1
|
Wu R, Li D, Zhang S, Wang J, Yu Q, Feng D, Han P. Comprehensive pan-cancer analysis identifies PLAG1 as a key regulator of tumor immune microenvironment and prognostic biomarker. Front Immunol 2025; 16:1572108. [PMID: 40276502 PMCID: PMC12018345 DOI: 10.3389/fimmu.2025.1572108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Background The literature on the role of pleomorphic adenoma gene 1 (PLAG1) in malignant tumors is limited. This study aimed to perform pan-cancer analysis of PLAG1. Methods The expression of PLAG1 was analyzed by Human Protein Atlas (HPA). The differential expression and prognosis of PLAG1 were analyzed based on TCGA pan-cancer data. The relationship between PLAG1 expression and tumor heterogeneity, stemness and immune infiltration was investigated. The enrichment analysis and biological function of PLAG1 in bladder cancer were analyzed. Results The expression of PLAG1 was increased in a variety of tumors and significantly correlated with the prognosis of patients. Their expression levels were associated with key immune checkpoint genes (CD274, HAVCR2), immune infiltration and immune stimulation factors (CD48, CD27). In bladder cancer, functional enrichment analysis indicated that PLAG1 was involved in epidermal related processes and immune pathways. PLAG1 gene expression reduction can significantly inhibit the proliferation of bladder cancer cells. Conclusions PLAG1 has the potential to be a prognostic marker and a potential therapeutic target for patients with malignant tumors.
Collapse
Affiliation(s)
- Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuxia Zhang
- Research Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, Zhejiang, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Moiani A, Letort G, Lizot S, Chalumeau A, Foray C, Felix T, Le Clerre D, Temburni-Blake S, Hong P, Leduc S, Pinard N, Marechal A, Seclen E, Boyne A, Mayer L, Hong R, Pulicani S, Galetto R, Gouble A, Cavazzana M, Juillerat A, Miccio A, Duclert A, Duchateau P, Valton J. Non-viral DNA delivery and TALEN editing correct the sickle cell mutation in hematopoietic stem cells. Nat Commun 2024; 15:4965. [PMID: 38862518 PMCID: PMC11166989 DOI: 10.1038/s41467-024-49353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Sickle cell disease is a devastating blood disorder that originates from a single point mutation in the HBB gene coding for hemoglobin. Here, we develop a GMP-compatible TALEN-mediated gene editing process enabling efficient HBB correction via a DNA repair template while minimizing risks associated with HBB inactivation. Comparing viral versus non-viral DNA repair template delivery in hematopoietic stem and progenitor cells in vitro, both strategies achieve comparable HBB correction and result in over 50% expression of normal adult hemoglobin in red blood cells without inducing β-thalassemic phenotype. In an immunodeficient female mouse model, transplanted cells edited with the non-viral strategy exhibit higher engraftment and gene correction levels compared to those edited with the viral strategy. Transcriptomic analysis reveals that non-viral DNA repair template delivery mitigates P53-mediated toxicity and preserves high levels of long-term hematopoietic stem cells. This work paves the way for TALEN-based autologous gene therapy for sickle cell disease.
Collapse
Affiliation(s)
| | - Gil Letort
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Sabrina Lizot
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Anne Chalumeau
- Université Paris Cité, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France
| | - Chloe Foray
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Tristan Felix
- Université Paris Cité, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France
| | | | | | - Patrick Hong
- Cellectis Inc., 430 East 29th Street, New York, NY, USA
| | - Sophie Leduc
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Noemie Pinard
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Alan Marechal
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | | | - Alex Boyne
- Cellectis Inc., 430 East 29th Street, New York, NY, USA
| | - Louisa Mayer
- Cellectis Inc., 430 East 29th Street, New York, NY, USA
| | - Robert Hong
- Cellectis Inc., 430 East 29th Street, New York, NY, USA
| | | | - Roman Galetto
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Agnès Gouble
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, Necker Children's Hospital, Assistance Publique Hopitaux de Paris, Paris, France
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR1163, Paris Cité University, Paris, France
- Biotherapy Department, Necker Children's Hospital, Assistance Publique Hopitaux de Paris, Paris, France
| | | | - Annarita Miccio
- Université Paris Cité, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France
| | | | | | - Julien Valton
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France.
