1
|
China's Stem Cell Research and Knowledge Levels of Medical Practitioners and Students. Stem Cells Int 2021; 2021:6667743. [PMID: 34113385 PMCID: PMC8154300 DOI: 10.1155/2021/6667743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/05/2021] [Accepted: 04/29/2021] [Indexed: 11/18/2022] Open
Abstract
Over the last few decades, China has greatly expanded its scope of stem cell research, generating various scientific advances and medical applications. However, knowledge of the extent and characteristics of domestic stem cell development, particularly medical workers' opinions, is lacking. This study's purposes were to analyze the growth trends of China's stem cell community and identify the knowledge and attitudes held by Chinese medical workers regarding stem cell research. We found that there are currently 13 high-quality stem cell research centers with more than 400 PhD-level researchers across Mainland China. These centers feature many high-caliber scientists from the stem cell research community. From 1997 through 2019, the National Natural Science Foundation of China allocated roughly $576 million to 8,050 stem cell programs at Chinese universities and research institutions. China's annual publications on stem cells increased from less than 0.6% of the world's total stem cell publications in 1999 to more than 14.1% in 2014. Our survey also revealed that most participants held positive attitudes toward stem cell research, supported further funding, and had high general awareness about stem cells.
Collapse
|
2
|
Jacques E, Suuronen EJ. The Progression of Regenerative Medicine and its Impact on Therapy Translation. Clin Transl Sci 2020; 13:440-450. [PMID: 31981408 PMCID: PMC7214652 DOI: 10.1111/cts.12736] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
Despite regenerative medicine (RM) being one of the hottest topics in biotechnology for the past 3 decades, it is generally acknowledged that the field's performance at the bedside has been somewhat disappointing. This may be linked to the novelty of these technologies and their disruptive nature, which has brought an increasing level of complexity to translation. Therefore, we look at how the historical development of the RM field has changed the translational strategy. Specifically, we explore how the pursuit of such novel regenerative therapies has changed the way experts aim to translate their ideas into clinical applications, and then identify areas that need to be corrected or reinforced in order for these therapies to eventually be incorporated into the standard-of-care. This is then linked to a discussion of the preclinical and postclinical challenges remaining today, which offer insights that can contribute to the future progression of RM.
Collapse
Affiliation(s)
- Erik Jacques
- Division of Cardiac SurgeryUniversity of Ottawa Heart InstituteOttawaOntarioCanada
- School of Human KineticsUniversity of OttawaOttawaCanada
| | - Erik J. Suuronen
- Division of Cardiac SurgeryUniversity of Ottawa Heart InstituteOttawaOntarioCanada
- Department of Cellular & Molecular MedicineUniversity of OttawaOttawaCanada
| |
Collapse
|
3
|
Kusena JWT, Thomas RJ, McCall MJ, Wilson SL. From protocol to product: ventral midbrain dopaminergic neuron differentiation for the treatment of Parkinson's disease. Regen Med 2019; 14:1057-1069. [DOI: 10.2217/rme-2019-0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Current cell therapy product limitations include the need for in-depth product understanding to ensure product potency, safety and purity. New technologies require development and validation to address issues of production scale-up to meet clinical need; assays are required for process control, validation and release. Prior to clinical realization, an understanding of production processes is required to implement process changes that are essential for process control. Identification of key parameters forms the basis of process tolerances, allowing for validated, adaptive manufacturing processes. This enables greater process control and yield while withstanding regulatory scrutiny. This report summaries key milestones in specifically for ventral midbrain dopaminergic neuroprogenitor differentiation and key translational considerations and recommendations to enable successful, robust and reproducible current cell therapy product-manufacturing.
