1
|
Wang Y, Wang Y, Iriki T, Hashimoto E, Inami M, Hashimoto S, Watanabe A, Takano H, Motosugi R, Hirayama S, Sugishita H, Gotoh Y, Yao R, Hamazaki J, Murata S. The DYT6 dystonia causative protein THAP1 is responsible for proteasome activity via PSMB5 transcriptional regulation. Nat Commun 2025; 16:1600. [PMID: 39952963 PMCID: PMC11828994 DOI: 10.1038/s41467-025-56867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
The proteasome plays a pivotal role in protein degradation, and its impairment is associated with various pathological conditions, including neurodegenerative diseases. It is well understood that Nrf1 coordinates the induction of all proteasome genes in response to proteasome dysfunction. However, the molecular mechanism regulating the basal expression of the proteasome remains unclear. Here we identify the transcription factor THAP1, the causative gene of DYT6 dystonia, as a regulator of proteasome activity through a genome-wide genetic screen. We demonstrated that THAP1 directly regulates the expression of the PSMB5 gene, which encodes the central protease subunit β5. Depletion of THAP1 disrupts proteasome assembly, leading to reduced proteasome activity and the accumulation of ubiquitinated proteins. These findings uncover a regulatory mechanism for the proteasome and suggest a potential role for proteasome dysfunction in the pathogenesis of dystonia.
Collapse
Affiliation(s)
- Yan Wang
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
- The Affiliated Kangning Hospital of Ningbo University, No. 1 Zhuangyunan Road, Ningbo, China
| | - Yi Wang
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Iriki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Eiichi Hashimoto
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Maki Inami
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sota Hashimoto
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ayako Watanabe
- One-stop Sharing Facility Center for Future Drug Discoveries, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Takano
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Ryo Motosugi
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shoshiro Hirayama
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Sugishita
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yukiko Gotoh
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryoji Yao
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Ramage DE, Grant DW, Timms RT. Loss-of-function mutations in the dystonia gene THAP1 impair proteasome function by inhibiting PSMB5 expression. Nat Commun 2025; 16:1511. [PMID: 39929834 PMCID: PMC11811203 DOI: 10.1038/s41467-025-56782-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
The 26S proteasome is a multi-catalytic protease that serves as the endpoint for protein degradation via the ubiquitin-proteasome system. Proteasome function requires the concerted activity of 33 distinct gene products, but how the expression of proteasome subunits is regulated in mammalian cells remains poorly understood. Leveraging coessentiality data from the DepMap project, here we characterize an essential role for the dystonia gene THAP1 in maintaining the basal expression of PSMB5. PSMB5 insufficiency resulting from loss of THAP1 leads to defects in proteasome assembly, impaired proteostasis and cell death. Exploiting the fact that the toxicity associated with loss of THAP1 can be rescued upon exogenous expression of PSMB5, we define the transcriptional targets of THAP1 through RNA-seq analysis and perform a deep mutational scan to systematically assess the function of thousands of single amino acid THAP1 variants. Altogether, these data identify THAP1 as a critical regulator of proteasome function and suggest that aberrant proteostasis may contribute to the pathogenesis of THAP1 dystonia.
Collapse
Affiliation(s)
- Dylan E Ramage
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, UK
| | - Drew W Grant
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, UK
| | - Richard T Timms
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, UK.
| |
Collapse
|
3
|
Katayama K, Ito J, Murakami R, Yamashita A, Sasajima H, Narahashi S, Chiba J, Yamamoto I, Fujii W, Tochigi Y, Suzuki H. Mutation of the Thap4 gene causes dwarfism and testicular anomalies in rats and mice. Mamm Genome 2024; 35:149-159. [PMID: 38658415 DOI: 10.1007/s00335-024-10041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
The petit (pet) locus is associated with dwarfism, testicular anomalies, severe thymic hypoplasia, and high postnatal lethality, which are inherited in autosomal recessive mode of inheritance in rats with a Wistar strain genetic background. Linkage analysis localized the pet locus between 98.7 Mb and 101.2 Mb on rat chromosome 9. Nucleotide sequence analysis identified 2 bp deletion in exon 2 of the Thap4 gene as the causative mutation for pet. This deletion causes a frameshift and premature termination codon, resulting in a truncated THAP4 protein lacking approximately two-thirds of the C-terminal side. Thap4 is expressed in various organs, including the testis and thymus in rats. To elucidate the biological function of THAP4 in other species, we generated Thap4 knockout mice lacking exon 2 of the Thap4 gene through genome editing. Thap4 knockout mice also exhibited dwarfism and small testis but did not show high postnatal lethality. Thymus weights of adult Thap4 knockout male mice were significantly higher compared to wild-type male mice. Although Thap4 knockout male mice were fertile, their testis contained seminiferous tubules with spermatogenesis and degenerative seminiferous tubules lacking germ cells. Additionally, we observed vacuoles in seminiferous tubules, and clusters of cells in the lumen in seminiferous tubules in Thap4 knockout male mice. These results demonstrate that spontaneous mutation of Thap4 gene in rats and knockout of Thap4 gene in mice both cause dwarfism and testicular anomalies. Thap4 gene in rats and mice is essential for normal testicular development, maintaining spermatogenesis throughout the entire region of seminiferous tubules.