| |
Collapse
|
3
|
Pan XW, Chen WJ, Xu D, Guan WB, Li L, Chen JX, Chen WJ, Dong KQ, Ye JQ, Gan SS, Zhou W, Cui XG. Molecular subtyping and characterization of clear cell renal cell carcinoma by tumor differentiation trajectories. iScience 2023; 26:108370. [PMID: 38034348 PMCID: PMC10682269 DOI: 10.1016/j.isci.2023.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/03/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Previous bulk RNA sequencing or whole genome sequencing on clear cell renal cell carcinoma (ccRCC) subtyping mainly focused on ccRCC cell origin or the complex tumor microenvironment (TME). Based on the single-cell RNA sequencing (scRNA-seq) data of 11 primary ccRCC specimens, cancer stem-cell-like subsets could be differentiated into five trajectories, whereby we further classified ccRCC cells into three groups with diverse molecular features. These three ccRCC subgroups showed significantly different outcomes and potential targets to tyrosine kinase inhibitors (TKIs) or immune checkpoint inhibitors (ICIs). Tumor cells in three differentiation directions exhibited distinct interactions with other subsets in the ccRCC niches. The subtyping model was examined through immunohistochemistry staining in our ccRCC cohort and validated the same classification effect as the public patients. All these findings help gain a deeper understanding about the pathogenesis of ccRCC and provide useful clues for optimizing therapeutic schemes based on the molecular subtype analysis.
Collapse
Affiliation(s)
- Xiu-wu Pan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Wen-jin Chen
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai 200092, China
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, 700 Moyu North Road, Shanghai 201805, China
| | - Da Xu
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, 700 Moyu North Road, Shanghai 201805, China
| | - Wen-bin Guan
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Lin Li
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, 700 Moyu North Road, Shanghai 201805, China
| | - Jia-xin Chen
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Wei-jie Chen
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, 700 Moyu North Road, Shanghai 201805, China
| | - Ke-qin Dong
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Jian-qing Ye
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Si-shun Gan
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, 700 Moyu North Road, Shanghai 201805, China
| | - Wang Zhou
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Xin-gang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai 200092, China
| |
Collapse
|
4
|
Pop RT, Pisante A, Nagy D, Martin PCN, Mikheeva L, Hayat A, Ficz G, Zabet NR. Identification of mammalian transcription factors that bind to inaccessible chromatin. Nucleic Acids Res 2023; 51:8480-8495. [PMID: 37486787 PMCID: PMC10484684 DOI: 10.1093/nar/gkad614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Transcription factors (TFs) are proteins that affect gene expression by binding to regulatory regions of DNA in a sequence specific manner. The binding of TFs to DNA is controlled by many factors, including the DNA sequence, concentration of TF, chromatin accessibility and co-factors. Here, we systematically investigated the binding mechanism of hundreds of TFs by analysing ChIP-seq data with our explainable statistical model, ChIPanalyser. This tool uses as inputs the DNA sequence binding motif; the capacity to distinguish between strong and weak binding sites; the concentration of TF; and chromatin accessibility. We found that approximately one third of TFs are predicted to bind the genome in a DNA accessibility independent fashion, which includes TFs that can open the chromatin, their co-factors and TFs with similar motifs. Our model predicted this to be the case when the TF binds to its strongest binding regions in the genome, and only a small number of TFs have the capacity to bind dense chromatin at their weakest binding regions, such as CTCF, USF2 and CEBPB. Our study demonstrated that the binding of hundreds of human and mouse TFs is predicted by ChIPanalyser with high accuracy and showed that many TFs can bind dense chromatin.
