1
|
Bansal P, Banda EC, Glatt-Deeley HR, Stoddard CE, Linsley JW, Arora N, Deleschaux C, Ahern DT, Kondaveeti Y, Massey RE, Nicouleau M, Wang S, Sabariego-Navarro M, Dierssen M, Finkbeiner S, Pinter SF. A dynamic in vitro model of Down syndrome neurogenesis with trisomy 21 gene dosage correction. SCIENCE ADVANCES 2024; 10:eadj0385. [PMID: 38848354 PMCID: PMC11160455 DOI: 10.1126/sciadv.adj0385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Excess gene dosage from chromosome 21 (chr21) causes Down syndrome (DS), spanning developmental and acute phenotypes in terminal cell types. Which phenotypes remain amenable to intervention after development is unknown. To address this question in a model of DS neurogenesis, we derived trisomy 21 (T21) human induced pluripotent stem cells (iPSCs) alongside, otherwise, isogenic euploid controls from mosaic DS fibroblasts and equipped one chr21 copy with an inducible XIST transgene. Monoallelic chr21 silencing by XIST is near-complete and irreversible in iPSCs. Differential expression reveals that T21 neural lineages and iPSCs share suppressed translation and mitochondrial pathways and activate cellular stress responses. When XIST is induced before the neural progenitor stage, T21 dosage correction suppresses a pronounced skew toward astrogenesis in neural differentiation. Because our transgene remains inducible in postmitotic T21 neurons and astrocytes, we demonstrate that XIST efficiently represses genes even after terminal differentiation, which will empower exploration of cell type-specific T21 phenotypes that remain responsive to chr21 dosage.
Collapse
Affiliation(s)
- Prakhar Bansal
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Erin C. Banda
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Heather R. Glatt-Deeley
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Christopher E. Stoddard
- Cell and Genome Engineering Core, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Jeremy W. Linsley
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Neha Arora
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Cécile Deleschaux
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Darcy T. Ahern
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Rachael E. Massey
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Michael Nicouleau
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Shijie Wang
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Miguel Sabariego-Navarro
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA, USA
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA, USA
- Neuroscience and Biomedical Sciences Graduate Programs, University of California San Francisco, San Francisco, CA, USA
| | - Stefan F. Pinter
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
2
|
Variation of DNA methylation on the IRX1/2 genes is responsible for the neural differentiation propensity in human induced pluripotent stem cells. Regen Ther 2022; 21:620-630. [PMID: 36514370 PMCID: PMC9719094 DOI: 10.1016/j.reth.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Human induced pluripotent stem cells (hiPSCs) are useful tools for reproducing neural development in vitro. However, each hiPSC line has a different ability to differentiate into specific lineages, known as differentiation propensity, resulting in reduced reproducibility and increased time and funding requirements for research. To overcome this issue, we searched for predictive signatures of neural differentiation propensity of hiPSCs focusing on DNA methylation, which is the main modulator of cellular properties. Methods We obtained 32 hiPSC lines and their comprehensive DNA methylation data using the Infinium MethylationEPIC BeadChip. To assess the neural differentiation efficiency of these hiPSCs, we measured the percentage of neural stem cells on day 7 of induction. Using the DNA methylation data of undifferentiated hiPSCs and their measured differentiation efficiency into neural stem cells as the set of data, and HSIC Lasso, a machine learning-based nonlinear feature selection method, we attempted to identify neural differentiation-associated differentially methylated sites. Results Epigenome-wide unsupervised clustering cannot distinguish hiPSCs with varying differentiation efficiencies. In contrast, HSIC Lasso identified 62 CpG sites that could explain the neural differentiation efficiency of hiPSCs. Features selected by HSIC Lasso were particularly enriched within 3 Mbp of chromosome 5, harboring IRX1, IRX2, and C5orf38 genes. Within this region, DNA methylation rates were correlated with neural differentiation efficiency and were negatively correlated with gene expression of the IRX1/2 genes, particularly in female hiPSCs. In addition, forced expression of the IRX1/2 impaired the neural differentiation ability of hiPSCs in both sexes. Conclusion We for the first time showed that the DNA methylation state of the IRX1/2 genes of hiPSCs is a predictive biomarker of their potential for neural differentiation. The predictive markers for neural differentiation efficiency identified in this study may be useful for the selection of suitable undifferentiated hiPSCs prior to differentiation induction.