Collapse
Affiliation(s)
- Kentaro Katayama
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Junya Ito
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Rei Murakami
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Ayako Yamashita
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Hotaka Sasajima
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Satomi Narahashi
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Junko Chiba
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Ichiro Yamamoto
- Laboratory of Veterinary Biochemistry, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Wataru Fujii
- Laboratory of Biomedical Science, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuki Tochigi
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Hiroetsu Suzuki
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan.
| |
Collapse
|
4
|
Yu H, Zhao J, Shen Y, Qiao L, Liu Y, Xie G, Chang S, Ge T, Li N, Chen M, Li H, Zhang J, Wang X. The dynamic landscape of enhancer-derived RNA during mouse early embryo development. Cell Rep 2024; 43:114077. [PMID: 38592974 DOI: 10.1016/j.celrep.2024.114077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Enhancer-derived RNAs (eRNAs) play critical roles in diverse biological processes by facilitating their target gene expression. However, the abundance and function of eRNAs in early embryos are not clear. Here, we present a comprehensive eRNA atlas by systematically integrating publicly available datasets of mouse early embryos. We characterize the transcriptional and regulatory network of eRNAs and show that different embryo developmental stages have distinct eRNA expression and regulatory profiles. Paternal eRNAs are activated asymmetrically during zygotic genome activation (ZGA). Moreover, we identify an eRNA, MZGAe1, which plays an important function in regulating mouse ZGA and early embryo development. MZGAe1 knockdown leads to a developmental block from 2-cell embryo to blastocyst. We create an online data portal, M2ED2, to query and visualize eRNA expression and regulation. Our study thus provides a systematic landscape of eRNA and reveals the important role of eRNAs in regulating mouse early embryo development.
Collapse
Affiliation(s)
- Hua Yu
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China; School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Institute of Life Sciences, Nanchang University, Nanchang 330031, China.
| | - Jing Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yuxuan Shen
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lu Qiao
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yuheng Liu
- HPC Center, Westlake University, Hangzhou 310024, China
| | - Guanglei Xie
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Shuhui Chang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tingying Ge
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Nan Li
- HPC Center, Westlake University, Hangzhou 310024, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55904, USA
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Xi Wang
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China.
| |
Collapse
|
5
|
Yellajoshyula D. Transcriptional regulatory network for neuron-glia interactions and its implication for DYT6 dystonia. DYSTONIA (LAUSANNE, SWITZERLAND) 2023; 2:11796. [PMID: 38737544 PMCID: PMC11087070 DOI: 10.3389/dyst.2023.11796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Advances in sequencing technologies have identified novel genes associated with inherited forms of dystonia, providing valuable insights into its genetic basis and revealing diverse genetic pathways and mechanisms involved in its pathophysiology. Since identifying genetic variation in the transcription factor coding THAP1 gene linked to isolated dystonia, numerous investigations have employed transcriptomic studies in DYT-THAP1 models to uncover pathogenic molecular mechanisms underlying dystonia. This review examines key findings from transcriptomic studies conducted on in vivo and in vitro DYT-THAP1 models, which demonstrate that the THAP1-regulated transcriptome is diverse and cell-specific, yet it is bound and co-regulated by a common set of proteins. Prominent among its functions, THAP1 and its co-regulatory network target molecular pathways critical for generating myelinating oligodendrocytes that ensheath axons and generate white matter in the central nervous system. Several lines of investigation have demonstrated the importance of myelination and oligodendrogenesis in motor function during development and in adults, emphasizing the non-cell autonomous contributions of glial cells to neural circuits involved in motor function. Further research on the role of myelin abnormalities in motor deficits in DYT6 models will enhance our understanding of axon-glia interactions in dystonia pathophysiology and provide potential therapeutic interventions targeting these pathways.
Collapse
|
6
|
Cheng F, Zheng W, Barbuti PA, Bonsi P, Liu C, Casadei N, Ponterio G, Meringolo M, Admard J, Dording CM, Yu-Taeger L, Nguyen HP, Grundmann-Hauser K, Ott T, Houlden H, Pisani A, Krüger R, Riess O. DYT6 mutated THAP1 is a cell type dependent regulator of the SP1 family. Brain 2022; 145:3968-3984. [PMID: 35015830 DOI: 10.1093/brain/awac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 11/12/2022] Open
Abstract
DYT6 dystonia is caused by mutations in the transcription factor THAP1. THAP1 knock-out or knock-in mouse models revealed complex gene expression changes, which are potentially responsible for the pathogenesis of DYT6 dystonia. However, how THAP1 mutations lead to these gene expression alterations and whether the gene expression changes are also reflected in the brain of THAP1 patients are still unclear. In this study we used epigenetic and transcriptomic approaches combined with multiple model systems [THAP1 patients' frontal cortex, THAP1 patients' induced pluripotent stem cell (iPSC)-derived midbrain dopaminergic neurons, THAP1 heterozygous knock-out rat model, and THAP1 heterozygous knock-out SH-SY5Y cell lines] to uncover a novel function of THAP1 and the potential pathogenesis of DYT6 dystonia. We observed that THAP1 targeted only a minority of differentially expressed genes caused by its mutation. THAP1 mutations lead to dysregulation of genes mainly through regulation of SP1 family members, SP1 and SP4, in a cell type dependent manner. Comparing global differentially expressed genes detected in THAP1 patients' iPSC-derived midbrain dopaminergic neurons and THAP1 heterozygous knock-out rat striatum, we observed many common dysregulated genes and 61 of them were involved in dystonic syndrome-related pathways, like synaptic transmission, nervous system development, and locomotor behaviour. Further behavioural and electrophysiological studies confirmed the involvement of these pathways in THAP1 knock-out rats. Taken together, our study characterized the function of THAP1 and contributes to the understanding of the pathogenesis of primary dystonia in humans and rats. As SP1 family members were dysregulated in some neurodegenerative diseases, our data may link THAP1 dystonia to multiple neurological diseases and may thus provide common treatment targets.
