1
|
Chen X, Li H, Huang B, Ruan J, Li X, Li Q. High impact works on stem cell transplantation in intervertebral disc degeneration. BMC Musculoskelet Disord 2024; 25:1029. [PMID: 39702055 DOI: 10.1186/s12891-024-08131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Low back pain is a major disorder that causes disability and is strongly associated with intervertebral disc degeneration (IDD). Because of the limitations of contemporary interventions, stem cell transplantation (SCT) has been increasingly used to regenerate degenerative discs. Nevertheless, analyses of high-impact papers in this field are rare. This study aimed to determine and analyze the 100 highest-cited documents on SCT in IDD. METHODS The 100 highest-cited documents were retrieved from the Web of Science (WoS) database. Descriptive statistics were calculated and correlation analysis was conducted to determine the relationship between WoS citations, the Altmetric Attention Score (AAS), and Dimensions citations. RESULTS The citation counts of the top 100 most cited papers ranged from 13 to 372. These studies were conducted in 17 countries and were published in 48 journals between 2003 and 2021. The top three contributing countries were the China (31), United States (22), and Japan (14). Bone marrow-derived stem cells were the most common type of stem cells (70.00%), followed by adipose-derived stem cells (13.75%), and nucleus pulposus-derived stem cells (7.50). Rabbit was the most studied species (41.25%), followed by rat (21.25%), human (13.75%), sheep (8.75%), dog (8.75%), and pig (6.25%). Tokai University School of Medicine (11) had the largest number of documents, followed by The University of Hong Kong (8), and Southeast University (4). Sakai D (10) was the most fruitful author, followed by Cheung KMC (6), Melrose J (3), Pettine K (3), Lotz JC (3), and Murphy MB (3). We observed a very high correlation between the WoS and Dimensions citations (p < 0.001, r = 0.994). CONCLUSIONS This study highlights the highest impact works on SCT in IDD, thereby providing a deeper understanding of the historical works related to SCT in IDD, as well as benefits for future studies in this field.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Hao Li
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Baoci Huang
- Department of Ultrasound, Guangdong Second Provincial General Hospital Guangzhou City, Guangzhou, China
| | - Jiajian Ruan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Li
- Department of Dermatology, Panyu Hospital of Chinese Medicine, Guangzhou, China.
| | - Qian Li
- Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Dermatology, Panyu Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Ohnishi T, Homan K, Fukushima A, Ukeba D, Iwasaki N, Sudo H. A Review: Methodologies to Promote the Differentiation of Mesenchymal Stem Cells for the Regeneration of Intervertebral Disc Cells Following Intervertebral Disc Degeneration. Cells 2023; 12:2161. [PMID: 37681893 PMCID: PMC10486900 DOI: 10.3390/cells12172161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD), a highly prevalent pathological condition worldwide, is widely associated with back pain. Treatments available compensate for the impaired function of the degenerated IVD but typically have incomplete resolutions because of their adverse complications. Therefore, fundamental regenerative treatments need exploration. Mesenchymal stem cell (MSC) therapy has been recognized as a mainstream research objective by the World Health Organization and was consequently studied by various research groups. Implanted MSCs exert anti-inflammatory, anti-apoptotic, and anti-pyroptotic effects and promote extracellular component production, as well as differentiation into IVD cells themselves. Hence, the ultimate goal of MSC therapy is to recover IVD cells and consequently regenerate the extracellular matrix of degenerated IVDs. Notably, in addition to MSC implantation, healthy nucleus pulposus (NP) cells (NPCs) have been implanted to regenerate NP, which is currently undergoing clinical trials. NPC-derived exosomes have been investigated for their ability to differentiate MSCs from NPC-like phenotypes. A stable and economical source of IVD cells may include allogeneic MSCs from the cell bank for differentiation into IVD cells. Therefore, multiple alternative therapeutic options should be considered if a refined protocol for the differentiation of MSCs into IVD cells is established. In this study, we comprehensively reviewed the molecules, scaffolds, and environmental factors that facilitate the differentiation of MSCs into IVD cells for regenerative therapies for IDD.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Kentaro Homan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Akira Fukushima
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Daisuke Ukeba