Collapse
|
3
|
Bansal P, Ahern DT, Kondaveeti Y, Qiu CW, Pinter SF. Contiguous erosion of the inactive X in human pluripotency concludes with global DNA hypomethylation. Cell Rep 2021; 35:109215. [PMID: 34107261 PMCID: PMC8267460 DOI: 10.1016/j.celrep.2021.109215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/18/2020] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
Female human pluripotent stem cells (hPSCs) routinely undergo inactive X (Xi) erosion. This progressive loss of key repressive features follows the loss of XIST expression, the long non-coding RNA driving X inactivation, and causes reactivation of silenced genes across the eroding X (Xe). To date, the sporadic and progressive nature of erosion has obscured its scale, dynamics, and key transition events. To address this problem, we perform an integrated analysis of DNA methylation (DNAme), chromatin accessibility, and gene expression across hundreds of hPSC samples. Differential DNAme orders female hPSCs across a trajectory from initiation to terminal Xi erosion. Our results identify a cis-regulatory element crucial for XIST expression, trace contiguously growing reactivated domains to a few euchromatic origins, and indicate that the late-stage Xe impairs DNAme genome-wide. Surprisingly, from this altered regulatory landscape emerge select features of naive pluripotency, suggesting that its link to X dosage may be partially conserved in human embryonic development. Reactivation of the silenced X in human female iPSC/ESCs compromises their utility. Bansal et al. perform an integrated genomics analysis to reveal a prevalent X erosion trajectory that they validate in long-term culture. Starting with XIST loss, this trajectory indicates that reactivation may spread contiguously from escapees to silenced genes.
Collapse
Affiliation(s)
- Prakhar Bansal
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Darcy T Ahern
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Catherine W Qiu
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Stefan F Pinter
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
4
|
Brenes AJ, Yoshikawa H, Bensaddek D, Mirauta B, Seaton D, Hukelmann JL, Jiang H, Stegle O, Lamond AI. Erosion of human X chromosome inactivation causes major remodeling of the iPSC proteome. Cell Rep 2021; 35:109032. [PMID: 33910018 PMCID: PMC8097692 DOI: 10.1016/j.celrep.2021.109032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/26/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
X chromosome inactivation (XCI) is a dosage compensation mechanism in female mammals whereby transcription from one X chromosome is repressed. Analysis of human induced pluripotent stem cells (iPSCs) derived from female donors identified that low levels of XIST RNA correlated strongly with erosion of XCI. Proteomic analysis, RNA sequencing (RNA-seq), and polysome profiling showed that XCI erosion resulted in amplified RNA and protein expression from X-linked genes, providing a proteomic characterization of skewed dosage compensation. Increased protein expression was also detected from autosomal genes without an mRNA increase, thus altering the protein-RNA correlation between the X chromosome and autosomes. XCI-eroded lines display an ∼13% increase in total cell protein content, with increased ribosomal proteins, ribosome biogenesis and translation factors, and polysome levels. We conclude that XCI erosion in iPSCs causes a remodeling of the proteome, affecting the expression of a much wider range of proteins and disease-linked loci than previously realized.
Collapse
Affiliation(s)
- Alejandro J Brenes
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK; Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK.
| | - Harunori Yoshikawa
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK; Division of Cell Signalling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Dalila Bensaddek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK; Biosciences Core Labs, Proteomics, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Bogdan Mirauta
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Daniel Seaton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Jens L Hukelmann
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK; Immatics Biotechnologies, Paul-Ehrlich-Str. 15, Tuebingen 72076, Germany
| | - Hao Jiang
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK; European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany; Division of Computational Genomics and Systems Genetic, German Cancer Research Center, Heidelberg, Germany
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK.
