1
|
He W, Luo Q, Zhao J, Wang M, Zhao A, Feng L, Reda A, Lindgren E, Stukenborg J, Chen J, Deng Q. X-Linked Gene Dosage and SOX2 Act as Key Roadblocks for Human Germ Cell Specification in Klinefelter Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410533. [PMID: 39996497 PMCID: PMC12005746 DOI: 10.1002/advs.202410533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/03/2025] [Indexed: 02/26/2025]
Abstract
Klinefelter syndrome (KS), characterized by the presence of at least one extra X-chromosome, is a common cause of male infertility. However, the mechanism underlying the failure of germline specification is not well studied. Intriguingly, the differentiation efficiency of female human pluripotent stem cells (hPSCs) is often lower than that of male. This study investigates how X-linked gene dosage affects human primordial germ cell-like cells (hPGCLCs) specification in both healthy and diseased conditions. This work reveals that X-linked genes play a multifaceted role against the fate competency to hPGCLCs, with escape genes IGSF1 and CHRDL1 inhibiting the TGF-beta/Activin A and BMP pathways, respectively. Notably, this work identifies a previously unrecognized role of SOX2, upregulated by the escape gene USP9X, elucidating a species-specific function in the mammalian germline. The USP9X-SOX2 regulatory axis profoundly influenced cellular metabolism, mitochondrial morphology, and progenitor competence in hPGCLCs specification. Furthermore, the inability to downregulate SOX2 and upregulate SOX17 in response to BMP signaling impedes downstream gene activation due to motif binding competition. These findings shed novel insights into the human germline specification by elucidating the divergent roles of SOX2 versus SOX17 in mammals, influenced by X-linked gene dosage effects. These results offer potential applications for improving the induction efficiency of hPGCLCs, facilitating disease mechanistic studies.
Collapse
Affiliation(s)
- Wenteng He
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Qing Luo
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Jian Zhao
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
- Department of Oncology‐PathologyKarolinska InstitutetStockholm171 77Sweden
| | - Mengting Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Allan Zhao
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Luohua Feng
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Ahmed Reda
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Eva Lindgren
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Jan‐Bernd Stukenborg
- NORDFERTIL Research Lab StockholmChildhood Cancer Research UnitDepartment of Women's and Children's HealthKarolinska InstitutetKarolinska University HospitalStockholm17 165Sweden
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
- Frontier Science Center for Stem Cell ResearchTongji UniversityShanghai200092China
| | - Qiaolin Deng
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm UnviersityStockholm11418Sweden
| |
Collapse
|
2
|
Wood GE, Bunting CP, Veli M, Arora R, Berney DM, Alifrangis C, MacDonald ND, Miller RE, Shamash J, Stoneham S, Lockley M. Seminoma and dysgerminoma: evidence for alignment of clinical trials and de-escalation of systemic chemotherapy. Front Oncol 2023; 13:1271647. [PMID: 37954076 PMCID: PMC10634240 DOI: 10.3389/fonc.2023.1271647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/18/2023] [Indexed: 11/14/2023] Open
Abstract
Malignant germ cell tumours are a group of rare cancers whose incidence peaks in late adolescence and early adulthood. Dysgerminomas of the ovary and seminomas of the testis are analogous diseases, but seminomas have a 10-fold higher incidence. The two tumours are morphologically identical and are only differentiated by surrounding organ-specific tissue or testicular germ cell neoplasia in situ. They share genetic features including KIT and RAS mutations, amplification of chromosome 12p, and expression of pluripotency markers (NANOG (Nanog homeobox), OCT3/4 (Octamer-binding transcription factor 3/4), and SAL4 (Spalt-like trascription factor 4)). Both histologies are exquisitely sensitive to platinum chemotherapy, and the combination of bleomycin, etoposide, and cisplatin (BEP) yields survival rates greater than 90%. However, BEP causes significant, lifelong toxicity (cardiovascular, renal, respiratory, and neurological) in these young patients with an expectation of cure. Here, we comprehensively review the biological features of dysgerminoma and seminoma to demonstrate that they are biologically analogous diseases. We present available clinical trial data supporting de-escalation of chemotherapy treatment. Finally, we propose that future trials should enrol men, women, and children to benefit all patients regardless of age or sex.