- Department of Orthopedic Surgery, Hokkaido University Hospital, Sapporo 060-8648, Japan;
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
3
|
Smith MM, Melrose J. Pentosan Polysulfate Affords Pleotropic Protection to Multiple Cells and Tissues. Pharmaceuticals (Basel) 2023; 16:437. [PMID: 36986536 PMCID: PMC10132487 DOI: 10.3390/ph16030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Pentosan polysulfate (PPS), a small semi-synthetic highly sulfated heparan sulfate (HS)-like molecule, shares many of the interactive properties of HS. The aim of this review was to outline the potential of PPS as an interventional therapeutic protective agent in physiological processes affecting pathological tissues. PPS is a multifunctional molecule with diverse therapeutic actions against many disease processes. PPS has been used for decades in the treatment of interstitial cystitis and painful bowel disease, it has tissue-protective properties as a protease inhibitor in cartilage, tendon and IVD, and it has been used as a cell-directive component in bioscaffolds in tissue engineering applications. PPS regulates complement activation, coagulation, fibrinolysis and thrombocytopenia, and it promotes the synthesis of hyaluronan. Nerve growth factor production in osteocytes is inhibited by PPS, reducing bone pain in osteoarthritis and rheumatoid arthritis (OA/RA). PPS also removes fatty compounds from lipid-engorged subchondral blood vessels in OA/RA cartilage, reducing joint pain. PPS regulates cytokine and inflammatory mediator production and is also an anti-tumor agent that promotes the proliferation and differentiation of mesenchymal stem cells and the development of progenitor cell lineages that have proven to be useful in strategies designed to effect repair of the degenerate intervertebral disc (IVD) and OA cartilage. PPS stimulates proteoglycan synthesis by chondrocytes in the presence or absence of interleukin (IL)-1, and stimulates hyaluronan production by synoviocytes. PPS is thus a multifunctional tissue-protective molecule of potential therapeutic application for a diverse range of disease processes.
Collapse
Affiliation(s)
- Margaret M. Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
- Graduate Schools of Biomedical Engineering, University of NSW, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
4
|
Constant C, Hom WW, Nehrbass D, Carmel E, Albers CE, Deml MC, Gehweiler D, Lee Y, Hecht A, Grad S, Iatridis JC, Zeiter S. Comparison and optimization of sheep in vivo intervertebral disc injury model. JOR Spine 2022; 5:e1198. [PMID: 35783908 PMCID: PMC9238284 DOI: 10.1002/jsp2.1198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022] Open
Abstract
Background The current standard of care for intervertebral disc (IVD) herniation, surgical discectomy, does not repair annulus fibrosus (AF) defects, which is partly due to the lack of effective methods to do so and is why new repair strategies are widely investigated and tested preclinically. There is a need to develop a standardized IVD injury model in large animals to enable comparison and interpretation across preclinical study results. The purpose of this study was to compare in vivo IVD injury models in sheep to determine which annulus fibrosus (AF) defect type combined with partial nucleus pulposus (NP) removal would better mimic degenerative human spinal pathologies. Methods Six skeletally mature sheep were randomly assigned to one of the two observation periods (1 and 3 months) and underwent creation of 3 different AF defect types (slit, cruciate, and box-cut AF defects) in conjunction with 0.1 g NP removal in three lumbar levels using a lateral retroperitoneal surgical approach. The spine was monitored by clinical CT scans pre- and postoperatively, at 2 weeks and euthanasia, and by magnetic resonance imaging (MRI) and histology after euthanasia to determine the severity of degeneration (disc height loss, Pfirrmann grading, semiquantitative histopathology grading). Results All AF defects led to significant degenerative changes detectable on CT and MR images, produced bulging of disc tissue without disc herniation and led to degenerative and inflammatory histopathological changes. However, AF defects were not equal in terms of disc height loss at 3 months postoperatively; the cruciate and box-cut AF defects showed significantly decreased disc height compared to their preoperative height, with the box-cut defect creating the greatest disc height loss, while the slit AF defect showed restoration of normal preoperative disc height. Conclusions The tested IVD injury models do not all generate comparable disc degeneration but can be considered suitable IVD injury models to investigate new treatments. Results of the current study clearly indicate that slit AF defect should be avoided if disc height is used as one of the main outcomes; additional confirmatory studies may be warranted to generalize this finding.