| |
Collapse
|
5
|
Addressing Variability and Heterogeneity of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:1-29. [DOI: 10.1007/5584_2019_350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Cantone I, Fisher AG. Human X chromosome inactivation and reactivation: implications for cell reprogramming and disease. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0358. [PMID: 28947657 DOI: 10.1098/rstb.2016.0358] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 11/12/2022] Open
Abstract
X-chromosome inactivation (XCI) is an exemplar of epigenetic regulation that is set up as pluripotent cells differentiate. Once established, XCI is stably propagated, but can be reversed in vivo or by pluripotent reprogramming in vitro Although reprogramming provides a useful model for inactive X (Xi) reactivation in mouse, the relative instability and heterogeneity of human embryonic stem (ES) cells and induced pluripotent stem cells hampers comparable progress in human. Here we review studies aimed at reactivating the human Xi using different reprogramming strategies. We outline our recent results using mouse ES cells to reprogramme female human fibroblasts by cell-cell fusion. We show that pluripotent reprogramming induces widespread and rapid chromatin remodelling in which the human Xi loses XIST and H3K27m3 enrichment and selected Xi genes become reactivated, ahead of mitotic division. Using RNA sequencing to map the extent of human Xi reactivation, and chromatin-modifying drugs to potentiate reactivation, we outline how this approach could be used to better design strategies to re-express human X-linked loci. As cell fusion induces the expression of human pluripotency genes that represent both the 'primed' and 'naive' states, this approach may also offer a fresh opportunity to segregate human pluripotent states with distinct Xi expression profiles, using single-cell-based approaches.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- Irene Cantone
- Lymphocyte Development, MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
| | - Amanda G Fisher
- Lymphocyte Development, MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK .,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
7
|
Lohani N, Bhargava N, Munshi A, Ramalingam S. Pharmacological and molecular approaches for the treatment of β-hemoglobin disorders. J Cell Physiol 2017; 233:4563-4577. [PMID: 29159826 DOI: 10.1002/jcp.26292] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022]
Abstract
β-hemoglobin disorders, such as β-thalassemia and sickle cell anemia are among the most prevalent inherited genetic disorders worldwide. These disorders are caused by mutations in the gene encoding hemoglobin-β (HBB), a vital protein found in red blood cells (RBCs) that carries oxygen from lungs to all parts of the human body. As a consequence, there has been an enduring interest in this field in formulating therapeutic strategies for the treatment of these diseases. Currently, there is no cure available for hemoglobin disorders, although, some patients have been treated with bone marrow transplantation, whose scope is limited because of the difficulty in finding a histocompatible donor and also due to transplant-associated clinical complications that can arise during the treatment. On account of these constraints, reactivation of fetal hemoglobin (HbF) synthesis holds immense promise and is a viable strategy to alleviate the symptoms of β-hemoglobin disorders. Development of new genomic tools has led to the identification of important natural genetic modifiers of hemoglobin switching which include BCL11A, KLF1, HBSIL-MYB, LRF, LSD1, LDB1, histone deacetylases 1 and 2 (HDAC1 and HDAC2). miRNAs are also promising therapeutic targets for development of more effective strategies for the induction of HbF production. Many new small molecule pharmacological inducers of HbF production are already under pre-clinical and clinical development. Furthermore, recent advancements in gene and cell therapy includes targeted genome editing and iPS cell technologies, both of which utilizes a patient's own cells, are emerging as extremely promising approaches for significantly reducing the burden of β-hemoglobin disorders.
Collapse
Affiliation(s)
- Neelam Lohani
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Nupur Bhargava
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anjana Munshi
- Centre for Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | | |
Collapse
|
8
|
Abdeen AA, Saha K. Manufacturing Cell Therapies Using Engineered Biomaterials. Trends Biotechnol 2017; 35:971-982. [PMID: 28711155 PMCID: PMC5621598 DOI: 10.1016/j.tibtech.2017.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Emerging manufacturing processes to generate regenerative advanced therapies can involve extensive genomic and/or epigenomic manipulation of autologous or allogeneic cells. These cell engineering processes need to be carefully controlled and standardized to maximize safety and efficacy in clinical trials. Engineered biomaterials with smart and tunable properties offer an intriguing tool to provide or deliver cues to retain stemness, direct differentiation, promote reprogramming, manipulate the genome, or select functional phenotypes. This review discusses the use of engineered biomaterials to control human cell manufacturing. Future work exploiting engineered biomaterials has the potential to generate manufacturing processes that produce standardized cells with well-defined critical quality attributes appropriate for clinical testing.