Collapse
Affiliation(s)
- James WT Kusena
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| | - Robert J Thomas
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| | - Mark J McCall
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| | - Samantha L Wilson
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
4
|
Kleiderman E, Boily A, Hasilo C, Knoppers BM. Overcoming barriers to facilitate the regulation of multi-centre regenerative medicine clinical trials. Stem Cell Res Ther 2018; 9:307. [PMID: 30409192 PMCID: PMC6225696 DOI: 10.1186/s13287-018-1055-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the context of regenerative medicine and cellular therapies, the treatment under study often targets a less common disease or condition for which recruitment of a large number of research participants at any given site is challenging, if not impossible. One way to overcome this challenge is with a multi-centre clinical trial. This manuscript first aims to briefly outline the existing ethical, legal and social implications as well as the regulatory frameworks associated with multi-centre regenerative medicine clinical trials. Second, it considers the regulatory limitations and barriers surrounding the initiation of such trials in Canada, the USA and Europe. Third, it concludes with a set of recommendations for facilitating multi-centre clinical trials, at both national and international levels.
Collapse
Affiliation(s)
- Erika Kleiderman
- Centre of Genomics and Policy, Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada.
| | - Audrey Boily
- Centre of Genomics and Policy, Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada
| | - Craig Hasilo
- CellCAN, Pavillon Rachel-Tourigny RT2101, Montreal, QC, H1T 2M4, Canada
| | - Bartha Maria Knoppers
- Centre of Genomics and Policy, Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada
| |
Collapse
|
5
|
Schubert S, Brehm W, Hillmann A, Burk J. Serum-free human MSC medium supports consistency in human but not in equine adipose-derived multipotent mesenchymal stromal cell culture. Cytometry A 2017; 93:60-72. [PMID: 28926198 DOI: 10.1002/cyto.a.23240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For clinical applications of multipotent mesenchymal stromal cells (MSCs), serum-free culture is preferable to standardize cell products and prevent contamination with pathogens. In contrast to human MSCs, knowledge on serum-free culture of large animal MSCs is limited, despite its relevance for preclinical studies and development of veterinary cellular therapeutics. This study aimed to evaluate the suitability of a commercially available serum-free human MSC medium for culturing equine adipose-derived MSCs in comparison with human adipose MSCs. Enzyme-free isolation by explant technique and expansion of equine and human cells in the serum-free medium were feasible. However, serum-free culture altered the morphology and complicated handling of equine MSCs, with cell aggregation and spontaneous detachment of multilayers, compared to culture in standard medium supplemented with fetal bovine serum. Furthermore, proliferation and the surface immunophenotype of equine cells were more variable compared to the controls and appeared to depend on the lot of the serum-free medium. Particularly the expression of CD90 was different between experimental groups (P < 0.05), with lower percentages of CD90+ cells found in equine MSC samples cultured in serum-free medium (5.21-83.40%) compared to standard medium (86.20-99.50%). Additionally, small subpopulations expressing MSC exclusion markers such as CD14 (0.28-11.60%), CD34 (0.00-9.87%), CD45 (0.35-10.50%), or MHCII (0.00-3.67%) were found in equine samples after serum-free culture. In contrast, human samples displayed a more consistent morphology and a consistent CD29+ (98.60-99.90%), CD73+ (94.60-98.40%), CD90+ (99.60-99.90%), and CD105+ (97.40-99.80%) immunophenotype after culture in serum-free medium. The obtained data demonstrate that the serum-free medium was suitable for human MSC culture but did not lead to entirely satisfactory results in equine MSCs. This underlines that requirements regarding serum-free culture conditions are species-specific, indicating a need for serum-free media to be optimized for MSCs from relevant animal species. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Susanna Schubert
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Straße 55, Leipzig 04103, Germany.,Faculty of Veterinary Medicine, Institute of Physiology, University of Leipzig, An den Tierkliniken 7, Leipzig 04103, Germany
| | - Walter Brehm
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Straße 55, Leipzig 04103, Germany.,Faculty of Veterinary Medicine, Large Animal Clinic for Surgery, University of Leipzig, An den Tierkliniken 21, Leipzig 04103, Germany