Collapse
Affiliation(s)
| | - Warren W. Hom
- Department of OrthopaedicsIcahn School of Medicine, Mount Sinai Health SystemNew YorkNew YorkUSA
| | | | - Eric‐Norman Carmel
- Département de sciences cliniques, Faculté de médecine vétérinaireUniversité de MontréalSaint‐HyacintheCanada
| | - Christoph E. Albers
- Department of Orthopaedic Surgery & TraumatologyInselspital, University Hospital BernBernSwitzerland
| | - Moritz C. Deml
- Department of Orthopaedic Surgery & TraumatologyInselspital, University Hospital BernBernSwitzerland
| | | | - Yunsoo Lee
- Department of OrthopaedicsIcahn School of Medicine, Mount Sinai Health SystemNew YorkNew YorkUSA
| | - Andrew Hecht
- Department of OrthopaedicsIcahn School of Medicine, Mount Sinai Health SystemNew YorkNew YorkUSA
| | | | - James C. Iatridis
- Department of OrthopaedicsIcahn School of Medicine, Mount Sinai Health SystemNew YorkNew YorkUSA
| | | |
Collapse
|
5
|
Malli SE, Kumbhkarn P, Dewle A, Srivastava A. Evaluation of Tissue Engineering Approaches for Intervertebral Disc Regeneration in Relevant Animal Models. ACS APPLIED BIO MATERIALS 2021; 4:7721-7737. [PMID: 35006757 DOI: 10.1021/acsabm.1c00500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Translation of tissue engineering strategies for the regeneration of intervertebral disc (IVD) requires a strong understanding of pathophysiology through the relevant animal model. There is no relevant animal model due to differences in disc anatomy, cellular composition, extracellular matrix components, disc physiology, and mechanical strength from humans. However, available animal models if used correctly could provide clinically relevant information for the translation into humans. In this review, we have investigated different types of strategies for the development of clinically relevant animal models to study biomaterials, cells, biomolecular or their combination in developing tissue engineering-based treatment strategies. Tissue engineering strategies that utilize various animal models for IVD regeneration are summarized and outcomes have been discussed. The understanding of animal models for the validation of regenerative approaches is employed to understand and treat the pathophysiology of degenerative disc disease (DDD) before proceeding for human trials. These animal models play an important role in building a therapeutic regime for IVD tissue regeneration, which can serve as a platform for clinical applications.
Collapse
Affiliation(s)
- Sweety Evangeli Malli
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Pranav Kumbhkarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Ankush Dewle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| |
Collapse
|
6
|
Peredo AP, Gullbrand SE, Smith HE, Mauck RL. Putting the Pieces in Place: Mobilizing Cellular Players to Improve Annulus Fibrosus Repair. TISSUE ENGINEERING. PART B, REVIEWS 2021; 27:295-312. [PMID: 32907498 PMCID: PMC10799291 DOI: 10.1089/ten.teb.2020.0196] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intervertebral disc (IVD) is an integral load-bearing tissue that derives its function from its composite structure and extracellular matrix composition. IVD herniations involve the failure of the annulus fibrosus (AF) and the extrusion of the nucleus pulposus beyond the disc boundary. Disc herniations can impinge the neural elements and cause debilitating pain and loss of function, posing a significant burden on individual patients and society as a whole. Patients with persistent symptoms may require surgery; however, surgical intervention fails to repair the ruptured AF and is associated with the risk for reherniation and further disc degeneration. Given the limitations of AF endogenous repair, many attempts have been made toward the development of effective repair approaches that reestablish IVD function. These methods, however, fail to recapitulate the composition and organization of the native AF, ultimately resulting in inferior tissue mechanics and function over time and high rates of reherniation. Harnessing the cellular function of cells (endogenous or exogenous) at the repair site through the provision of cell-instructive cues could enhance AF tissue regeneration and, ultimately, improve healing outcomes. In this study, we review the diverse approaches that have been developed for AF repair and emphasize the potential for mobilizing the appropriate cellular players at the site of injury to improve AF healing. Impact statement Conventional treatments for intervertebral disc herniation fail to repair the annulus fibrosus (AF), increasing the risk for recurrent herniation. The lack of repair devices in the market has spurred the development of regenerative approaches, yet most of these rely on a scarce endogenous cell population to repair large injuries, resulting in inadequate regeneration. This review identifies current and developing strategies for AF repair and highlights the potential for harnessing cellular function to improve AF regeneration. Ideal cell sources, differentiation strategies, and delivery methods are discussed to guide the design of repair systems that leverage specialized cells to achieve superior outcomes.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Harvey E. Smith
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Robert L. Mauck
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Alvites RD, Branquinho MV, Sousa AC, Lopes B, Sousa P, Mendonça C, Atayde LM, Maurício AC. Small Ruminants and Its Use in Regenerative Medicine: Recent Works and Future Perspectives. BIOLOGY 2021; 10:biology10030249. [PMID: 33810087 PMCID: PMC8004958 DOI: 10.3390/biology10030249] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Small ruminants such as sheep and goats have been increasingly used as animal models due to their dimensions, physiology and anatomy identical to those of humans. Their low costs, ease of accommodation, great longevity and easy handling make them advantageous animals to be used in a wide range of research work. Although there is already a lot of scientific literature describing these species, their use still lacks some standardization. The purpose of this review is to summarize the general principles related to the use of small ruminants as animal models for scientific research. Abstract Medical and translational scientific research requires the use of animal models as an initial approach to the