Collapse
Affiliation(s)
- Fubo Cheng
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Wenxu Zheng
- Institute for Ophthalmic Research Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Peter Antony Barbuti
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- NGS Competence Center Tuebingen, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- NGS Competence Center Tuebingen, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Claire Marie Dording
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Libo Yu-Taeger
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- Department of Human Genetics, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | | | - Thomas Ott
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS C. Mondino Foundation, Pavia, Italy
| | - Rejko Krüger
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- NGS Competence Center Tuebingen, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
7
|
Diaw SH, Ott F, Münchau A, Lohmann K, Busch H. Emerging role of a systems biology approach to elucidate factors of reduced penetrance: transcriptional changes in THAP1-linked dystonia as an example. MED GENET-BERLIN 2022; 34:131-141. [PMID: 38835919 PMCID: PMC11006298 DOI: 10.1515/medgen-2022-2126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Pathogenic variants in THAP1 can cause dystonia with a penetrance of about 50 %. The underlying mechanisms are unknown and can be considered as means of endogenous disease protection. Since THAP1 encodes a transcription factor, drivers of this variability putatively act at the transcriptome level. Several transcriptome studies tried to elucidate THAP1 function in diverse cellular and mouse models, including mutation carrier-derived cells and iPSC-derived neurons, unveiling various differentially expressed genes and affected pathways. These include nervous system development, dopamine signalling, myelination, or cell-cell adhesion. A network diffusion analysis revealed mRNA splicing, mitochondria, DNA repair, and metabolism as significant pathways that may represent potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Sokhna Haissatou Diaw
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Fabian Ott
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Hauke Busch
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
8
|
Kou L, Yang N, Dong B, Yang J, Song Y, Li Y, Qin Q. Circular RNA testis-expressed 14 overexpression induces apoptosis and suppresses migration of ox-LDL-stimulated vascular smooth muscle cells via regulating the microRNA 6509-3p/thanatos-associated domain-containing apoptosis-associated protein 1 axis. Bioengineered 2022; 13:13150-13161. [PMID: 35635088 PMCID: PMC9275967 DOI: 10.1080/21655979.2022.2070582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- Lu Kou
- Cardiovascular Department, Tianjin Chest Hospital, Tianjin, China
| | - Ning Yang
- Cardiovascular Department, Tianjin Chest Hospital, Tianjin, China
| | - Bo Dong
- Cardiovascular Department, Tianjin Chest Hospital, Tianjin, China
| | - Jingyu Yang
- Cardiovascular Department, Tianjin Chest Hospital, Tianjin, China
| | - Yanqiu Song
- Institute of Cardiology Research, Tianjin Chest Hospital, Tianjin, China
| | - Yang Li
- Cardiovascular Department, Tianjin Chest Hospital, Tianjin, China
| | - Qin Qin
- Cardiovascular Department, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
9
|
Malla S, Prasad Bhattarai D, Groza P, Melguizo‐Sanchis D, Atanasoai I, Martinez‐Gamero C, Román Á, Zhu D, Lee D, Kutter C, Aguilo F. ZFP207 sustains pluripotency by coordinating OCT4 stability, alternative splicing and RNA export. EMBO Rep 2022; 23:e53191. [PMID: 35037361 PMCID: PMC8892232 DOI: 10.15252/embr.202153191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sandhya Malla
- Department of Medical Biosciences Umeå University Umeå Sweden
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Devi Prasad Bhattarai
- Department of Medical Biosciences Umeå University Umeå Sweden
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Paula Groza
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Dario Melguizo‐Sanchis
- Department of Medical Biosciences Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Ionut Atanasoai
- Department of Microbiology, Tumor and Cell Biology Science for Life Laboratory Karolinska Institute Stockholm Sweden
| | - Carlos Martinez‐Gamero
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Ángel‐Carlos Román
- Department of Biochemistry, Molecular Biology and Genetics University of Extremadura Badajoz Spain
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology McGovern Medical School The University of Texas Health Science Center at Houston Houston TX USA
| | - Dung‐Fang Lee
- Department of Integrative Biology and Pharmacology McGovern Medical School The University of Texas Health Science Center at Houston Houston TX USA
- Center for Precision Health School of Biomedical Informatics The University of Texas Health Science Center at Houston Houston TX USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston TX USA
- Center for Stem Cell and Regenerative Medicine The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases The University of Texas Health Science Center at Houston Houston TX USA
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology Science for Life Laboratory Karolinska Institute Stockholm Sweden
| | - Francesca Aguilo
- Department of Medical Biosciences Umeå University Umeå Sweden
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| |
Collapse
|
10
|
Domingo A, Yadav R, Shah S, Hendriks WT, Erdin S, Gao D, O'Keefe K, Currall B, Gusella JF, Sharma N, Ozelius LJ, Ehrlich ME, Talkowski ME, Bragg DC. Dystonia-specific mutations in THAP1 alter transcription of genes associated with neurodevelopment and myelin. Am J Hum Genet 2021; 108:2145-2158. [PMID: 34672987 PMCID: PMC8595948 DOI: 10.1016/j.ajhg.2021.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
Dystonia is a neurologic disorder associated with an increasingly large number of genetic variants in many genes, resulting in characteristic disturbances in volitional movement. Dissecting the relationships between these mutations and their functional outcomes is critical in understanding the pathways that drive dystonia pathogenesis. Here we established a pipeline for characterizing an allelic series of dystonia-specific mutations. We used this strategy to investigate the molecular consequences of genetic variation in THAP1, which encodes a transcription factor linked to neural differentiation. Multiple pathogenic mutations associated with dystonia cluster within distinct THAP1 functional domains and are predicted to alter DNA-binding properties and/or protein interactions differently, yet the relative impact of these varied changes on molecular signatures and neural deficits is unclear. To determine the effects of these mutations on THAP1 transcriptional activity, we engineered an allelic series of eight alterations in a common induced pluripotent stem cell background and differentiated these lines into a panel of near-isogenic neural stem cells (n = 94 lines). Transcriptome profiling followed by joint analysis of the most robust signatures across mutations identified a convergent pattern of dysregulated genes functionally related to neurodevelopment, lysosomal lipid metabolism, and myelin. On the basis of these observations, we examined mice bearing Thap1-disruptive alleles and detected significant changes in myelin gene expression and reduction of myelin structural integrity relative to control mice. These results suggest that deficits in neurodevelopment and myelination are common consequences of dystonia-associated THAP1 mutations and highlight the potential role of neuron-glial interactions in the pathogenesis of dystonia.