Collapse
Affiliation(s)
- Georgina E. Wood
- Medical Oncology, University College London Hospital, London, United Kingdom
| | - Christopher P. Bunting
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mesel Veli
- Medical Oncology, University College London Hospital, London, United Kingdom
| | - Rupali Arora
- Histopathology, University College London Hospital, London, United Kingdom
| | | | | | - Nicola D. MacDonald
- Department of Gynaecology, University College London Hospital, London, United Kingdom
| | - Rowan E. Miller
- Medical Oncology, University College London Hospital, London, United Kingdom
- Medical Oncology, Barts Health NHS Trust, London, United Kingdom
| | - Jonathan Shamash
- Medical Oncology, Barts Health NHS Trust, London, United Kingdom
| | - Sara Stoneham
- Paediatric Oncology, University College London Hospital, London, United Kingdom
| | - Michelle Lockley
- Medical Oncology, University College London Hospital, London, United Kingdom
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
3
|
von Eyben FE, Kristiansen K, Kapp DS, Hu R, Preda O, Nogales FF. Epigenetic Regulation of Driver Genes in Testicular Tumorigenesis. Int J Mol Sci 2023; 24:ijms24044148. [PMID: 36835562 PMCID: PMC9966837 DOI: 10.3390/ijms24044148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
In testicular germ cell tumor type II (TGCT), a seminoma subtype expresses an induced pluripotent stem cell (iPSC) panel with four upregulated genes, OCT4/POU5F1, SOX17, KLF4, and MYC, and embryonal carcinoma (EC) has four upregulated genes, OCT4/POU5F1, SOX2, LIN28, and NANOG. The EC panel can reprogram cells into iPSC, and both iPSC and EC can differentiate into teratoma. This review summarizes the literature on epigenetic regulation of the genes. Epigenetic mechanisms, such as methylations of cytosines on the DNA string and methylations and acetylations of histone 3 lysines, regulate expression of these driver genes between the TGCT subtypes. In TGCT, the driver genes contribute to well-known clinical characteristics and the driver genes are also important for aggressive subtypes of many other malignancies. In conclusion, epigenetic regulation of the driver genes are important for TGCT and for oncology in general.
Collapse
Affiliation(s)
- Finn E. von Eyben
- Center for Tobacco Control Research, Birkevej 17, 5230 Odense, Denmark
- Correspondence: ; Tel.: +45-66145862
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, August Krogh Building Department of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark
- BGI-Research, BGI-Shenzhen, Shenzhen 518120, China
- Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao 166555, China
| | - Daniel S. Kapp
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Rong Hu
- Department of Pathology, Laboratory Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, USA
| | - Ovidiu Preda
- Department of Pathology, San Cecilio University Hospital, 18071 Granada, CP, Spain
| | - Francisco F. Nogales
- Department of Pathology, School of Medicine, University Granada, 18071 Granada, CP, Spain
| |
Collapse
|
4
|
Fichtner A, Richter A, Filmar S, Kircher S, Rosenwald A, Küffer S, Nettersheim D, Oing C, Marx A, Ströbel P, Bremmer F. Primary mediastinal germ cell tumours: an immunohistochemical and molecular diagnostic approach. Histopathology 2021; 80:381-396. [PMID: 34506648 DOI: 10.1111/his.14560] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
AIMS Primary mediastinal germ cell tumours (PMGCTs) are rare mediastinal neoplasms and their diagnosis can be challenging due to small biopsy samples. The aim of this study was to elaborate a diagnostic algorithm using immunohistochemical stainings with focus on novel markers and molecular analysis of isochromosome 12p [i(12p)]. METHODS AND RESULTS Paraffin-embedded tissues of 32 mediastinal tumours were analysed using immunohistochemical stainings for SALL4, LIN28, OCT3/4, D2-40, CD117, SOX17, SOX2, CD30, ß-hCG, GATA3, FOXA2, GPC3, AFP, TdT, NUT and pan-cytokeratin. Quantitative real-time polymerase chain reaction (qPCR) was performed to investigate i(12p) status. Fifteen seminomas, seven teratomas, one yolk sac tumour, one choriocarcinoma and seven mixed PMGCT were diagnosed. Each entity had different immunohistochemical staining patterns which helped to distinguish them: seminoma (OCT3/4, D2-40, CD117, TdT), embryonal carcinoma (OCT3/4, SOX2), yolk sac tumour (FOXA2, GPC3, AFP) and choriocarcinoma (ß-hCG, GATA3). Mature teratomas stained positive for pan-cytokeratin in epithelial components and focally for SALL4, SOX2, GATA3, D2-40 and FOXA2. Furthermore, a NUT carcinoma mimicking a PMGCT was diagnosed showing a strong nuclear SOX2 and speckled nuclear NUT staining. i(12p) was detected in 24 out of 27 PMGCTs [89%]. CONCLUSION A diagnostic algorithm is of great importance for a reliable diagnosis of PMGCTs in the usually small tissue biopsy samples. Therefore, a combination of three to four antibodies to identify the correct histological subtype is usually necessary in addition to morphological features. The i(12p) status serves as an additional option to underline germ cell origin in selected cases.