Collapse
Affiliation(s)
- Amr A Abdeen
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical History and Bioethics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Huntington Disease as a Neurodevelopmental Disorder and Early Signs of the Disease in Stem Cells. Mol Neurobiol 2017; 55:3351-3371. [PMID: 28497201 PMCID: PMC5842500 DOI: 10.1007/s12035-017-0477-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
Huntington disease (HD) is a dominantly inherited disorder caused by a CAG expansion mutation in the huntingtin (HTT) gene, which results in the HTT protein that contains an expanded polyglutamine tract. The adult form of HD exhibits a late onset of the fully symptomatic phase. However, there is also a long presymptomatic phase, which has been increasingly investigated and recognized as important for the disease development. Moreover, the juvenile form of HD, evoked by a higher number of CAG repeats, resembles a neurodevelopmental disorder and has recently been the focus of additional interest. Multiple lines of data, such as the developmental necessity of HTT, its role in the cell cycle and neurogenesis, and findings from pluripotent stem cells, suggest the existence of a neurodevelopmental component in HD pathogenesis. Therefore, we discuss the early molecular pathogenesis of HD in pluripotent and neural stem cells, with respect to the neurodevelopmental aspects of HD.
Collapse
|
10
|
Kim HJ, Park JS. Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages. Dev Reprod 2017; 21:1-10. [PMID: 28484739 PMCID: PMC5409204 DOI: 10.12717/dr.2017.21.1.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 12/15/2022]
Abstract
The use of human mesenchymal stem cells (hMSCs) in cell-based therapy has
attracted extensive interest in the field of regenerative medicine, and it shows
applications to numerous incurable diseases. hMSCs show several superior
properties for therapeutic use compared to other types of stem cells. Different
cell types are discussed in terms of their advantages and disadvantages, with
focus on the characteristics of hMSCs. hMSCs can proliferate readily and produce
differentiated cells that can substitute for the targeted affected tissue. To
maximize the therapeutic effects of hMSCs, a substantial number of these cells
are essential, requiring extensive ex vivo cell expansion.
However, hMSCs have a limited lifespan in an in vitro culture
condition. The senescence of hMSCs is a double-edged sword from the viewpoint of
clinical applications. Although their limited cell proliferation potency
protects them from malignant transformation after transplantation, senescence
can alter various cell functions including proliferation, differentiation, and
migration, that are essential for their therapeutic efficacy. Numerous trials to
overcome the limited lifespan of mesenchymal stem cells are discussed.
Collapse
Affiliation(s)
- Hee Jung Kim
- Department of Physiology, Dankook University College of Medicine, Cheonan, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
11
|
Niethamer TK, Larson AR, O'Neill AK, Bershteyn M, Hsiao EC, Klein OD, Pomerantz JH, Bush JO. EPHRIN-B1 Mosaicism Drives Cell Segregation in Craniofrontonasal Syndrome hiPSC-Derived Neuroepithelial Cells. Stem Cell Reports 2017; 8:529-537. [PMID: 28238796 PMCID: PMC5355632 DOI: 10.1016/j.stemcr.2017.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 11/05/2022] Open
Abstract
Although human induced pluripotent stem cells (hiPSCs) hold great potential for the study of human diseases affecting disparate cell types, they have been underutilized in seeking mechanistic insights into the pathogenesis of congenital craniofacial disorders. Craniofrontonasal syndrome (CFNS) is a rare X-linked disorder caused by mutations in EFNB1 and characterized by craniofacial, skeletal, and neurological anomalies. Heterozygous females are more severely affected than hemizygous males, a phenomenon termed cellular interference that involves mosaicism for EPHRIN-B1 function. Although the mechanistic basis for cellular interference in CFNS has been hypothesized to involve Eph/ephrin-mediated cell segregation, no direct evidence for this has been demonstrated. Here, by generating hiPSCs from CFNS patients, we demonstrate that mosaicism for EPHRIN-B1 expression induced by random X inactivation in heterozygous females results in robust cell segregation in human neuroepithelial cells, thus supplying experimental evidence that Eph/ephrin-mediated cell segregation is relevant to pathogenesis in human CFNS patients. A novel iPSC line can effectively model a craniofacial condition Eph/ephrin-mediated cell segregation underlies CFNS Cell segregation occurs in CFNS neuroepithelial progenitor cells Neuroepithelial progenitors are a possible cell of origin for CFNS dysmorphogenesis
Collapse