Collapse
Affiliation(s)
- Romana T Pop
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Alessandra Pisante
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Dorka Nagy
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | | | | | - Ateequllah Hayat
- Institute of Medical and Biomedical Education, St George's, University of London, Cranmer Terrace, Tooting SW17 0RE, London
| | - Gabriella Ficz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Nicolae Radu Zabet
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
5
|
Grey W, Atkinson S, Rix B, Casado P, Ariza-McNaughton L, Hawley C, Sopoena ML, Bridge KS, Kent D, Cutillas PR, Bonnet D. The CKS1/CKS2 Proteostasis Axis Is Crucial to Maintain Hematopoietic Stem Cell Function. Hemasphere 2023; 7:e853. [PMID: 36874381 PMCID: PMC9977483 DOI: 10.1097/hs9.0000000000000853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/30/2023] [Indexed: 03/04/2023] Open
Abstract
Long-term hematopoietic stem cells are rare, highly quiescent stem cells of the hematopoietic system with life-long self-renewal potential and the ability to transplant and reconstitute the entire hematopoietic system of conditioned recipients. Most of our understanding of these rare cells has relied on cell surface identification, epigenetic, and transcriptomic analyses. Our knowledge of protein synthesis, folding, modification, and degradation-broadly termed protein homeostasis or "proteostasis"-in these cells is still in its infancy, with very little known about how the functional state of the proteome is maintained in hematopoietic stem cells. We investigated the requirement of the small phospho-binding adaptor proteins, the cyclin-dependent kinase subunits (CKS1 and CKS2), for maintaining ordered hematopoiesis and long-term hematopoietic stem cell reconstitution. CKS1 and CKS2 are best known for their roles in p27 degradation and cell cycle regulation, and by studying the transcriptome and proteome of Cks1 -/- and Cks2 -/- mice, we demonstrate regulation of key signaling pathways that govern hematopoietic stem cell biology including AKT, FOXO1, and NFκB, together balancing protein homeostasis and restraining reactive oxygen species to ensure healthy hematopoietic stem cell function.
Collapse
Affiliation(s)
- William Grey
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Samantha Atkinson
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Beatrice Rix
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Pedro Casado
- Cell Signalling and Proteomics Group, Centre for Genomics and Computational Biology, Bart’s Cancer Institute, London, United Kingdom
| | | | - Cathy Hawley
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Miriam L. Sopoena
- Bioinformatics Core, The Francis Crick Institute, London, United Kingdom
| | - Katherine S. Bridge
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - David Kent
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Pedro R. Cutillas
- Cell Signalling and Proteomics Group, Centre for Genomics and Computational Biology, Bart’s Cancer Institute, London, United Kingdom
| | - Dominique Bonnet
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
6
|
Jung E, Ou S, Ahn SS, Yeo H, Lee YH, Shin SY. The JNK-EGR1 signaling axis promotes TNF-α-induced endothelial differentiation of human mesenchymal stem cells via VEGFR2 expression. Cell Death Differ 2023; 30:356-368. [PMID: 36371601 PMCID: PMC9950069 DOI: 10.1038/s41418-022-01088-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into endothelial cells; however, the mechanisms underlying this process in the tumor microenvironment (TME) remain elusive. This study shows that tumor necrosis factor alpha (TNF-α), a key cytokine present in the TME, promotes the endothelial differentiation of MSCs by inducing vascular endothelial growth factor receptor 2 (VEGFR2) gene expression. EGR1 is a member of the zinc-finger transcription factor family induced by TNF-α. Our findings indicate that EGR1 directly binds to the VEGFR2 promoter and transactivates VEGFR2 expression. We also demonstrate that EGR1 forms a complex with c-JUN activated by c-JUN N-terminal kinase (JNK) to promote VEGFR2 transcription and endothelial differentiation in MSCs in response to TNF-α stimulation. The shRNA-mediated silencing of EGR1 or c-JUN abrogates TNF-α-induced VEGFR2 transcription and the endothelial differentiation of MSCs. To further evaluated the role of EGR1 in the endothelial differentiation of BM-MSCs, we used a syngenic tumor implantation model. 4T1 mouse mammary tumor cells were injected subcutaneously into BALB/c mice with primary mBM-MSCs isolated from wild-type (Egr1+/+) or Egr1-null (Egr1-/-) mice. CD31-positive cells were predominantly observed at the border of the tumor in the 4T1 plus wild-type MSC group, while staining less in the 4T1 alone or 4T1 plus Egr1-null MSC group. Collectively, these findings demonstrate that the JNK-EGR1 signaling axis plays a crucial role in the TNF-α-induced endothelial differentiation of MSCs in the TME, which could be a potential therapeutic target for solid tumors vasculatures.