Collapse
Affiliation(s)
- Aloysius Domingo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shivangi Shah
- The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - William T Hendriks
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dadi Gao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kathryn O'Keefe
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin Currall
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - James F Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Michelle E Ehrlich
- Departments of Neurology, Pediatrics, and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| |
Collapse
|
11
|
The dystonia gene THAP1 controls DNA double-strand break repair choice. Mol Cell 2021; 81:2611-2624.e10. [PMID: 33857404 DOI: 10.1016/j.molcel.2021.03.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/01/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
The Shieldin complex shields double-strand DNA breaks (DSBs) from nucleolytic resection. Curiously, the penultimate Shieldin component, SHLD1, is one of the least abundant mammalian proteins. Here, we report that the transcription factors THAP1, YY1, and HCF1 bind directly to the SHLD1 promoter, where they cooperatively maintain the low basal expression of SHLD1, thereby ensuring a proper balance between end protection and resection during DSB repair. The loss of THAP1-dependent SHLD1 expression confers cross-resistance to poly (ADP-ribose) polymerase (PARP) inhibitor and cisplatin in BRCA1-deficient cells and shorter progression-free survival in ovarian cancer patients. Moreover, the embryonic lethality and PARPi sensitivity of BRCA1-deficient mice is rescued by ablation of SHLD1. Our study uncovers a transcriptional network that directly controls DSB repair choice and suggests a potential link between DNA damage and pathogenic THAP1 mutations, found in patients with the neurodevelopmental movement disorder adult-onset torsion dystonia type 6.
Collapse
|
12
|
Baumann H, Ott F, Weber J, Trilck-Winkler M, Münchau A, Zittel S, Kostić VS, Kaiser FJ, Klein C, Busch H, Seibler P, Lohmann K. Linking Penetrance and Transcription in DYT-THAP1: Insights From a Human iPSC-Derived Cortical Model. Mov Disord 2021; 36:1381-1391. [PMID: 33547842 DOI: 10.1002/mds.28506] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/20/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The THAP1 gene encodes a transcription factor, and pathogenic variants cause a form of autosomal dominant, isolated dystonia (DYT-THAP1) with reduced penetrance. Factors underlying both reduced penetrance and the disease mechanism of DYT-THAP1 are largely unknown. METHODS We performed transcriptome analysis on 29 cortical neuronal precursors derived from human-induced pluripotent stem cell lines generated from manifesting and nonmanifesting THAP1 mutation carriers and control individuals. RESULTS Whole transcriptome analysis showed a penetrance-linked signature with expressional changes more pronounced in the group of manifesting (MMCs) than in nonmanifesting mutation carriers (NMCs) when compared to controls. A direct comparison of the transcriptomes in MMCs versus NMCs showed significant upregulation of the DRD4 gene in MMCs. A gene set enrichment analysis demonstrated alterations in various neurotransmitter release cycle pathways, extracellular matrix organization, and deoxyribonucleic acid methylation between MMCs and NMCs. When specifically considering transcription factors, the expression of YY1 and SIX2 differed in MMCs versus NMCs. Further, THAP1 was upregulated in the group of MMCs. CONCLUSIONS To our knowledge, this is the first report systematically analyzing reduced penetrance in DYT-THAP1 in a human model using transcriptomes. Our findings indicate that transcriptional alterations during cortical development influence DYT-THAP1 pathogenesis and penetrance. We reinforce previously linked pathways including dopamine and eukaryotic translation initiation factor 2 alpha signaling in the pathogenesis of dystonia including DYT-THAP1 and suggest extracellular matrix organization and deoxyribonucleic acid methylation as mediators of disease protection. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hauke Baumann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Fabian Ott
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Joachim Weber
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Alexander Münchau
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
13
|
Gonzalez-Latapi P, Marotta N, Mencacci NE. Emerging and converging molecular mechanisms in dystonia. J Neural Transm (Vienna) 2021; 128:483-498. [DOI: 10.1007/s00702-020-02290-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
|
14
|
Domingo A, Yadav R, Ozelius LJ. Isolated dystonia: clinical and genetic updates. J Neural Transm (Vienna) 2020; 128:405-416. [PMID: 33247415 DOI: 10.1007/s00702-020-02268-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
Four genes associated with isolated dystonia are currently well replicated and validated. DYT-THAP1 manifests as young-onset generalized dystonia with predominant craniocervical symptoms; and is associated with mostly deleterious missense variation in the THAP1 gene. De novo and inherited missense and protein truncating variation in GNAL as well as primarily missense variation in ANO3 cause isolated focal and/or segmental dystonia with preference for the upper half of the body and older ages at onset. The GAG deletion in TOR1A is associated with generalized dystonia with onset in childhood in the lower limbs. Rare variation in these genes causes monogenic sporadic and inherited forms of isolated dystonia; common variation may confer risk and imply that dystonia is a polygenic trait in a subset of cases. Although candidate gene screens have been successful in the past in detecting gene-disease associations, recent application of whole-genome and whole-exome sequencing methods enable unbiased capture of all genetic variation that may explain the phenotype. However, careful variant-level evaluation is necessary in every case, even in genes that have previously been associated with disease. We review the genetic architecture and phenotype of DYT-THAP1, DYT-GNAL, DYT-ANO3, and DYT-TOR1A by collecting case reports from the literature and performing variant classification using pathogenicity criteria.