Collapse
Affiliation(s)
- A Fichtner
- University Medical Center Göttingen, Institute of Pathology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - A Richter
- University Medical Center Göttingen, Institute of Pathology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - S Filmar
- University Medical Center Göttingen, Institute of Pathology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - S Kircher
- University of Würzburg, Institute of Pathology, Josef-Schneider-Straße 2, 97070, Würzburg, Germany
| | - A Rosenwald
- University of Würzburg, Institute of Pathology, Josef-Schneider-Straße 2, 97070, Würzburg, Germany
| | - S Küffer
- University Medical Center Göttingen, Institute of Pathology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - D Nettersheim
- Heinrich-Heine-University, Medical Faculty and University Hospital Düsseldorf, Department of Urology, Urological Research Laboratory, Translational UroOncology, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - C Oing
- University Medical Centre Hamburg-Eppendorf, Department of Oncology, Haematology and Bone Marrow Transplantation with Division of Pneumology & Mildred Scheel Cancer Career Centre HaTriCS4, Martinistrasse 52, 20246, Hamburg, Germany
| | - A Marx
- University Medical Centre Mannheim, Institute of Pathology, Theodor-Kutzer-Ufer 1-3, 68135, Mannheim, Germany
| | - P Ströbel
- University Medical Center Göttingen, Institute of Pathology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - F Bremmer
- University Medical Center Göttingen, Institute of Pathology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
5
|
Yu X, Han Y, Liu S, Jiang W, Song Y, Tong J, Qiao T, Lv Z, Li D. Analysis of Genetic Alterations Related to DNA Methylation in Testicular Germ Cell Tumors Based on Data Mining. Cytogenet Genome Res 2021; 161:382-394. [PMID: 34433169 DOI: 10.1159/000516385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/27/2020] [Indexed: 11/19/2022] Open
Abstract
Embryonal carcinoma (EC) and seminoma (SE) are both derived from germ cell neoplasia in situ but show big differences in growth patterns and clinical prognosis. Epigenetic regulation may play an important role in the development of EC and SE. This study investigated the DNA methylation-based genetic alterations between EC and SE by analyzing the datasets of mRNA expression and DNA methylation profiling. The datasets were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified between EC and SE by limma package in R environment. Gene function enrichment analysis of the DEGs was performed on the DAVID tool, the results of which suggested differences in capability of pluripotency and genomic stability between EC and SE. The minfi package and wANNOVAR tool were used to identify differentially methylated genes. A total of 37 genes were discovered with both mRNA expression and the accordant DNA methylation changes. The findings were verified by the sequencing data from The Cancer Genome Atlas database, and Kaplan-Meier survival analysis was performed. Finally, 5 genes (PRDM1, LMO2, FAM53B, HCN4, and FAM124B) were found that showed both low expression and high methylation in EC, and were significantly associated with relapse-free survival. The findings of methylation-based genetic features between EC and SE might be helpful in studying the role of DNA methylation in cancer development.
Collapse
Affiliation(s)
- Xiaqing Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yali Han
- Shanghai Center of Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Simin Liu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen Jiang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingchun Song
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junyu Tong
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Qiao
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Imaging Clinical Medical Center, Tongji University School of Medicine, Shanghai, China.,Clinical Nuclear Medicine Center, Tongji University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Arumugam K, Shin W, Schiavone V, Vlahos L, Tu X, Carnevali D, Kesner J, Paull EO, Romo N, Subramaniam P, Worley J, Tan X, Califano A, Cosma MP. The Master Regulator Protein BAZ2B Can Reprogram Human Hematopoietic Lineage-Committed Progenitors into a Multipotent State. Cell Rep 2020; 33:108474. [PMID: 33296649 DOI: 10.1016/j.celrep.2020.108474] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/25/2020] [Accepted: 11/12/2020] [Indexed: 01/03/2023] Open
Abstract
Bi-species, fusion-mediated, somatic cell reprogramming allows precise, organism-specific tracking of unknown lineage drivers. The fusion of Tcf7l1-/- murine embryonic stem cells with EBV-transformed human B cell lymphocytes, leads to the generation of bi-species heterokaryons. Human mRNA transcript profiling at multiple time points permits the tracking of the reprogramming of B cell nuclei to a multipotent state. Interrogation of a human B cell regulatory network with gene expression signatures identifies 8 candidate master regulator proteins. Of these 8 candidates, ectopic expression of BAZ2B, from the bromodomain family, efficiently reprograms hematopoietic committed progenitors into a multipotent state and significantly enhances their long-term clonogenicity, stemness, and engraftment in immunocompromised mice. Unbiased systems biology approaches let us identify the early driving events of human B cell reprogramming.