| | - Aline Hillmann
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Straße 55, Leipzig 04103, Germany
| | - Janina Burk
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Straße 55, Leipzig 04103, Germany.,Faculty of Veterinary Medicine, Institute of Physiology, University of Leipzig, An den Tierkliniken 7, Leipzig 04103, Germany
| |
Collapse
|
6
|
Theoretical and Practical Issues That Are Relevant When Scaling Up hMSC Microcarrier Production Processes. Stem Cells Int 2016; 2016:4760414. [PMID: 26981131 PMCID: PMC4766353 DOI: 10.1155/2016/4760414] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022] Open
Abstract
The potential of human mesenchymal stem cells (hMSCs) for allogeneic cell therapies has created a large amount of interest. However, this presupposes the availability of efficient scale-up procedures. Promising results have been reported for stirred bioreactors that operate with microcarriers. Recent publications focusing on microcarrier-based stirred bioreactors have demonstrated the successful use of Computational Fluid Dynamics (CFD) and suspension criteria (N S1u , N S1) for rapidly scaling up hMSC expansions from mL- to pilot scale. Nevertheless, one obstacle may be the formation of large microcarrier-cell-aggregates, which may result in mass transfer limitations and inhomogeneous distributions of stem cells in the culture broth. The dependence of microcarrier-cell-aggregate formation on impeller speed and shear stress levels was investigated for human adipose derived stromal/stem cells (hASCs) at the spinner scale by recording the Sauter mean diameter (d 32) versus time. Cultivation at the suspension criteria provided d 32 values between 0.2 and 0.7 mm, the highest cell densities (1.25 × 10(6) cells mL(-1) hASCs), and the highest expansion factors (117.0 ± 4.7 on day 7), while maintaining the expression of specific surface markers. Furthermore, suitability of the suspension criterion N S1u was investigated for scaling up microcarrier-based processes in wave-mixed bioreactors for the first time.
Collapse
|
7
|
Bt Hj Idrus R, Abas A, Ab Rahim F, Saim AB. Clinical Translation of Cell Therapy, Tissue Engineering, and Regenerative Medicine Product in Malaysia and Its Regulatory Policy. Tissue Eng Part A 2015; 21:2812-6. [PMID: 26192075 PMCID: PMC4684660 DOI: 10.1089/ten.tea.2014.0521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 06/15/2015] [Indexed: 11/12/2022] Open
Abstract
With the worldwide growth of cell and tissue therapy (CTT) in treating diseases, the need of a standardized regulatory policy is of paramount concern. Research in CTT in Malaysia has reached stages of clinical trials and commercialization. In Malaysia, the regulation of CTT is under the purview of the National Pharmaceutical Control Bureau (NPCB), Ministry of Health (MOH). NPCB is given the task of regulating CTT, under a new Cell and Gene Therapy Products framework, and the guidelines are currently being formulated. Apart from the laboratory accreditation, researchers are advised to follow Guidelines for Stem Cell Research and Therapy from the Medical Development Division, MOH, published in 2009.
Collapse
Affiliation(s)
- Ruszymah Bt Hj Idrus
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Arpah Abas
- Product Registration Centre, National Pharmaceutical Control Bureau, Ministry of Health Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Fazillahnor Ab Rahim
- Center for Compliance & Licensing, National Pharmaceutical Control Bureau, Ministry of Health Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Aminuddin Bin Saim
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
- Ampang Puteri Specialist Hospital, Taman Dato’ Ahmad Razali, Ampang, Selangor, Malaysia
| |
Collapse
|
8
|
Heathman TRJ, Nienow AW, McCall MJ, Coopman K, Kara B, Hewitt CJ. The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen Med 2015; 10:49-64. [PMID: 25562352 DOI: 10.2217/rme.14.73] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell-based therapies have the potential to make a large contribution toward currently unmet patient need and thus effective manufacture of these products is essential. Many challenges must be overcome before this can become a reality and a better definition of the manufacturing requirements for cell-based products must be obtained. The aim of this study is to inform industry and academia of current cell-based therapy clinical development and to identify gaps in their manufacturing requirements. A total of 1342 active cell-based therapy clinical trials have been identified and characterized based on cell type, target indication and trial phase. Multiple technologies have been assessed for the manufacture of these cell types in order to facilitate product translation and future process development.