Collapse
Affiliation(s)
- Aloysius Domingo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02142, USA
| | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02142, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA. .,Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
| |
Collapse
|
15
|
Sherry T, Handley A, Nicholas HR, Pocock R. Harmonization of L1CAM expression facilitates axon outgrowth and guidance of a motor neuron. Development 2020; 147:dev.193805. [PMID: 32994172 DOI: 10.1242/dev.193805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/18/2020] [Indexed: 12/28/2022]
Abstract
Brain development requires precise regulation of axon outgrowth, guidance and termination by multiple signaling and adhesion molecules. How the expression of these neurodevelopmental regulators is transcriptionally controlled is poorly understood. The Caenorhabditis elegans SMD motor neurons terminate axon outgrowth upon sexual maturity and partially retract their axons during early adulthood. Here we show that C-terminal binding protein 1 (CTBP-1), a transcriptional corepressor, is required for correct SMD axonal development. Loss of CTBP-1 causes multiple defects in SMD axon development: premature outgrowth, defective guidance, delayed termination and absence of retraction. CTBP-1 controls SMD axon guidance by repressing the expression of SAX-7, an L1 cell adhesion molecule (L1CAM). CTBP-1-regulated repression is crucial because deregulated SAX-7/L1CAM causes severely aberrant SMD axons. We found that axonal defects caused by deregulated SAX-7/L1CAM are dependent on a distinct L1CAM, called LAD-2, which itself plays a parallel role in SMD axon guidance. Our results reveal that harmonization of L1CAM expression controls the development and maturation of a single neuron.
Collapse
Affiliation(s)
- Tessa Sherry
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ava Handley
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Hannah R Nicholas
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
16
|
Xu J, Ge T, Zhou H, Zhang L, Zhao L. Absence of Long Noncoding RNA H19 Promotes Childhood Nephrotic Syndrome through Inhibiting ADCK4 Signal. Med Sci Monit 2020; 26:e922090. [PMID: 32489187 PMCID: PMC7294843 DOI: 10.12659/msm.922090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Nephrotic syndrome (NS) is a common chronic kidney disease in children characterized by a group of clinical symptoms such as massive proteinuria, hypoproteinemia, high edema, and hyperlipidemia. Despite the tremendous efforts already made, the diagnosis for nephrotic syndrome still remains poor in children. Material/Methods The blood samples from 30 healthy children and 30 children with nephrotic syndrome were collected. The expression of H19 and ADCK4 (which are genes recently identified to play key roles in the development of nephrotic syndrome) in peripheral blood mononuclear cells (PBMCs), were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The expression of ADCK4 was also detected by RT-qPCR or western blot when H19 was overexpressed or knocked down in human primary renal podocytes. Luciferase activity analysis was performed to measure whether H19 could regulate the promoter activity of ADCK4. RNA pull-down. In addition, mass spectrometry assay was used to find the transcription factor which could bind with H19, and RNA immunoprecipitation assay (RIPA) analysis was done to further confirm the interaction between H19 and candidate transcription factor. Results Long noncoding RNA H19 (lncRNA H19) expression was downregulated in PBMCs of children with nephrotic syndrome. ADCK4 was also downregulated. In human primary renal podocytes, overexpression of H19 promoted the expression of ADCK4, while H19 knockdown inhibited it. Furthermore, our study demonstrated that H19 could regulate the promoter activity of ADCK4. Using RNA pull-down and mass spectrometry technology, we found the transcription factor-THAP1 could bind with H19, and the interaction between them was further confirmed by RIPA analysis. Conclusions H19 expression in blood samples may be a novel marker of the diagnosis of nephrotic syndrome in children.