Collapse
Affiliation(s)
- Euitaek Jung
- Department of Biological Sciences, Sanghuh College of Lifescience, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sukjin Ou
- Department of Biological Sciences, Sanghuh College of Lifescience, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Shin Ahn
- Department of Biological Sciences, Sanghuh College of Lifescience, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyunjin Yeo
- Department of Biological Sciences, Sanghuh College of Lifescience, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young Han Lee
- Department of Biological Sciences, Sanghuh College of Lifescience, Konkuk University, Seoul, 05029, Republic of Korea
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Lifescience, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
7
|
Guo B, Huang X, Chen Y, Broxmeyer HE. Ex Vivo Expansion and Homing of Human Cord Blood Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:85-104. [PMID: 38228960 DOI: 10.1007/978-981-99-7471-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Cord blood (CB) has been proven to be an alternative source of haematopoietic stem cells (HSCs) for clinical transplantation and has multiple advantages, including but not limited to greater HLA compatibility, lower incidence of graft-versus-host disease (GvHD), higher survival rates and lower relapse rates among patients with minimal residual disease. However, the limited number of HSCs in a single CB unit limits the wider use of CB in clinical treatment. Many efforts have been made to enhance the efficacy of CB HSC transplantation, particularly by ex vivo expansion or enhancing the homing efficiency of HSCs. In this chapter, we will document the major advances regarding human HSC ex vivo expansion and homing and will also discuss the possibility of clinical translation of such laboratory work.
Collapse
Affiliation(s)
- Bin Guo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xinxin Huang
- Xuhui Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yandan Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
8
|
Mastrandreas P, Boglari C, Arnold A, Peter F, de Quervain DJF, Papassotiropoulos A, Stetak A. Phosphorylation of MSI-1 is implicated in the regulation of associative memory in Caenorhabditis elegans. PLoS Genet 2022; 18:e1010420. [PMID: 36223338 PMCID: PMC9555661 DOI: 10.1371/journal.pgen.1010420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022] Open
Abstract
The Musashi family of RNA-binding proteins controls several biological processes including stem cell maintenance, cell division and neural function. Previously, we demonstrated that the C. elegans Musashi ortholog, msi-1, regulates forgetting via translational repression of the Arp2/3 actin-branching complex. However, the mechanisms controlling MSI-1 activity during the regulation of forgetting are currently unknown. Here we investigated the effects of protein phosphorylation on MSI-1 activity. We showed that MSI-1 function is likely controlled by alterations of its activity rather than its expression levels. Furthermore, we found that MSI-1 is phosphorylated and using mass spectrometry we identified MSI-1 phosphorylation at three residues (T18, S19 and S34). CRISPR-based manipulations of MSI-1 phosphorylation sites revealed that phosphorylation is necessary for MSI-1 function in both short- and long-term aversive olfactory associative memory. Thus, our study provides insight into the mechanisms regulating memory-related MSI-1 activity and may facilitate the development of novel therapeutic approaches. Understanding neural circuits and molecular mechanisms underlying learning and memory are the major challenges of neuroscience. It is a generally accepted model that a learning event causes modification of synapses; strengthening some within a circuit and weakening others (termed “synaptic plasticity”). A plastic nervous system requires not only the ability to acquire and store but also to forget new inputs. While learning and memory is widely investigated, clear-cut evidence for mechanisms involved in forgetting is still sparse. Previously, we demonstrated the role of the protein Musashi (MSI-1) in the active regulation of forgetting in the nematode C. elegans. Here we investigated the role of protein modification (phosphorylation) as a possible regulatory mechanism of the MSI-1 protein activity. We found that MSI-1 protein is modified at different positions and all of these modifications at the protein level contribute to the correct activity of the protein leading to active forgetting of short and long-term memories.