study of new therapies and treatments, but when the objective is an exploration of translational potentialities, classical models fail to adequately mimic problems in humans. Among the larger animal models that have been explored more intensely in recent decades, small ruminants, namely sheep and goats, have emerged as excellent options. The main advantages associated to the use of these animals in research works are related to their anatomy and dimensions, larger than conventional laboratory animals, but very similar to those of humans in most physiological systems, in addition to their low maintenance and feeding costs, tendency to be docile, long life expectancies and few ethical complications raised in society. The most obvious disadvantages are the significant differences in some systems such as the gastrointestinal, and the reduced amount of data that limits the comparison between works and the validation of the characterization essays. Despite everything, recently these species have been increasingly used as animal models for diseases in different systems, and the results obtained open doors for their more frequent and advantageous use in the future. The purpose of this review is to summarize the general principles related to the use of small ruminants as animal models, with a focus on regenerative medicine, to group the most relevant works and results published recently and to highlight the potentials for the near future in medical research.
Collapse
Affiliation(s)
- Rui Damásio Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Mariana Vieira Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Carla Mendonça
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Luís Miguel Atayde
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-919-071-286 or +351-220-428-000
| |
Collapse
|
8
|
Peredo AP, Gullbrand SE, Mauck RL, Smith HE. A challenging playing field: Identifying the endogenous impediments to annulus fibrosus repair. JOR Spine 2021; 4:e1133. [PMID: 33778407 PMCID: PMC7984000 DOI: 10.1002/jsp2.1133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc (IVD) herniations, caused by annulus fibrosus (AF) tears that enable disc tissue extrusion beyond the disc space, are very prevalent, especially among adults in the third to fifth decade of life. Symptomatic herniations, in which the extruded tissue compresses surrounding nerves, are characterized by back pain, numbness, and tingling and can cause extreme physical disability. Patients whose symptoms persist after nonoperative intervention may undergo surgical removal of the herniated tissue via microdiscectomy surgery. The AF, however, which has a poor endogenous healing ability, is left unrepaired increasing the risk for re-herniation and pre-disposing the IVD to degenerative disc disease. The lack of understanding of the mechanisms involved in native AF repair limits the design of repair systems that overcome the impediments to successful AF restoration. Moreover, the complexity of the AF structure and the challenging anatomy of the repair environment represents a significant challenge for the design of new repair devices. While progress has been made towards the development of an effective AF repair technique, these methods have yet to demonstrate long-term repair and recovery of IVD biomechanics. In this review, the limitations of endogenous AF healing are discussed and key cellular events and factors involved are highlighted to identify potential therapeutic targets that can be integrated into AF repair methods. Clinical repair strategies and their limitations are described to further guide the design of repair approaches that effectively restore native tissue structure and function.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Robert L. Mauck
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Harvey E. Smith
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
9
|
Hei L, Ge Z, Yuan W, Suo L, Suo Z, Lin L, Ding H, Qiu Y. Evaluation of a rabbit model of adjacent intervertebral disc degeneration after fixation and fusion and maintenance in an upright feeding cage. Neurol Res 2021; 43:447-457. [PMID: 33455565 DOI: 10.1080/01616412.2020.1866804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose: To establish an animal model of adjacent intervertebral disc degeneration by performing spinal fixation and fusion after percutaneous needle puncture and removal of the intervertebral disc or percutaneous needling of the vertebral body without removal of the intervertebral disc. Methods: We established a model of adjacent intervertebral disc degeneration after spinal fixation and fusion of rabbits maintained in upright feeding cages. Twenty-five healthy New Zealand rabbits were used. In the experimental group, the L3-4 intervertebral disc was percutaneously punctured with an 18-G needle under fluoroscopic guidance. Once degeneration occurred, the L3-4 disc was excised, and interbody fusion was performed. The changes in the adjacent intervertebral discs were observed periodically via X-ray and MRI. In the control group, the L3 vertebral body was percutaneously needled with an 18-G needle under fluoroscopic guidance. The changes in the adjacent intervertebral discs were observed on X-ray and MRI at 4, 8, and 12 weeks after puncture in both groups. At 12 weeks postoperatively, the animals were euthanized, and the histopathologic changes of the adjacent intervertebral discs were assessed using hematoxylin-eosin and TdT-mediated dUTP nick end labeling (TUNEL) staining. The mRNA and protein expressions of aggrecanase-1 were measured by real-time quantitative PCR and Western blot analysis. The product of aggrecan degradation, Aggrecan ARGxx, was measured by Western blot analysis. Results: The degeneration of the intervertebral discs in the adjacent segments in the experimental group increased over time. The mRNA and protein expressions of aggrecanase-1 and the expression of Aggrecan ARGxx in the experimental group were significantly increased after puncture, fixation, and fusion (P<0.05). The adjacent intervertebral disc sections had a significantly lower cell density and significantly higher TUNEL-positive cell rate in the experimental group than the control group (P<0.05). Conclusion: The results suggest that the occurrence of intervertebral disc degeneration in adjacent segments may begin with the degeneration of the punctured intervertebral disc.