Affiliation(s)
- Terren K Niethamer
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew R Larson
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Audrey K O'Neill
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marina Bershteyn
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Edward C Hsiao
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ophir D Klein
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason H Pomerantz
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O Bush
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
12
|
|
13
|
Cantone I, Dharmalingam G, Chan YW, Kohler AC, Lenhard B, Merkenschlager M, Fisher AG. Allele-specific analysis of cell fusion-mediated pluripotent reprograming reveals distinct and predictive susceptibilities of human X-linked genes to reactivation. Genome Biol 2017; 18:2. [PMID: 28118853 PMCID: PMC5264468 DOI: 10.1186/s13059-016-1136-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/14/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inactivation of one X chromosome is established early in female mammalian development and can be reversed in vivo and in vitro when pluripotency factors are re-expressed. The extent of reactivation along the inactive X chromosome (Xi) and the determinants of locus susceptibility are, however, poorly understood. Here we use cell fusion-mediated pluripotent reprograming to study human Xi reactivation and allele-specific single nucleotide polymorphisms (SNPs) to identify reactivated loci. RESULTS We show that a subset of human Xi genes is rapidly reactivated upon re-expression of the pluripotency network. These genes lie within the most evolutionary recent segments of the human X chromosome that are depleted of LINE1 and enriched for SINE elements, predicted to impair XIST spreading. Interestingly, this cadre of genes displays stochastic Xi expression in human fibroblasts ahead of reprograming. This stochastic variability is evident between clones, by RNA-sequencing, and at the single-cell level, by RNA-FISH, and is not attributable to differences in repressive histone H3K9me3 or H3K27me3 levels. Treatment with the DNA demethylating agent 5-deoxy-azacytidine does not increase Xi expression ahead of reprograming, but instead reveals a second cadre of genes that only become susceptible to reactivation upon induction of pluripotency. CONCLUSIONS Collectively, these data not only underscore the multiple pathways that contribute to maintaining silencing along the human Xi chromosome but also suggest that transcriptional stochasticity among human cells could be useful for predicting and engineering epigenetic strategies to achieve locus-specific or domain-specific human Xi gene reactivation.
Collapse
Affiliation(s)
- Irene Cantone
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Gopuraja Dharmalingam
- Bioinformatics and Computing facility, MRC London Institute of Medical Sciences, Imperial College, London, UK
| | - Yi-Wah Chan
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Anne-Celine Kohler
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Boris Lenhard
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
14
|
Ordered chromatin changes and human X chromosome reactivation by cell fusion-mediated pluripotent reprogramming. Nat Commun 2016; 7:12354. [PMID: 27507283 PMCID: PMC4987517 DOI: 10.1038/ncomms12354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/24/2016] [Indexed: 12/17/2022] Open
Abstract
Erasure of epigenetic memory is required to convert somatic cells towards pluripotency. Reactivation of the inactive X chromosome (Xi) has been used to model epigenetic reprogramming in mouse, but human studies are hampered by Xi epigenetic instability and difficulties in tracking partially reprogrammed iPSCs. Here we use cell fusion to examine the earliest events in the reprogramming-induced Xi reactivation of human female fibroblasts. We show that a rapid and widespread loss of Xi-associated H3K27me3 and XIST occurs in fused cells and precedes the bi-allelic expression of selected Xi-genes by many heterokaryons (30–50%). After cell division, RNA-FISH and RNA-seq analyses confirm that Xi reactivation remains partial and that induction of human pluripotency-specific XACT transcripts is rare (1%). These data effectively separate pre- and post-mitotic events in reprogramming-induced Xi reactivation and reveal a complex hierarchy of epigenetic changes that are required to reactivate the genes on the human Xi chromosome. Reactivation of the inactive X chromosome (Xi) has modelled epigenetic reprogramming in mouse. Here, by using cell fusion between human female fibroblasts and mouse embryonic stem cells, the authors show a complex hierarchy of epigenetic changes that are required to reactivate the genes on the human Xi chromosome.