Collapse
Affiliation(s)
- Jinwen Xu
- Department of Pediatrics and Nephrology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| | - Tingting Ge
- Department of Pediatrics and Nephrology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| | - Hongxia Zhou
- Department of Pediatrics and Nephrology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| | - Lin Zhang
- Department of Pediatrics and Nephrology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| | - Liping Zhao
- Department of Pediatrics and Nephrology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| |
Collapse
|
17
|
Wang Z, Yin J, Zhou W, Bai J, Xie Y, Xu K, Zheng X, Xiao J, Zhou L, Qi X, Li Y, Li X, Xu J. Complex impact of DNA methylation on transcriptional dysregulation across 22 human cancer types. Nucleic Acids Res 2020; 48:2287-2302. [PMID: 32002550 PMCID: PMC7049702 DOI: 10.1093/nar/gkaa041] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/14/2020] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence has demonstrated that transcriptional regulation is affected by DNA methylation. Understanding the perturbation of DNA methylation-mediated regulation between transcriptional factors (TFs) and targets is crucial for human diseases. However, the global landscape of DNA methylation-mediated transcriptional dysregulation (DMTD) across cancers has not been portrayed. Here, we systematically identified DMTD by integrative analysis of transcriptome, methylome and regulatome across 22 human cancer types. Our results revealed that transcriptional regulation was affected by DNA methylation, involving hundreds of methylation-sensitive TFs (MethTFs). In addition, pan-cancer MethTFs, the regulatory activity of which is generally affected by DNA methylation across cancers, exhibit dominant functional characteristics and regulate several cancer hallmarks. Moreover, pan-cancer MethTFs were found to be affected by DNA methylation in a complex pattern. Finally, we investigated the cooperation among MethTFs and identified a network module that consisted of 43 MethTFs with prognostic potential. In summary, we systematically dissected the transcriptional dysregulation mediated by DNA methylation across cancer types, and our results provide a valuable resource for both epigenetic and transcriptional regulation communities.
Collapse
Affiliation(s)
- Zishan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiaqi Yin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Weiwei Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yunjin Xie
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kang Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiangyi Zheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Li Zhou
- Department of Nephrology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Xiaolin Qi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yongsheng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, China.,College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 570100, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, China.,College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 570100, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, China.,College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 570100, China
| |
Collapse
|
18
|
Unraveling Molecular Mechanisms of THAP1 Missense Mutations in DYT6 Dystonia. J Mol Neurosci 2020; 70:999-1008. [PMID: 32112337 PMCID: PMC7334247 DOI: 10.1007/s12031-020-01490-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Mutations in THAP1 (THAP domain-containing apoptosis-associated protein 1) are responsible for DYT6 dystonia. Until now, more than eighty different mutations in THAP1 gene have been found in patients with primary dystonia, and two third of them are missense mutations. The potential pathogeneses of these missense mutations in human are largely elusive. In the present study, we generated stable transfected human neuronal cell lines expressing wild-type or mutated THAP1 proteins found in DYT6 patients. Transcriptional profiling using microarrays revealed a set of 28 common genes dysregulated in two mutated THAP1 (S21T and F81L) overexpression cell lines suggesting a common mechanism of these mutations. ChIP-seq showed that THAP1 can bind to the promoter of one of these genes, superoxide dismutase 2 (SOD2). Overexpression of THAP1 in SK-N-AS cells resulted in increased SOD2 protein expression, whereas fibroblasts from THAP1 patients have less SOD2 expression, which indicates that SOD2 is a direct target gene of THAP1. In addition, we show that some THAP1 mutations (C54Y and F81L) decrease the protein stability which might also be responsible for altered transcription regulation due to dosage insufficiency. Taking together, the current study showed different potential pathogenic mechanisms of THAP1 mutations which lead to the same consequence of DYT6 dystonia.
Collapse
|
19
|
Chen G, Feng Y, Sun Z, Gao Y, Wu C, Zhang H, Cao J, Chen Z, Cao J, Zhu Y, Zhang S. mRNA and lncRNA Expression Profiling of Radiation-Induced Gastric Injury Reveals Potential Radiation-Responsive Transcription Factors. Dose Response 2019; 17:1559325819886766. [PMID: 31762715 PMCID: PMC6851613 DOI: 10.1177/1559325819886766] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 01/09/2023] Open
Abstract
Radiation-induced gastric injury is a serious concern that may limit the duration
and the delivered dose of radiation. However, the genome-wide molecular changes
in stomach upon ionizing radiation have not been reported. In this study, mouse
stomach was irradiated with 6 or 12 Gy X-ray irradiation and we found that
radiation resulted in the atrophy of gastric mucosa and abnormal morphology of
chief and parietal cells. Radiation-induced gastric injury was accompanied by an
increase in the serum levels of pepsinogen A and pepsinogen C but not
gastrin-17. The expression profiles of messenger RNA (mRNA) and long noncoding
RNA (lncRNA) in normal and irradiated gastric tissues were measured by
microarray analysis. Results revealed 17 upregulated and 10 downregulated mRNAs
were consistent in 6 and 12 Gy irradiated gastric tissues, including D
site-binding protein (Dbp) and fibrinogen-like protein 1
(Fgl1). Thirteen upregulated and 96 downregulated lncRNAs
were commonly changed in 6 and 12 Gy irradiated gastric tissues. The
dysregulated mRNAs were implicated in multiple pathways and showed coexpression
with lncRNAs. To identify motifs for transcription factors and coactivators in
the proximal promoter regions of the dysregulated RNAs, the bioinformatic tool
Biopython was used. A variety of common motifs that are associated with
transcription factors were identified, including ZNF263, LMX1B, and Dlx1. Our
findings illustrate the molecular changes during radiation-induced gastric
injury and the potential transcription factors driving this alteration.
