1
|
GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat Rev Drug Discov 2018; 18:59-82. [PMID: 30410121 DOI: 10.1038/nrd.2018.180] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 826 G protein-coupled receptors (GPCRs) in the human proteome regulate key physiological processes and thus have long been attractive drug targets. With the crystal structures of more than 50 different human GPCRs determined over the past decade, an initial platform for structure-based rational design has been established for drugs that target GPCRs, which is currently being augmented with cryo-electron microscopy (cryo-EM) structures of higher-order GPCR complexes. Nuclear magnetic resonance (NMR) spectroscopy in solution is one of the key approaches for expanding this platform with dynamic features, which can be accessed at physiological temperature and with minimal modification of the wild-type GPCR covalent structures. Here, we review strategies for the use of advanced biochemistry and NMR techniques with GPCRs, survey projects in which crystal or cryo-EM structures have been complemented with NMR investigations and discuss the impact of this integrative approach on GPCR biology and drug discovery.
Collapse
|
2
|
Eddy MT, Su Y, Silvers R, Andreas L, Clark L, Wagner G, Pintacuda G, Emsley L, Griffin RG. Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR. JOURNAL OF BIOMOLECULAR NMR 2015; 61:299-310. [PMID: 25634301 PMCID: PMC4398622 DOI: 10.1007/s10858-015-9903-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/20/2015] [Indexed: 05/09/2023]
Abstract
The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5-0.3 ppm for (13)C line widths and <0.5 ppm (15)N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the reported assignment approach and the great potential for even more complete assignment studies and de novo structure determination via (1)H detected MAS NMR.
Collapse
Affiliation(s)
- Matthew T. Eddy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yongchao Su
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Silvers
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Loren Andreas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lindsay Clark
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Guido Pintacuda
- Centre de RMN à Tres̀ Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 69100 Villeurbanne, France
| | - Lyndon Emsley
- Centre de RMN à Tres̀ Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 69100 Villeurbanne, France
| | - Robert G. Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding Author:
| |
Collapse
|
3
|
Jia L, Liang S, Sackett K, Xie L, Ghosh U, Weliky DP. REDOR solid-state NMR as a probe of the membrane locations of membrane-associated peptides and proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:154-65. [PMID: 25797012 PMCID: PMC4371142 DOI: 10.1016/j.jmr.2014.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/21/2014] [Accepted: 12/24/2014] [Indexed: 06/01/2023]
Abstract
Rotational-echo double-resonance (REDOR) solid-state NMR is applied to probe the membrane locations of specific residues of membrane proteins. Couplings are measured between protein (13)CO nuclei and membrane lipid or cholesterol (2)H and (31)P nuclei. Specific (13)CO labeling is used to enable unambiguous assignment and (2)H labeling covers a small region of the lipid or cholesterol molecule. The (13)CO-(31)P and (13)CO-(2)H REDOR respectively probe proximity to the membrane headgroup region and proximity to specific insertion depths within the membrane hydrocarbon core. One strength of the REDOR approach is use of chemically-native proteins and membrane components. The conventional REDOR pulse sequence with 100 kHz (2)H π pulses is robust with respect to the (2)H quadrupolar anisotropy. The (2)H T1's are comparable to the longer dephasing times (τ's) and this leads to exponential rather than sigmoidal REDOR buildups. The (13)CO-(2)H buildups are well-fitted to A×(1-e(-γτ)) where A and γ are fitting parameters that are correlated as the fraction of molecules (A) with effective (13)CO-(2)H coupling d=3γ/2. The REDOR approach is applied to probe the membrane locations of the "fusion peptide" regions of the HIV gp41 and influenza virus hemagglutinin proteins which both catalyze joining of the viral and host cell membranes during initial infection of the cell. The HIV fusion peptide forms an intermolecular antiparallel β sheet and the REDOR data support major deeply-inserted and minor shallowly-inserted molecular populations. A significant fraction of the influenza fusion peptide molecules form a tight hairpin with antiparallel N- and C-α helices and the REDOR data support a single peptide population with a deeply-inserted N-helix. The shared feature of deep insertion of the β and α fusion peptide structures may be relevant for fusion catalysis via the resultant local perturbation of the membrane bilayer. Future applications of the REDOR approach may include samples that contain cell membrane extracts and use of lower temperatures and dynamic nuclear polarization to reduce data acquisition times.
Collapse
Affiliation(s)
- Lihui Jia
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, United States
| | - Shuang Liang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, United States
| | - Kelly Sackett
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, United States
| | - Li Xie
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, United States
| | - Ujjayini Ghosh
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, United States
| | - David P Weliky
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, United States.
| |
Collapse
|