Collapse
|
15
|
Stratmann HG. Stem Cells and Organ Transplantation: Resetting Our Biological Clocks. SCIENCE AND FICTION 2016. [PMCID: PMC7124065 DOI: 10.1007/978-3-319-16015-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human body has only a limited ability to repair itself. Illness, injury, and aging can overwhelm its built-in capability to replace dysfunctional, damaged, or destroyed tissues. We can at best only partly regenerate our organs and cannot grow back a whole limb.
Collapse
|
16
|
Abstract
Induced pluripotency defines the process by which somatic cells are converted into induced pluripotent stem cells (iPSCs) upon overexpression of a small set of transcription factors. In this article, we put transcription factor-induced pluripotency into a historical context, review current methods to generate iPSCs, and discuss mechanistic insights that have been gained into the process of reprogramming. In addition, we focus on potential therapeutic applications of induced pluripotency and emerging technologies to efficiently engineer the genomes of human pluripotent cells for scientific and therapeutic purposes.
Collapse
Affiliation(s)
- Konrad Hochedlinger
- Howard Hughes Medical Institute at Massachusetts General Hospital, Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, Boston, Massachusetts 02114
| | - Rudolf Jaenisch
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| |
Collapse
|
17
|
Bazley FA, Liu CF, Yuan X, Hao H, All AH, De Los Angeles A, Zambidis ET, Gearhart JD, Kerr CL. Direct Reprogramming of Human Primordial Germ Cells into Induced Pluripotent Stem Cells: Efficient Generation of Genetically Engineered Germ Cells. Stem Cells Dev 2015; 24:2634-48. [PMID: 26154167 DOI: 10.1089/scd.2015.0100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primordial germ cells (PGCs) share many properties with embryonic stem cells (ESCs) and innately express several key pluripotency-controlling factors, including OCT4, NANOG, and LIN28. Therefore, PGCs may provide a simple and efficient model for studying somatic cell reprogramming to induced pluripotent stem cells (iPSCs), especially in determining the regulatory mechanisms that fundamentally define pluripotency. Here, we report a novel model of PGC reprogramming to generate iPSCs via transfection with SOX2 and OCT4 using integrative lentiviral. We also show the feasibility of using nonintegrative approaches for generating iPSC from PGCs using only these two factors. We show that human PGCs express endogenous levels of KLF4 and C-MYC protein at levels similar to embryonic germ cells (EGCs) but lower levels of SOX2 and OCT4. Transfection with both SOX2 and OCT4 together was required to induce PGCs to a pluripotent state at an efficiency of 1.71%, and the further addition of C-MYC increased the efficiency to 2.33%. Immunohistochemical analyses of the SO-derived PGC-iPSCs revealed that these cells were more similar to ESCs than EGCs regarding both colony morphology and molecular characterization. Although leukemia inhibitory factor (LIF) was not required for the generation of PGC-iPSCs like EGCs, the presence of LIF combined with ectopic exposure to C-MYC yielded higher efficiencies. Additionally, the SO-derived PGC-iPSCs exhibited differentiation into representative cell types from all three germ layers in vitro and successfully formed teratomas in vivo. Several lines were generated that were karyotypically stable for up to 24 subcultures. Their derivation efficiency and survival in culture significantly supersedes that of EGCs, demonstrating their utility as a powerful model for studying factors regulating pluripotency in future studies.