Collapse
Affiliation(s)
- Pavlina Mastrandreas
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland
- Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland
| | - Csaba Boglari
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland
- Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland
| | - Andreas Arnold
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland
- Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland
| | - Fabian Peter
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland
- Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland
| | - Dominique J.-F. de Quervain
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland
- University Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - Andreas Papassotiropoulos
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland
- Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland
- University Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - Attila Stetak
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland
- Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland
- University Psychiatric Clinics, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
9
|
Keyvani Chahi A, Belew MS, Xu J, Chen HTT, Rentas S, Voisin V, Krivdova G, Lechman E, Marhon SA, De Carvalho DD, Dick JE, Bader GD, Hope KJ. PLAG1 dampens protein synthesis to promote human hematopoietic stem cell self-renewal. Blood 2022; 140:992-1008. [PMID: 35639948 PMCID: PMC9437713 DOI: 10.1182/blood.2021014698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cell (HSC) dormancy is understood as supportive of HSC function and its long-term integrity. Although regulation of stress responses incurred as a result of HSC activation is recognized as important in maintaining stem cell function, little is understood of the preventive machinery present in human HSCs that may serve to resist their activation and promote HSC self-renewal. We demonstrate that the transcription factor PLAG1 is essential for long-term HSC function and, when overexpressed, endows a 15.6-fold enhancement in the frequency of functional HSCs in stimulatory conditions. Genome-wide measures of chromatin occupancy and PLAG1-directed gene expression changes combined with functional measures reveal that PLAG1 dampens protein synthesis, restrains cell growth and division, and enhances survival, with the primitive cell advantages it imparts being attenuated by addition of the potent translation activator, c-MYC. We find PLAG1 capitalizes on multiple regulatory factors to ensure protective diminished protein synthesis including 4EBP1 and translation-targeting miR-127 and does so independently of stress response signaling. Overall, our study identifies PLAG1 as an enforcer of human HSC dormancy and self-renewal through its highly context-specific regulation of protein biosynthesis and classifies PLAG1 among a rare set of bona fide regulators of messenger RNA translation in these cells. Our findings showcase the importance of regulated translation control underlying human HSC physiology, its dysregulation under activating demands, and the potential if its targeting for therapeutic benefit.
Collapse
Affiliation(s)
- Ava Keyvani Chahi
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | - Muluken S Belew
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | - Joshua Xu
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | - He Tian Tony Chen
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | - Stefan Rentas
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | | | - Gabriela Krivdova
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eric Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
- Department of Medical Biophysics and
| | - John E Dick
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
| | - Gary D Bader
- The Donnelly Centre and
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Kristin J Hope
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
- Department of Medical Biophysics and
| |
Collapse
|
10
|
Testa U, Castelli G, Pelosi E. Clonal Hematopoiesis: Role in Hematologic and Non-Hematologic Malignancies. Mediterr J Hematol Infect Dis 2022; 14:e2022069. [PMID: 36119457 PMCID: PMC9448266 DOI: 10.4084/mjhid.2022.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/18/2022] [Indexed: 02/08/2023] Open
Abstract
Hematopoietic stem cells (HSCs) ensure the coordinated and balanced production of all hematopoietic cell types throughout life. Aging is associated with a gradual decline of the self-renewal and regenerative potential of HSCs and with the development of clonal hematopoiesis. Clonal hematopoiesis of indeterminate potential (CHIP) defines the clonal expansion of genetically variant hematopoietic cells bearing one or more gene mutations and/or structural variants (such as copy number alterations). CHIP increases exponentially with age and is associated with cancers, including hematologic neoplasia, cardiovascular and other diseases. The presence of CHIP consistently increases the risk of hematologic malignancy, particularly in individuals who have CHIP in association with peripheral blood cytopenia.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
11
|
HSCs: slow me down with PLAG1. Blood 2022; 140:935-936. [PMID: 36048477 DOI: 10.1182/blood.2022017069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
|
12
|
Decoding Human Hematopoietic Stem Cell Self-Renewal. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose of Review
Hematopoietic stem cells (HSCs) maintain blood and immune cell homeostasis by balancing quiescence, self-renewal, and differentiation. HSCs can be used in lifesaving transplantation treatments to create a healthy hematopoietic system in patients suffering from malignant or inherited blood diseases. However, lack of matching bone marrow donors, and the low quantity of HSCs in a single cord blood graft, are limitations for successful transplantation. The enormous regenerative potential of HSCs has raised the hope that HSC self-renewal could be recapitulated in culture to achieve robust expansion of HSCs for therapeutic use. Yet, when HSCs are cultured ex vivo their function becomes compromised, limiting successful expansion.