Collapse
Affiliation(s)
- Long Hei
- Department of Orthopedics, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' An, China.,Department of Spine Surgery, The General Hospital of Ningxia Medical University
| | - Zhaohui Ge
- Department of Orthopedics, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' An, China.,Department of Spine Surgery, The General Hospital of Ningxia Medical University
| | - Wenqi Yuan
- Department of Spine Surgery, The General Hospital of Ningxia Medical University
| | - Ling Suo
- Fourth Clinical Department, Minkang Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Zhigang Suo
- Department of Spine Surgery, The General Hospital of Ningxia Medical University
| | - Leilei Lin
- Department of Spine Surgery, The General Hospital of Ningxia Medical University
| | - Huiqiang Ding
- Department of Spine Surgery, The General Hospital of Ningxia Medical University
| | - Yusheng Qiu
- Department of Orthopedics, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' An, China
| |
Collapse
|
10
|
Synergistic Utilization of Necrostatin-1 and Z-VAD-FMK Efficiently Promotes the Survival of Compression-Induced Nucleus Pulposus Cells via Alleviating Mitochondrial Dysfunction. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6976317. [PMID: 33376733 PMCID: PMC7738793 DOI: 10.1155/2020/6976317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/23/2020] [Accepted: 11/19/2020] [Indexed: 01/10/2023]
Abstract
We recently reported that necroptosis contributed to compression-induced nucleus pulposus (NP) cells death. In the current study, we investigated the regulative effect of necroptosis inhibitor Necrostatin-1 on NP cells apoptosis and autophagy. Necrostatin-1, autophagy inhibitor 3-Methyladenine and apoptosis inhibitor Z-VAD-FMK were employed, and NP cells were exposed to 1.0 MPa compression for 0, 24 and 36 h. Necroptosis-associated molecules were measured by Western blot and RT-PCR. Autophagy and apoptosis levels were evaluated by Western blot and quantified by flow cytometry after monodansylcadaverine and Annexin V-FITC/propidium iodide staining, respectively. The cell viability and cell death were also examined. Furthermore, we measured mitochondrial membrane potential (MMP), mitochondrial permeability transition pore (MPTP) and indices of oxidative stress to assess mitochondrial dysfunction. The results established that Necrostatin-1 blocked NP cells autophagy, and 3-Methyladenine had little influence on NP cells necroptosis. The Necrostatin-1+3-Methyladenine treatment exerted almost the same role as Necrostatin-1 in reducing NP cells death. Necrostatin-1 restrained NP cells apoptosis, while Z-VAD-FMK enhanced NP cells necroptosis. The Necrostatin-1+Z-VAD-FMK treatment provided more prominent role in blocking NP cells death compared with Necrostatin-1, consistent with increased MMP, reduced opening of MPTP and oxidative stress. In summary, the synergistic utilization of Necrostatin-1 and Z-VAD-FMK is a very worthwhile solution in preventing compression-mediated NP cells death, which might be largely attributed to restored mitochondrial function.