Collapse
Affiliation(s)
- Faith A Bazley
- 1 Department of Biomedical Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Cyndi F Liu
- 2 Department of Genecology and Obstetrics, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Xuan Yuan
- 4 Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Haiping Hao
- 5 JHMI Deep Sequencing and Microarray Core, High Throughput Biology Center, Johns Hopkins University , Baltimore, Maryland
| | - Angelo H All
- 1 Department of Biomedical Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Alejandro De Los Angeles
- 6 Stem Cell Transplantation Program, Division of Pediatric Hematology Oncology, Children's Hospital Boston , Massachusetts.,7 Department of Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute , Harvard Medical School, Boston, Massachusetts.,8 Harvard Stem Cell Institute , Cambridge, Massachusetts
| | - Elias T Zambidis
- 3 Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,9 Division of Pediatric Oncology at the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - John D Gearhart
- 10 Department of Cell and Developmental Biology, School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,11 Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Candace L Kerr
- 2 Department of Genecology and Obstetrics, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,12 Department of Biochemistry and Molecular Biology, University of Maryland , Baltimore, Maryland
| |
Collapse
|
18
|
Getting off the ground state: X chromosome inactivation knocks down barriers to differentiation. Cell Stem Cell 2015; 14:131-2. [PMID: 24506876 DOI: 10.1016/j.stem.2014.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Female mouse embryonic stem cells (mESCs) contain two active X chromosomes, with one undergoing random inactivation upon differentiation. Schulz et al. (2014) now demonstrate that the presence of two active X chromosomes in mESCs prevents exit from pluripotency by blocking MAPK signaling, ensuring synchronization between X chromosome dosage compensation and development.
Collapse
|
19
|
Opportunities and Limitations of Modelling Alzheimer's Disease with Induced Pluripotent Stem Cells. J Clin Med 2014; 3:1357-72. [PMID: 26237606 PMCID: PMC4470188 DOI: 10.3390/jcm3041357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/31/2014] [Accepted: 11/12/2014] [Indexed: 01/16/2023] Open
Abstract
Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) has opened the way for patient-specific disease modelling. Following their differentiation into neuronal cell types, iPSC have enabled the investigation of human neurodegenerative diseases, such as Alzheimer's disease (AD). While human iPSCs certainly provide great opportunities to repeatedly interrogate specific human brain cell types of individuals with familial and sporadic forms of the disease, the complex aetiology and timescale over which AD develops in humans poses particular challenges to iPSC-based AD models. Here, we discuss the current state-of-play in the context of these and other iPSC model-related challenges and elaborate on likely future developments in this field of research.
Collapse
|
20
|
Human Pluripotent Stem Cell-Derived Retinal Pigmented Epithelium in Retinal Treatment: from Bench to Bedside. Mol Neurobiol 2014; 50:597-612. [DOI: 10.1007/s12035-014-8684-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/17/2014] [Indexed: 01/23/2023]
|
21
|
Liang G, Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell 2014; 13:149-59. [PMID: 23910082 DOI: 10.1016/j.stem.2013.07.001] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs) has revolutionized the field of regenerative medicine. However, recent studies on the genetic and epigenetic variations in iPSCs have raised concerns that these variations may compromise the utility of iPSCs. In this Perspective, we review the current understanding of genetic and epigenetic variations in iPSCs, trace their causes, discuss the implications of these variations for iPSC applications, and propose approaches to cope with these variations.
Collapse
Affiliation(s)
- Gaoyang Liang
- Howard Hughes Medical Institute, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
22
|
Mallon BS, Hamilton RS, Kozhich OA, Johnson KR, Fann YC, Rao MS, Robey PG. Comparison of the molecular profiles of human embryonic and induced pluripotent stem cells of isogenic origin. Stem Cell Res 2013; 12:376-86. [PMID: 24374290 PMCID: PMC4157340 DOI: 10.1016/j.scr.2013.11.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 11/17/2022] Open
Abstract
Many studies have compared the genetic and epigenetic profiles of human induced pluripotent stem cells (hiPSCs) to human embryonic stem cells (hESCs) and yet the picture remains unclear. To address this, we derived a population of neural precursor cells (NPCs) from the H1 (WA01) hESC line and generated isogenic iPSC lines by reprogramming. The gene expression and methylation profile of three lines were compared to the parental line and intermediate NPC population. We found no gene probe with expression that differed significantly between hESC and iPSC samples under undifferentiated or differentiated conditions. Analysis of the global methylation pattern also showed no significant difference between the two PSC populations. Both undifferentiated populations were distinctly different from the intermediate NPC population in both gene expression and methylation profiles. One point to note is that H1 is a male line and so extrapolation to female lines should be cautioned. However, these data confirm our previous findings that there are no significant differences between hESCs and hiPSCs at the gene expression or methylation level.
