection fraction and fractional shortening. Interestingly, DN14-3-3 mice subjected to MI showed increased cardiac hypertrophy, inflammation, fibrosis and apoptosis as compared to their wild-type counterparts. Mechanistically, DN14-3-3 mice with MI exhibited activation of endoplasmic reticulum (ER) stress and markers of maladaptive cardiac remodeling. Cardiac regeneration marker expression also decreased drastically in the DN14-3-3 mice with MI. CONCLUSION Depletion of the 14-3-3η protein causes cardiac dysfunction and reduces survival in mice with MI, probably via exacerbation of ER stress and death signaling pathways and suppression of cardiac regeneration. Thus, identification of drugs that can modulate cardiac 14-3-3η protein levels may probably provide a novel protective therapy for heart failure.
Collapse
|
47
|
Lucke-Wold BP, Smith KE, Nguyen L, Turner RC, Logsdon AF, Jackson GJ, Huber JD, Rosen CL, Miller DB. Sleep disruption and the sequelae associated with traumatic brain injury. Neurosci Biobehav Rev 2015; 55:68-77. [PMID: 25956251 PMCID: PMC4721255 DOI: 10.1016/j.neubiorev.2015.04.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/17/2015] [Accepted: 04/25/2015] [Indexed: 02/08/2023]
Abstract
Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy.
Collapse
Affiliation(s)
- Brandon P Lucke-Wold
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Kelly E Smith
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Linda Nguyen
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Ryan C Turner
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Aric F Logsdon
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Garrett J Jackson
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Jason D Huber
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Charles L Rosen
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Diane B Miller
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| |
Collapse
|
48
|
Ramakrishnan NK, Schepers M, Luurtsema G, Nyakas CJ, Elsinga PH, Ishiwata K, Dierckx RAJO, van Waarde A. Cutamesine Overcomes REM Sleep Deprivation-Induced Memory Loss: Relationship to Sigma-1 Receptor Occupancy. Mol Imaging Biol 2015; 17:364-72. [PMID: 25449772 DOI: 10.1007/s11307-014-0808-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Rapid eye movement (REM) sleep deprivation (SD) decreases cerebral sigma-1 receptor expression and causes cognitive deficits. Sigma-1 agonists are cognitive enhancers. Here, we investigate the effect of cutamesine treatment in the REM SD model. PROCEDURES Sigma-1 receptor occupancy (RO) in the rat brain by cutamesine was determined using 1-[2-(3,4-dimethoxyphenethyl)]-4-(3-phenylpropyl)piperazine ([(11)C]SA4503) and positron emission tomography (PET), and tissue cutamesine levels were measured by ultra performance liquid chromatography (UPLC)-MS. RO was calculated from a Cunningham-Lassen plot, based on the total distribution volume of [(11)C]SA4503 determined by Logan graphical analysis. Cognitive performance was assessed using the passive avoidance (PA) test. RESULTS Cutamesine at a dose of 1.0 mg/kg reversed REM SD-induced cognitive deficit and occupied 92 % of the sigma-1 receptor population. A lower dose (0.3 mg/kg) occupied 88 % of the receptors but did not significantly improve cognition. CONCLUSION The anti-amnesic effect of cutamesine in this animal model may be related to longer exposure at a higher dose and/or drug binding to secondary targets.
Collapse
Affiliation(s)
- Nisha K Ramakrishnan
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ramakrishnan NK, Marosi K, Nyakas CJ, Kwizera C, Elsinga PH, Ishiwata K, Luiten PGM, Dierckx RAJO, van Waarde A. Altered sigma-1 receptor expression in two animal models of cognitive impairment. Mol Imaging Biol 2015; 17:231-8. [PMID: 25273321 DOI: 10.1007/s11307-014-0780-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Sigma-1 receptors are involved in learning and memory processes. We assessed sigma-1 receptor expression and memory function in two animal models of cognitive impairment. PROCEDURES Male Wistar-Hannover rats were either lesioned by unilateral injection of N-methyl-D-aspartic acid in the nucleus basalis, or deprived of rapid eye movement sleep for 48 h, using the modified multiple platform method. Sigma-1 receptor expression was examined with the positron emission tomography radiotracer [(11)C]SA4503, immunohistochemistry, and Western blotting. RESULTS Cortical tracer uptake after 1 week was not significantly affected by lesioning. Immunohistochemistry revealed moderate increases of sigma-1 receptors at bregma level -2.8, in parietal cortex layer V of the lesioned hemisphere. Sleep deprivation lowered passive avoidance test scores and reduced [(11)C]SA4503 accumulation and sigma-1 receptor expression in pons. CONCLUSIONS Cholinergic lesioning causes an increase of sigma-1 receptor expression in a small cortical area which may be neuroprotective. Sleep deprivation decreases receptor expression in midbrain and pons.
Collapse
Affiliation(s)
- Nisha K Ramakrishnan
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Baud MO, Magistretti PJ, Petit JM. Sustained sleep fragmentation induces sleep homeostasis in mice. Sleep 2015; 38:567-79. [PMID: 25325477 DOI: 10.5665/sleep.4572] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/14/2014] [Indexed: 01/12/2023] Open
Abstract
STUDY OBJECTIVES Sleep fragmentation (SF) is an integral feature of sleep apnea and other prevalent sleep disorders. Although the effect of repetitive arousals on cognitive performance is well documented, the effects of long-term SF on electroencephalography (EEG) and molecular markers of sleep homeostasis remain poorly investigated. To address this question, we developed a mouse model of chronic SF and characterized its effect on EEG spectral frequencies and the expression of genes previously linked to sleep homeostasis including clock genes, heat shock proteins, and plasticity-related genes. DESIGN N/A. SETTING Animal sleep research laboratory. PARTICIPANTS Sixty-six C57BL6/J adult mice. INTERVENTIONS Instrumental sleep disruption at a rate of 60/h during 14 days. MEASUREMENTS AND RESULTS Locomotor activity and EEG were recorded during 14 days of SF followed by recovery for 2 days. Despite a dramatic number of arousals and decreased sleep bout duration, SF minimally reduced total quantity of sleep and did not significantly alter its circadian distribution. Spectral analysis during SF revealed a homeostatic drive for slow wave activity (SWA; 1-4 Hz) and other frequencies as well (4-40 Hz). Recordings during recovery revealed slow wave sleep consolidation and a transient rebound in SWA, and paradoxical sleep duration. The expression of selected genes was not induced following chronic SF. CONCLUSIONS Chronic SF increased sleep pressure confirming that altered quality with preserved quantity triggers core sleep homeostasis mechanisms. However, it did not induce the expression of genes induced by sleep loss, suggesting that these molecular pathways are not sustainably activated in chronic diseases involving SF.
Collapse
Affiliation(s)
- Maxime O Baud
- Laboratory of Neuroenergetic and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Neurology, University of California at San Francisco (UCSF), San Francisco, CA
| | - Pierre J Magistretti
- Laboratory of Neuroenergetic and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, KSA.,Centre de Neurosciences Psychiatriques, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Prilly, Switzerland
| | - Jean-Marie Petit
- Laboratory of Neuroenergetic and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Centre de Neurosciences Psychiatriques, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Prilly, Switzerland
| |
Collapse
|