Collapse
|
11
|
Ribitsch I, Baptista PM, Lange-Consiglio A, Melotti L, Patruno M, Jenner F, Schnabl-Feichter E, Dutton LC, Connolly DJ, van Steenbeek FG, Dudhia J, Penning LC. Large Animal Models in Regenerative Medicine and Tissue Engineering: To Do or Not to Do. Front Bioeng Biotechnol 2020; 8:972. [PMID: 32903631 PMCID: PMC7438731 DOI: 10.3389/fbioe.2020.00972] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Rapid developments in Regenerative Medicine and Tissue Engineering has witnessed an increasing drive toward clinical translation of breakthrough technologies. However, the progression of promising preclinical data to achieve successful clinical market authorisation remains a bottleneck. One hurdle for progress to the clinic is the transition from small animal research to advanced preclinical studies in large animals to test safety and efficacy of products. Notwithstanding this, to draw meaningful and reliable conclusions from animal experiments it is critical that the species and disease model of choice is relevant to answer the research question as well as the clinical problem. Selecting the most appropriate animal model requires in-depth knowledge of specific species and breeds to ascertain the adequacy of the model and outcome measures that closely mirror the clinical situation. Traditional reductionist approaches in animal experiments, which often do not sufficiently reflect the studied disease, are still the norm and can result in a disconnect in outcomes observed between animal studies and clinical trials. To address these concerns a reconsideration in approach will be required. This should include a stepwise approach using in vitro and ex vivo experiments as well as in silico modeling to minimize the need for in vivo studies for screening and early development studies, followed by large animal models which more closely resemble human disease. Naturally occurring, or spontaneous diseases in large animals remain a largely untapped resource, and given the similarities in pathophysiology to humans they not only allow for studying new treatment strategies but also disease etiology and prevention. Naturally occurring disease models, particularly for longer lived large animal species, allow for studying disorders at an age when the disease is most prevalent. As these diseases are usually also a concern in the chosen veterinary species they would be beneficiaries of newly developed therapies. Improved awareness of the progress in animal models is mutually beneficial for animals, researchers, human and veterinary patients. In this overview we describe advantages and disadvantages of various animal models including domesticated and companion animals used in regenerative medicine and tissue engineering to provide an informed choice of disease-relevant animal models.
Collapse
Affiliation(s)
- Iris Ribitsch
- Veterm, Department for Companion Animals and Horses, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pedro M. Baptista
- Laboratory of Organ Bioengineering and Regenerative Medicine, Health Research Institute of Aragon (IIS Aragon), Zaragoza, Spain
| | - Anna Lange-Consiglio
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Florien Jenner
- Veterm, Department for Companion Animals and Horses, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Schnabl-Feichter
- Clinical Unit of Small Animal Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Luke C. Dutton
- Department of Clinical Sciences and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - David J. Connolly
- Clinical Unit of Small Animal Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Frank G. van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - Louis C. Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
12
|
Novel Application of the Pfirrmann Disc Degeneration Grading System to 9.4T MRI: Higher Reliability Compared to 3T MRI. Spine (Phila Pa 1976) 2019; 44:E766-E773. [PMID: 31205169 DOI: 10.1097/brs.0000000000002967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Reliability study. OBJECTIVE To evaluate the applicability and reliability of 9.4T magnetic resonance imaging (MRI) in the assessment of degenerative disc disease compared with 3T MRI. SUMMARY OF BACKGROUND DATA MRI is a reliable indicator of biochemical changes in the intervertebral disc (IVD) including hydration status, proteoglycan content, and disc degeneration compared with anatomical and histological studies. High-field 9.4T MRI has been shown to provide superior resolution and anatomical detail. However, it has not been tested against current standard MRI techniques. METHODS Disc degeneration was initiated in 36 skeletally mature ewes 6 months prior to necropsy via validated surgical IVD injury models using either scalpel injury or drill-bit injury techniques at lumbar spine levels L2/3 and L3/4 with L1/2, L4/5, and L5/6 serving as control discs. All ex vivo IVDs were examined with 9.4T MRI and 3T MRI. All scans were analyzed using the Pfirrmann grading system by four independent observers. Intra- and interobserver reliability was assessed using kappa statistics and Spearman correlation. RESULTS Inter- and intraobserver agreement for 9.4T MRI was excellent, both at κ 0.91 (P < 0.001). Comparatively, 3T interobserver reliability demonstrated substantial agreement at κ 0.61 (P < 0.001). Complete agreement was obtained in 92.7% to 100% of discs at 9.4T compared with 69.7% to 83.1% at 3T. A difference of one grade or more occurred in 6.7% at 9.4T and 39.3% at 3T. 9.4T MRI scored 97.3% of discs as grade 1 to 2 compared with 71.3% at 3T. 3T MRI tended to over-score the extent of disc degeneration with 28.6% of discs scored as grade 3 or higher compared with 2.7% at 9.4T MRI. CONCLUSION 9.4T MRI study of IVD degeneration using the Pfirrmann grading system demonstrated excellent inter- and intraobserver reliability. Comparatively, 3T MRI demonstrated a tendency to over score the extent of disc degeneration. This improved reliability of 9.4T MRI holds great potential for its clinical applications. LEVEL OF EVIDENCE 3.
