1
|
Zhang F, Icyuz M, Tollefsbol T, Cox PA, Banack SA, Sun LY. L-Serine Influences Epigenetic Modifications to Improve Cognition and Behaviors in Growth Hormone-Releasing Hormone Knockout Mice. Biomedicines 2022; 11:biomedicines11010104. [PMID: 36672612 PMCID: PMC9856181 DOI: 10.3390/biomedicines11010104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Neurodegenerative diseases feature changes in cognition, and anxiety-like and autism-like behaviors, which are associated with epigenetic alterations such as DNA methylation and histone modifications. The amino acid L-serine has been shown to have beneficial effects on neurological symptoms. Here, we found that growth hormone-releasing hormone knockout (GHRH-KO) mice, a GH-deficiency mouse model characterized by extended lifespan and enhanced insulin sensitivity, showed a lower anxiety symptom and impairment of short-term object recognition memory and autism-like behaviors. Interestingly, L-serine administration exerted anxiolytic effects in mice and ameliorated the behavioral deficits in GHRH-KO. L-serine treatment upregulated histone epigenetic markers of H3K4me, H3K9ac, H3K14ac and H3K18ac in the hippocampus and H3K4me in the cerebral cortex in both GHRH-KO mice and wild type controls. L-serine-modulated epigenetic marker changes, in turn, were found to regulate mRNA expression of BDNF, grm3, foxp1, shank3, auts2 and marcksl1, which are involved in anxiety-, cognitive- and autism-like behaviors. Our study provides a novel insight into the beneficial effects of L-serine intervention on neuropsychological impairments.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35254, USA
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mert Icyuz
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35254, USA
| | - Trygve Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35254, USA
| | - Paul Alan Cox
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY 83001, USA
| | - Sandra Anne Banack
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY 83001, USA
| | - Liou Y. Sun
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35254, USA
- Correspondence: ; Tel.: +(001)-205-934-48243
| |
Collapse
|
2
|
Wang AJ, Allen A, Sofman M, Sphabmixay P, Yildiz E, Griffith LG. Engineering Modular 3D Liver Culture Microenvironments In Vitro to Parse the Interplay between Biophysical and Biochemical Microenvironment Cues on Hepatic Phenotypes. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100049. [PMID: 35872804 PMCID: PMC9307216 DOI: 10.1002/anbr.202100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In vitro models of human liver functions are used across a diverse range of applications in preclinical drug development and disease modeling, with particular increasing interest in models that capture facets of liver inflammatory status. This study investigates how the interplay between biophysical and biochemical microenvironment cues influence phenotypic responses, including inflammation signatures, of primary human hepatocytes (PHH) cultured in a commercially available perfused bioreactor. A 3D printing-based alginate microwell system was designed to form thousands of hepatic spheroids in a scalable manner as a comparator 3D culture modality to the bioreactor. Soft, synthetic extracellular matrix (ECM) hydrogel scaffolds with biophysical properties mimicking features of liver were engineered to replace polystyrene scaffolds, and the biochemical microenvironment was modulated with a defined set of growth factors and signaling modulators. The supplemented media significantly increased tissue density, albumin secretion, and CYP3A4 activity but also upregulated inflammatory markers. Basal inflammatory markers were lower for cells maintained in ECM hydrogel scaffolds or spheroid formats than polystyrene scaffolds, while hydrogel scaffolds exhibited the most sensitive response to inflammation as assessed by multiplexed cytokine and RNA-seq analyses. Together, these engineered 3D liver microenvironments provide insights for probing human liver functions and inflammatory response in vitro.
Collapse
Affiliation(s)
- Alex J Wang
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Allysa Allen
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Marianna Sofman
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Pierre Sphabmixay
- Mechanical Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
| | - Ece Yildiz
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015 Lausanne, Switzerland
| | - Linda G. Griffith
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Center for Gynepathology Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
3
|
Abstract
Genetic defects that accumulate in haematopoietic stem cells (HSCs) are thought to be responsible for age-related changes in haematopoiesis that include a decline in lymphopoiesis and skewing towards the myeloid lineage. This HSC-centric view is based largely on studies showing that HSCs from aged mice exhibit these lineage biases following transplantation into irradiated young recipient mice. In this Opinion article, we make the case that the reliance on this approach has led to inaccurate conclusions regarding the effects of ageing on blood-forming stem cells; we suggest instead that changes in the environment contribute to haematopoietic system ageing. We propose that a complete understanding of how ageing affects haematopoiesis depends on the analysis of blood cell production in unperturbed mice. We describe how this can be achieved using in situ fate mapping. This approach indicates that changes in downstream progenitors, in addition to any HSC defects, may explain the reduced lymphopoiesis and sustained myelopoiesis that occur during ageing.
Collapse
|