Collapse
Affiliation(s)
- Karthik Arumugam
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - William Shin
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Valentina Schiavone
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Lukas Vlahos
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Xiaochuan Tu
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Davide Carnevali
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Jordan Kesner
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Evan O Paull
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Neus Romo
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Prem Subramaniam
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Jeremy Worley
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Xiangtian Tan
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, J.P. Sulzberger Columbia Genome Center, Department of Biomedical Informatics, Department of Biochemistry and Molecular Biophysics, Department of Medicine, Columbia University, New York, NY, USA.
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
7
|
Zayed H, Petersen I. Stem cell transcription factor SOX2 in synovial sarcoma and other soft tissue tumors. Pathol Res Pract 2018; 214:1000-1007. [PMID: 29773426 DOI: 10.1016/j.prp.2018.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND SOX2 has gained considerable interest as a pluripotency inducing gene. Co-transfection of SOX2 together with NANOG, KLF4 and c-MYC into adult fibroblasts was able to generate pluripotent stem cells. SOX2 has been reported to be expressed in synovial sarcoma, a tumor being characterized by the SS18-SSX gene fusion forming part of the SWI/SNF chromatin remodeling complex that affects histone methylation. The role of SOX2 in this tumor type as well as other soft tissue tumor entities however is still poorly characterized. We analyzed SOX2 protein expression in soft tissue tumors. Alongside we tested Histone H3 expression (H3K27me3) in SOX2 positive cases to investigate this epigenetic mark and its correlation with the SOX2 status and clinicopathological parameters. METHODOLOGY In total, 60 samples of synovial sarcomas from the reference center for soft tissue tumors at the institute of pathology of the Jena University hospital were included into the study along with 343 other tissue tumors. Protein analysis was done by immunohistochemistry of tissue microarrays. All synovial sarcoma cases were confirmed by molecular testing using SS18 FISH break apart probes. RESULTS SOX2 reactivity was detectable in 35 synovial sarcoma cases (58.3%) while 25 (41.7%) were negative. Only 13 cases of the other 343 soft tissue tumors, varying from nodular fasciitis to undifferentiated pleomorphic sarcoma, revealed a SOX2 expression, 12 out of these were undifferentiated high grade sarcoma. There was no obvious correlation with the clinicopathological data. H3K27me3 immunohistochemistry of the synovial sarcoma cases revealed a high statistically significant correlation between SOX2 and H3K27me3 expression (p < 0,0005, Chi square test). Similar to SOX2, there was no correlation between H3K27me3 expression and tumor grade. Six SOX2 positive synovial sarcoma cases were analyzed by FISH using a SOX2/CEN3 dual color FISH probe. None of these cases revealed an amplification of the SOX2 gene. CONCLUSION The data confirms previous studies reporting SOX2 and H3K27me3 expression in synovial sarcoma and reveals that both biomarkers are related to each other. It strengthens the notion that the tumor type is driven by epigenetic processes similar to those that are operating in pluripotent stem cells. The relevance of these parameters in the pathway pathology of synovial sarcoma, i.e. the timing and dosing of SOX2 and H3K27me3 expression initiated by the SS18-SSX driver mutation together with the interplay of these events with other signaling pathways, cellular mechanisms and additional mutations in tumor progression, will require further studies.