Collapse
|
13
|
|
14
|
Gugjoo MB, Amarpal. Mesenchymal stem cell research in sheep: Current status and future prospects. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Daly CD, Ghosh P, Badal T, Shimmon R, Jenkin G, Oehme D, Cooper-White J, Sher I, Chandra RV, Goldschlager T. A Comparison of Two Ovine Lumbar Intervertebral Disc Injury Models for the Evaluation and Development of Novel Regenerative Therapies. Global Spine J 2018; 8:847-859. [PMID: 30560038 PMCID: PMC6293427 DOI: 10.1177/2192568218779988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
STUDY DESIGN Large animal research. OBJECTIVE Lumbar discectomy is the most commonly performed spinal surgical procedure. We investigated 2 large animal models of lumbar discectomy in order to study the regenerative capacity of mesenchymal stem cells following disc injury. METHODS Twelve adult ewes underwent baseline 3-T magnetic resonance imaging (MRI) followed by lumbar intervertebral disc injury by either drill bit (n = 6) or annulotomy and partial nucleotomy (APN) (n = 6). Necropsies were performed 6 months later. Lumbar spines underwent 3-T and 9.4-T MRI prior to histological, morphological and biochemical analysis. RESULTS Drill bit-injured (DBI) and APN-injured discs demonstrated increased Pfirrmann grades relative to uninjured controls (P < .005), with no difference between the 2 models. Disc height index loss was greater in the APN group compared with the DBI group (P < .005). Gross morphology injury scores were higher in APN than DBI discs (P < .05) and both were higher than controls (P < .005). Proteoglycan was reduced in the discs of both injury models relative to controls (P < .005), but lower in the APN group (P < .05). Total collagen of the APN group disc regions was higher than DBI and control discs (P < .05). Histology revealed more matrix degeneration, vascular infiltration, and granulation in the APN model. CONCLUSION Although both models produced disc degeneration, the APN model better replicated the pathobiology of human discs postdiscectomy. We therefore concluded that the APN model was a more appropriate model for the investigation of the regenerative capacity of mesenchymal stem cells administered postdiscectomy.
Collapse
Affiliation(s)
- Chris D. Daly
- Monash University, Clayton, Victoria, Australia,Monash Medical Centre, Clayton, Victoria, Australia,Chris D. Daly, The Ritchie Centre, Hudson Institute
of Medical Research, Monash University, 246 Clayton Road, Clayton, Victoria, 3168,
Australia.
| | - Peter Ghosh
- Monash University, Clayton, Victoria, Australia,Proteobioactives, Pty Ltd, Sydney, New South Wales, Australia
| | - Tanya Badal
- University of Technology Sydney, Broadway, New South Wales, Australia
| | - Ronald Shimmon
- University of Technology Sydney, Broadway, New South Wales, Australia
| | | | - David Oehme
- St Vincent’s Hospital, Fitzroy, Victoria, Australia
| | | | - Idrees Sher
- Monash University, Clayton, Victoria, Australia,Monash Medical Centre, Clayton, Victoria, Australia
| | - Ronil V. Chandra
- Monash University, Clayton, Victoria, Australia,Monash Medical Centre, Clayton, Victoria, Australia
| | - Tony Goldschlager
- Monash University, Clayton, Victoria, Australia,Monash Medical Centre, Clayton, Victoria, Australia
| |
Collapse
|
16
|
Zhu J, Moawad AR, Wang CY, Li HF, Ren JY, Dai YF. Advances in in vitro production of sheep embryos. Int J Vet Sci Med 2018; 6:S15-S26. [PMID: 30761316 PMCID: PMC6161858 DOI: 10.1016/j.ijvsm.2018.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/18/2022] Open
Abstract
Sheep is an important livestock in the world providing meat, milk and wool for human beings. With increasing human population, the worldwide needs of production of sheep have elevated. To meet the needs, the assistant reproductive technology including ovine in vitro embryo production (ovine IVP) is urgently required to enhance the effective production of sheep in the world. To learn the status of ovine IVP, we collected some publications related to ovine IVP through PubMed and analyzed the progress in ovine IVP made in the last five years (2012-2017). We made comparisons of these data and found that the recent advances in ovine IVP has been made slowly comparable to that of ovine IVP two decades ago. Therefore, we suggested two strategies or approaches to tackle the main problems in ovine IVP and expect that the efficiency of ovine IVP could be improved significantly when the approaches would be implemented.