Collapse
Affiliation(s)
- Guangxia Chen
- Department of Gastroenterology, First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Yang Feng
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical School of Soochow University, Suzhou, China.,State Key Lab of Radiation Medicine and Radioprotection, Soochow University, Suzhou, China
| | - Zhiqiang Sun
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical School of Soochow University, Suzhou, China.,State Key Lab of Radiation Medicine and Radioprotection, Soochow University, Suzhou, China
| | - Yiying Gao
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical School of Soochow University, Suzhou, China.,State Key Lab of Radiation Medicine and Radioprotection, Soochow University, Suzhou, China
| | - Chuannan Wu
- Department of Gastroenterology, First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Haihan Zhang
- Department of Gastroenterology, First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Jinming Cao
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical School of Soochow University, Suzhou, China.,State Key Lab of Radiation Medicine and Radioprotection, Soochow University, Suzhou, China
| | - Zhuo Chen
- Department of Gastroenterology, First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Jianping Cao
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical School of Soochow University, Suzhou, China.,State Key Lab of Radiation Medicine and Radioprotection, Soochow University, Suzhou, China
| | - Yaqun Zhu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuyu Zhang
- State Key Lab of Radiation Medicine and Radioprotection, Soochow University, Suzhou, China.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.,Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
| |
Collapse
|
20
|
Chen K, Liu H, Liu Z, Luo S, Patz EF, Moorman PG, Su L, Shen S, Christiani DC, Wei Q. Genetic variants in RUNX3, AMD1 and MSRA in the methionine metabolic pathway and survival in nonsmall cell lung cancer patients. Int J Cancer 2019; 145:621-631. [PMID: 30650190 PMCID: PMC6828159 DOI: 10.1002/ijc.32128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/13/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022]
Abstract
Abnormal methionine dependence in cancer cells has led to methionine restriction as a potential therapeutic strategy. We hypothesized that genetic variants involved in methionine-metabolic genes are associated with survival in nonsmall cell lung cancer (NSCLC) patients. Therefore, we investigated associations of 16,378 common single-nucleotide polymorphisms (SNPs) in 97 methionine-metabolic pathway genes with overall survival (OS) in NSCLC patients using genotyping data from two published genome-wide association study (GWAS) datasets. In the single-locus analysis, 1,005 SNPs were significantly associated with NSCLC OS (p < 0.05 and false-positive report probability < 0.2) in the discovery dataset. Three SNPs (RUNX3 rs7553295 G > T, AMD1 rs1279590 G > A and MSRA rs73534533 C > A) were replicated in the validation dataset, and their meta-analysis showed an adjusted hazards ratio [HR] of 0.82 [95% confidence interval (CI) =0.75-0.89] and pmeta = 2.86 × 10-6 , 0.81 (0.73-0.91) and pmeta = 4.63 × 10-4 , and 0.77 (0.68-0.89) and pmeta = 2.07 × 10-4 , respectively). A genetic score of protective genotypes of these three SNPs revealed an increased OS in a dose-response manner (ptrend < 0.0001). Further expression quantitative trait loci (eQTL) analysis showed significant associations between these genotypes and mRNA expression levels. Moreover, differential expression analysis further supported a tumor-suppressive effect of MSRA, with lower mRNA levels in both lung squamous carcinoma and adenocarcinoma (p < 0.0001 and < 0.0001, respectively) than in adjacent normal tissues. Additionally, low mutation rates of these three genes indicated the critical roles of these functional SNPs in cancer progression. Taken together, these genetic variants of methionine-metabolic pathway genes may be promising predictors of survival in NSCLC patients.
Collapse
Affiliation(s)
- Ka Chen
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, P. R. China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zhensheng Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Edward F. Patz
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Radiology, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Patricia G. Moorman
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - Li Su
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - Sipeng Shen
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
| | - David C. Christiani
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
21
|
Frederick NM, Shah PV, Didonna A, Langley MR, Kanthasamy AG, Opal P. Loss of the dystonia gene Thap1 leads to transcriptional deficits that converge on common pathogenic pathways in dystonic syndromes. Hum Mol Genet 2019; 28:1343-1356. [PMID: 30590536 DOI: 10.1093/hmg/ddy433] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/26/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
Dystonia is a movement disorder characterized by involuntary and repetitive co-contractions of agonist and antagonist muscles. Dystonia 6 (DYT6) is an autosomal dominant dystonia caused by loss-of-function mutations in the zinc finger transcription factor THAP1. We have generated Thap1 knock-out mice with a view to understanding its transcriptional role. While germ-line deletion of Thap1 is embryonic lethal, mice lacking one Thap1 allele-which in principle should recapitulate the haploinsufficiency of the human syndrome-do not show a discernable phenotype. This is because mice show autoregulation of Thap1 mRNA levels with upregulation at the non-affected locus. We then deleted Thap1 in glial and neuronal precursors using a nestin-conditional approach. Although these mice do not exhibit dystonia, they show pronounced locomotor deficits reflecting derangements in the cerebellar and basal ganglia circuitry. These behavioral features are associated with alterations in the expression of genes involved in nervous system development, synaptic transmission, cytoskeleton, gliosis and dopamine signaling that link DYT6 to other primary and secondary dystonic syndromes.