Collapse
Affiliation(s)
- Thomas R J Heathman
- Centre for Biological Engineering, Loughborough University, Leicestershire, LE11 3TU, UK
| | | | | | | | | | | |
Collapse
|
9
|
Mason C, Mason J, Culme-Seymour EJ, Bonfiglio GA, Reeve BC. Cell therapy companies make strong progress from October 2012 to March 2013 amid mixed stock market sentiment. Cell Stem Cell 2014; 12:644-7. [PMID: 23746973 DOI: 10.1016/j.stem.2013.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
During Q4 2012 and Q1 2013, the cell therapy industry made strong progress in translation and commercialization. Continued development of the companies included in a dedicated stock market index suggests emergence of this industry as a distinct healthcare sector.
Collapse
Affiliation(s)
- Chris Mason
- Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK.
| | | | | | | | | |
Collapse
|
10
|
Roy DC, Alarco AM, Isasi R. CellCAN: A Unique Enabler of Regenerative Medicine and Cell Therapy in Canada. Stem Cells Dev 2014; 23 Suppl 1:24-8. [DOI: 10.1089/scd.2014.0354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Denis-Claude Roy
- Division of Hematology–Oncology/Stem Cell Transplantation, Hôpital Maisonneuve-Rosemont Research Center, and Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Anne-Marie Alarco
- CellCAN Regenerative Medicine and Cell Therapy Network, Montreal, Quebec, Canada
| | - Rosario Isasi
- Department of Human Genetics, Faculty of Medicine, Centre of Genomics and Policy, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Abstract
Two opposing descriptions of so-called mesenchymal stem cells (MSCs) exist at this time. One sees MSCs as the postnatal, self-renewing, and multipotent stem cells for the skeleton. This cell coincides with a specific type of bone marrow perivascular cell. In skeletal physiology, this skeletal stem cell is pivotal to the growth and lifelong turnover of bone and to its native regeneration capacity. In hematopoietic physiology, its role as a key player in maintaining hematopoietic stem cells in their niche and in regulating the hematopoietic microenvironment is emerging. In the alternative description, MSCs are ubiquitous in connective tissues and are defined by in vitro characteristics and by their use in therapy, which rests on their ability to modulate the function of host tissues rather than on stem cell properties. Here, I discuss how the two views developed, conceptually and experimentally, and attempt to clarify the confusion arising from their collision.
Collapse
Affiliation(s)
- Paolo Bianco
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
12
|
Vertès AA. Deciphering the therapeutic stem cell strategies of large and midsize pharmaceutical firms. Regen Med 2014; 9:479-95. [DOI: 10.2217/rme.14.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The slow adoption of cytotherapeutics remains a vexing hurdle given clinical progress achieved to date with a variety of stem cell lineages. Big and midsize pharmaceutical companies as an asset class still delay large-scale investments in this arena until technological and market risks will have been further reduced. Nonetheless, a handful of stem cell strategic alliance and licensing transactions have already been implemented, indicating that progress is actively monitored, although most of these involve midsize firms. The greatest difficulty is, perhaps, that the regenerative medicine industry is currently only approaching the point of inflexion of the technology development S-curve, as many more clinical trials read out. A path to accelerating technology adoption is to focus on innovation outliers among healthcare actors. These can be identified by analyzing systemic factors (e.g., national science policies and industry fragmentation) and intrinsic factors (corporate culture, e.g., nimble decision-making structures; corporate finance, e.g., opportunity costs and ownership structure; and operations, e.g., portfolio management strategies, threats on existing businesses and patent expirations). Another path is to accelerate the full clinical translation and commercialization of an allogeneic cytotherapeutic product in any indication to demonstrate the disease-modifying potential of the new products for treatment and prophylaxis, ideally for a large unmet medical need such as dry age-related macular degeneration, or for an orphan disease such as biologics-refractory acute graft-versus-host disease. In times of decreased industry average research productivities, regenerative medicine products provide important prospects for creating new franchises with a market potential that could very well mirror that achieved with the technology of monoclonal antibodies.
Collapse
|