Collapse
Affiliation(s)
- Heba Zayed
- Institute of Pathology, Jena University Hospital, Germany; National Cancer Institute, Cairo University, Egypt
| | - Iver Petersen
- Institute of Pathology, Jena University Hospital, Germany.
| |
Collapse
|
8
|
Benešová M, Trejbalová K, Kučerová D, Vernerová Z, Hron T, Szabó A, Amouroux R, Klézl P, Hajkova P, Hejnar J. Overexpression of TET dioxygenases in seminomas associates with low levels of DNA methylation and hydroxymethylation. Mol Carcinog 2017; 56:1837-1850. [PMID: 28218476 DOI: 10.1002/mc.22638] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/29/2017] [Accepted: 02/16/2017] [Indexed: 12/13/2022]
Abstract
Germ cell tumors and particularly seminomas reflect the epigenomic features of their parental primordial germ cells (PGCs), including genomic DNA hypomethylation and expression of pluripotent cell markers. Because the DNA hypomethylation might be a result of TET dioxygenase activity, we examined expression of TET1-3 enzymes and the level of their product, 5-hydroxymethylcytosine (5hmC), in a panel of histologically characterized seminomas and non-seminomatous germ cell tumors. Expression of TET dioxygenase mRNAs was quantified by real-time PCR. TET1 expression and the level of 5hmC were examined immunohistochemically. Quantitative assessment of 5-methylcytosine (5mC) and 5hmC levels was done by the liquid chromatography-mass spectroscopy technique. We found highly increased expression of TET1 dioxygenase in most seminomas and strong TET1 staining in seminoma cells. Isocitrate dehydrogenase 1 and 2 mutations were not detected, suggesting the enzymatic activity of TET1. The levels of 5mC and 5hmC in seminomas were found decreased in comparison to non-seminomatous germ cell tumors and healthy testicular tissue. We propose that TET1 expression should be studied as a potential marker of seminomas and mixed germ cell tumors and we suggest that elevated expression of TET dioxygenase enzymes is associated with the maintenance of low DNA methylation levels in seminomas. This "anti-methylator" phenotype of seminomas is in contrast to the CpG island methylator phenotype (CIMP) observed in a fraction of tumors of various types.
Collapse
Affiliation(s)
- Martina Benešová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-14220 Prague 4, Czech Republic
| | - Kateřina Trejbalová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-14220 Prague 4, Czech Republic
| | - Dana Kučerová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-14220 Prague 4, Czech Republic
| | - Zdenka Vernerová
- Department of Pathology, Third Faculty of Medicine, Charles University in Prague, Ruska 87, CZ-10000, Prague 10, Czech Republic
| | - Tomáš Hron
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-14220 Prague 4, Czech Republic
| | - Arpád Szabó
- Department of Pathology, Third Faculty of Medicine, Charles University in Prague, Ruska 87, CZ-10000, Prague 10, Czech Republic
| | - Rachel Amouroux
- MRC London Institute of Medical Sciences, London, UK and Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, UK
| | - Petr Klézl
- Department of Urology, Third Faculty of Medicine, Charles University in Prague, Ruska 87, CZ-10000, Prague 10, Czech Republic
| | - Petra Hajkova
- MRC London Institute of Medical Sciences, London, UK and Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, UK
| | - Jiří Hejnar
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-14220 Prague 4, Czech Republic
| |
Collapse
|
9
|
Nettersheim D, Schorle H. The plasticity of germ cell cancers and its dependence on the cellular microenvironment. J Cell Mol Med 2017; 21:1463-1467. [PMID: 28244655 PMCID: PMC5543455 DOI: 10.1111/jcmm.13082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
So far, the understanding of germ cell cancer (GCC) pathogenesis is based on a model, where seminomas and non‐seminomas represent distinct entities although originating from a common precursor termed germ cell neoplasia in situ (GCNIS). Embryonal carcinomas (ECs), the stem cell population of the non‐seminomas, is pluri‐ to totipotent and able to differentiate into cells of all three germ layers, giving rise to teratomas or tumours mimicking extraembryonic tissues (yolk sac tumours, choriocarcinomas). With regard to gene expression, (epi)genetics and histology, seminomas are highly similar to GCNIS and primordial germ cells, but limited in development. It remains elusive, whether this block in differentiation is controlled by cell intrinsic mechanisms or by signals from the surrounding microenvironment. Here, we reviewed the recent literature emphasizing the plasticity of GCCs, especially of seminomas. We propose that this plasticity is controlled by the microenvironment, allowing seminomas to transit into an EC or mixed non‐seminoma and vice versa. We discuss several mechanisms and routes of reprogramming that might be responsible for this change in the cell fate. We finally integrate this plasticity into a new model of GCC pathogenesis, allowing for an alternative view on the dynamics of GCC development and progression.
Collapse
Affiliation(s)
- Daniel Nettersheim
- Department of Developmental Pathology, Institute of Pathology, University Medical School, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Medical School, Bonn, Germany
| |
Collapse
|