Collapse
Affiliation(s)
- Jie Zhu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Adel R. Moawad
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, PO BOX 12211, Giza, Egypt
| | - Chun-Yu Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Hui-Feng Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Jing-Yu Ren
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Yan-Feng Dai
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
17
|
Wu J, Shimmon S, Paton S, Daly C, Goldschlager T, Gronthos S, Zannettino ACW, Ghosh P. Pentosan polysulfate binds to STRO-1 + mesenchymal progenitor cells, is internalized, and modifies gene expression: a novel approach of pre-programing stem cells for therapeutic application requiring their chondrogenesis. Stem Cell Res Ther 2017; 8:278. [PMID: 29237492 PMCID: PMC5729458 DOI: 10.1186/s13287-017-0723-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The pharmaceutical agent pentosan polysulfate (PPS) is known to induce proliferation and chondrogenesis of mesenchymal progenitor cells (MPCs) in vitro and in vivo. However, the mechanism(s) of action of PPS in mediating these effects remains unresolved. In the present report we address this issue by investigating the binding and uptake of PPS by MPCs and monitoring gene expression and proteoglycan biosynthesis before and after the cells had been exposed to limited concentrations of PPS and then re-established in culture in the absence of the drug (MPC priming). METHODS Immuno-selected STRO-1+ mesenchymal progenitor stem cells (MPCs) were prepared from human bone marrow aspirates and established in culture. The kinetics of uptake, shedding, and internalization of PPS by MPCs was determined by monitoring the concentration-dependent loss of PPS media concentrations using an enzyme-linked immunosorbent assay (ELISA) and the uptake of fluorescein isothiocyanate (FITC)-labelled PPS by MPCs. The proliferation of MPCs, following pre-incubation and removal of PPS (priming), was assessed using the Wst-8 assay method, and proteoglycan synthesis was determined by the incorporation of 35SO4 into their sulphated glycosaminoglycans. The changes in expression of MPC-related cell surface antigens of non-primed and PPS-primed MPCs from three donors was determined using flow cytometry. RNA sequencing of RNA isolated from non-primed and PPS-primed MPCs from the same donors was undertaken to identify the genes altered by the PPS priming protocol. RESULTS The kinetic studies indicated that, in culture, PPS rapidly binds to MPC surface receptors, followed by internalisation and localization within the nucleus of the cells. Following PPS-priming of MPCs and a further 48 h of culture, both cell proliferation and proteoglycan synthesis were enhanced. Reduced expression of MPC-related cell surface antigen expression was promoted by the PPS priming, and RNA sequencing analysis revealed changes in the expression of 42 genes. CONCLUSION This study has shown that priming of MPCs with low concentrations of PPS enhanced chondrogenesis and MPC proliferation by modifying their characteristic basal gene and protein expression. These findings offer a novel approach to re-programming mesenchymal stem cells for clinical indications which require the repair or regeneration of cartilaginous tissues such as in osteoarthritis and degenerative disc disease.
Collapse
Affiliation(s)
- Jiehua Wu
- Proteobioactives Pty. Ltd., PO Box 174, Balgowlah, Sydney, New South Wales 2093 Australia
- Present address: Minomic International Ltd, Suite 2, 75 Talavera Rd, Macquarie Park, NSW 2113 Australia
| | - Susan Shimmon
- Proteobioactives Pty. Ltd., PO Box 174, Balgowlah, Sydney, New South Wales 2093 Australia
- Present address: School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, PO Box 123, Sydney, NSW 2007 Australia
| | - Sharon Paton
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, University of Adelaide and the Cancer Theme, South Australia Health and Medical Research Institute, Adelaide, South Australia 5000 Australia
| | - Christopher Daly
- Department of Surgery, Monash University, Clayton, Victoria 3168 Australia
- Department of Neurosurgery, Monash Medical Centre, Clayton, Victoria 3168 Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Victoria 3168 Australia
| | - Tony Goldschlager
- Department of Surgery, Monash University, Clayton, Victoria 3168 Australia
- Department of Neurosurgery, Monash Medical Centre, Clayton, Victoria 3168 Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Victoria 3168 Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Andrew C. W. Zannettino
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, University of Adelaide and the Cancer Theme, South Australia Health and Medical Research Institute, Adelaide, South Australia 5000 Australia
| | - Peter Ghosh
- Proteobioactives Pty. Ltd., PO Box 174, Balgowlah, Sydney, New South Wales 2093 Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Victoria 3168 Australia
| |
Collapse
|