Collapse
Affiliation(s)
| | | | - Alessandro Didonna
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Monica R Langley
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Puneet Opal
- Davee Department of Neurology.,Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
22
|
Abstract
Dystonia is a neurological condition characterized by abnormal involuntary movements or postures owing to sustained or intermittent muscle contractions. Dystonia can be the manifesting neurological sign of many disorders, either in isolation (isolated dystonia) or with additional signs (combined dystonia). The main focus of this Primer is forms of isolated dystonia of idiopathic or genetic aetiology. These disorders differ in manifestations and severity but can affect all age groups and lead to substantial disability and impaired quality of life. The discovery of genes underlying the mendelian forms of isolated or combined dystonia has led to a better understanding of its pathophysiology. In some of the most common genetic dystonias, such as those caused by TOR1A, THAP1, GCH1 and KMT2B mutations, and idiopathic dystonia, these mechanisms include abnormalities in transcriptional regulation, striatal dopaminergic signalling and synaptic plasticity and a loss of inhibition at neuronal circuits. The diagnosis of dystonia is largely based on clinical signs, and the diagnosis and aetiological definition of this disorder remain a challenge. Effective symptomatic treatments with pharmacological therapy (anticholinergics), intramuscular botulinum toxin injection and deep brain stimulation are available; however, future research will hopefully lead to reliable biomarkers, better treatments and cure of this disorder.
Collapse
|
23
|
Mutations in THAP1/DYT6 reveal that diverse dystonia genes disrupt similar neuronal pathways and functions. PLoS Genet 2018; 14:e1007169. [PMID: 29364887 PMCID: PMC5798844 DOI: 10.1371/journal.pgen.1007169] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 02/05/2018] [Accepted: 12/25/2017] [Indexed: 12/14/2022] Open
Abstract
Dystonia is characterized by involuntary muscle contractions. Its many forms are genetically, phenotypically and etiologically diverse and it is unknown whether their pathogenesis converges on shared pathways. Mutations in THAP1 [THAP (Thanatos-associated protein) domain containing, apoptosis associated protein 1], a ubiquitously expressed transcription factor with DNA binding and protein-interaction domains, cause dystonia, DYT6. There is a unique, neuronal 50-kDa Thap1-like immunoreactive species, and Thap1 levels are auto-regulated on the mRNA level. However, THAP1 downstream targets in neurons, and the mechanism via which it causes dystonia are largely unknown. We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1 C54Y or ΔExon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum. Enriched pathways and gene ontology terms include eIF2α Signaling, Mitochondrial Dysfunction, Neuron Projection Development, Axonal Guidance Signaling, and Synaptic LongTerm Depression, which are dysregulated in a genotype and tissue-dependent manner. Electrophysiological and neurite outgrowth assays were consistent with those enrichments, and the plasticity defects were partially corrected by salubrinal. Notably, several of these pathways were recently implicated in other forms of inherited dystonia, including DYT1. We conclude that dysfunction of these pathways may represent a point of convergence in the pathophysiology of several forms of inherited dystonia. Dystonia is a brain disorder that causes disabling involuntary muscle contractions and abnormal postures. Mutations in THAP1, a zinc-finger transcription factor, cause DYT6, but its neuronal targets and functions are unknown. In this study, we sought to determine the effects of Thap1C54Y and ΔExon2 alleles on the gene transcription signatures at postnatal day 1 (P1) in the mouse striatum and cerebellum in order to correlate function with specific genes or pathways. Our unbiased transcriptomics approach showed that Thap1 mutants revealed multiple signaling pathways involved in neuronal plasticity, axonal guidance, and oxidative stress response, which are also present in other forms of dystonia, particularly DYT1. We conclude that dysfunction of these pathways may represent a point of convergence on the pathogenesis of unrelated forms of inherited dystonia.
Collapse
|
24
|
Yellajoshyula D, Liang CC, Pappas SS, Penati S, Yang A, Mecano R, Kumaran R, Jou S, Cookson MR, Dauer WT. The DYT6 Dystonia Protein THAP1 Regulates Myelination within the Oligodendrocyte Lineage. Dev Cell 2017; 42:52-67.e4. [PMID: 28697333 DOI: 10.1016/j.devcel.2017.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 04/25/2017] [Accepted: 06/07/2017] [Indexed: 11/30/2022]
Abstract
The childhood-onset motor disorder DYT6 dystonia is caused by loss-of-function mutations in the transcription factor THAP1, but the neurodevelopmental processes in which THAP1 participates are unknown. We find that THAP1 is essential for the timing of myelination initiation during CNS maturation. Conditional deletion of THAP1 in the CNS retards maturation of the oligodendrocyte (OL) lineage, delaying myelination and causing persistent motor deficits. The CNS myelination defect results from a cell-autonomous requirement for THAP1 in the OL lineage and is recapitulated in developmental assays performed on OL progenitor cells purified from Thap1 null mice. Loss of THAP1 function disrupts a core set of OL maturation genes and reduces the DNA occupancy of YY1, a transcription factor required for OL maturation. These studies establish a role for THAP1 transcriptional regulation at the inception of myelination and implicate abnormal timing of myelination in the pathogenesis of childhood-onset dystonia.
Collapse
Affiliation(s)
- Dhananjay Yellajoshyula
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Chun-Chi Liang
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Samuel S Pappas
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Silvia Penati
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Angela Yang
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Rodan Mecano
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Ravindran Kumaran
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Stephanie Jou
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - William T Dauer
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; VAAAHS, University of Michigan Medical School, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| |
Collapse
|