Collapse
Affiliation(s)
- Barbara S Mallon
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Rebecca S Hamilton
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Olga A Kozhich
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kory R Johnson
- Bioinformatics Section, Intramural IT and Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yang C Fann
- Bioinformatics Section, Intramural IT and Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahendra S Rao
- NIH Center for Regenerative Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pamela G Robey
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Craniofacial and Skeletal Disease Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Liang G, Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell 2013. [PMID: 23910082 DOI: 10.1016/j.stem.2013.07.001.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs) has revolutionized the field of regenerative medicine. However, recent studies on the genetic and epigenetic variations in iPSCs have raised concerns that these variations may compromise the utility of iPSCs. In this Perspective, we review the current understanding of genetic and epigenetic variations in iPSCs, trace their causes, discuss the implications of these variations for iPSC applications, and propose approaches to cope with these variations.
Collapse
Affiliation(s)
- Gaoyang Liang
- Howard Hughes Medical Institute, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
24
|
Villa-Diaz LG, Ross AM, Lahann J, Krebsbach PH. Concise review: The evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells 2013; 31:1-7. [PMID: 23081828 DOI: 10.1002/stem.1260] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 10/06/2012] [Indexed: 01/02/2023]
Abstract
Current practices to maintain human pluripotent stem cells (hPSCs), which include induced pluripotent stem cells and embryonic stem cells, in an undifferentiated state typically depend on the support of feeder cells such as mouse embryonic fibroblasts (MEFs) or an extracellular matrix such as Matrigel. Culture conditions that depend on these undefined support systems limit our ability to interpret mechanistic studies aimed at resolving how hPSCs interact with their extracellular environment to remain in a unique undifferentiated state and to make fate-changing lineage decisions. Likewise, the xenogeneic components of MEFs and Matrigel ultimately hinder our ability to use pluripotent stem cells to treat debilitating human diseases. Many of these obstacles have been overcome by the development of synthetic coatings and bioreactors that support hPSC expansion and self-renewal within defined culture conditions that are free from xenogeneic contamination. The establishment of defined culture conditions and synthetic matrices will facilitate studies to more precisely probe the molecular basis of pluripotent stem cell self-renewal and differentiation. When combined with three-dimensional cultures in bioreactors, these systems will also enable large-scale expansion for future clinical applications.
Collapse
Affiliation(s)
- L G Villa-Diaz
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | |
Collapse
|
25
|
Huo JS, Zambidis ET. Pivots of pluripotency: the roles of non-coding RNA in regulating embryonic and induced pluripotent stem cells. Biochim Biophys Acta Gen Subj 2012; 1830:2385-94. [PMID: 23104383 DOI: 10.1016/j.bbagen.2012.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 10/11/2012] [Accepted: 10/17/2012] [Indexed: 12/23/2022]
Abstract
BACKGROUND Induced pluripotent stem cells (iPSC) derived from reprogrammed patient somatic cells possess enormous therapeutic potential. However, unlocking the full capabilities of iPSC will require an improved understanding of the molecular mechanisms which govern the induction and maintenance of pluripotency, as well as directed differentiation to clinically relevant lineages. Induced pluripotency of a differentiated cell is mediated by sequential cascades of genetic and epigenetic reprogramming of somatic histone and DNA CpG methylation marks. These genome-wide changes are mediated by a coordinated activity of transcription factors and epigenetic modifying enzymes. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are now recognized as an important third class of regulators of the pluripotent state. SCOPE OF REVIEW This review surveys the currently known roles and mechanisms of ncRNAs in regulating the embryonic and induced pluripotent states. MAJOR CONCLUSIONS Through a variety of mechanisms, ncRNAs regulate constellations of key pluripotency genes and epigenetic regulators, and thus critically determine induction and maintenance of the pluripotent state. GENERAL SIGNIFICANCE A further understanding of the roles of ncRNAs in regulating pluripotency may help assess the quality of human iPSC reprogramming. Additionally, ncRNA biology may help decipher potential transcriptional and epigenetic commonalities between the self renewal processes that govern both ESC and tumor initiating cancer stem cells (CSC). This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Jeffrey S Huo
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|