Recent Findings
After decades of efforts to expand human HSCs ex vivo that resulted in minimal increase in transplantable units, recent studies have helped define culture conditions that can increase functional HSCs. These studies have provided new insights into how HSC stemness can be controlled from the nucleus by transcriptional, posttranscriptional and epigenetic regulators, or by improving the HSC microenvironment using 3D scaffolds, niche cells, or signaling molecules that mimic specific aspects of human HSC niche. Recent studies have also highlighted the importance of mitigating culture induced cellular stress and balancing mitochondrial, endoplasmic reticulum, and lysosomal functions. These discoveries have provided better markers for functional human HSCs and new insights into how HSC self-renewal and engraftment ability may be controlled ex vivo.
Summary
Uncovering the mechanisms that control the human HSC self-renewal process may help improve the ex vivo expansion of HSCs for clinical purposes.
Collapse
|
13
|
Kiser JN, Neibergs HL. Identifying Loci Associated With Bovine Corona Virus Infection and Bovine Respiratory Disease in Dairy and Feedlot Cattle. Front Vet Sci 2021; 8:679074. [PMID: 34409086 PMCID: PMC8364960 DOI: 10.3389/fvets.2021.679074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2023] Open
Abstract
Bovine coronavirus (BCoV) is associated with respiratory and enteric infections in both dairy and beef cattle worldwide. It is also one of a complex of pathogens associated with bovine respiratory disease (BRD), which affects millions of cattle annually. The objectives of this study were to identify loci and heritability estimates associated with BCoV infection and BRD in dairy calves and feedlot cattle. Dairy calves from California (n = 1,938) and New Mexico (n = 647) and feedlot cattle from Colorado (n = 915) and Washington (n = 934) were tested for the presence of BCoV when classified as BRD cases or controls following the McGuirk scoring system. Two comparisons associated with BCoV were investigated: (1) cattle positive for BCoV (BCoV+) were compared to cattle negative for BCoV (BCoV-) and (2) cattle positive for BCoV and affected with BRD (BCoV+BRD+) were compared to cattle negative for BCoV and BRD (BCoV-BRD-). The Illumina BovineHD BeadChip was used for genotyping, and genome-wide association analyses (GWAA) were performed using EMMAX (efficient mixed-model association eXpedited). The GWAA for BCoV+ identified 51 loci (p < 1 × 10-5; 24 feedlot, 16 dairy, 11 combined) associated with infection with BCoV. Three loci were associated with BCoV+ across populations. Heritability estimates for BCoV+ were 0.01 for dairy, 0.11 for feedlot cattle, and 0.03 for the combined population. For BCoV+BRD+, 80 loci (p < 1 × 10-5; 26 feedlot, 25 dairy, 29 combined) were associated including 14 loci across populations. Heritability estimates for BCoV+BRD+ were 0.003 for dairy, 0.44 for feedlot cattle, and 0.07 for the combined population. Several positional candidate genes associated with BCoV and BRD in this study have been associated with other coronaviruses and respiratory infections in humans and mice. These results suggest that selection may reduce susceptibility to BCoV infection and BRD in cattle.
Collapse
Affiliation(s)
- Jennifer N Kiser
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Holly L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
14
|
Sun J, Sheng W, Ma Y, Dong M. Potential Role of Musashi-2 RNA-Binding Protein in Cancer EMT. Onco Targets Ther 2021; 14:1969-1980. [PMID: 33762829 PMCID: PMC7982713 DOI: 10.2147/ott.s298438] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Local invasion and distant metastasis are the key hallmarks in the aggressive progression of malignant tumors, including the ability of cancer cells to detach from the extracellular matrix overcome apoptosis, and disseminate into distant sites. It is generally believed that this malignant behavior is stimulated by epithelial-mesenchymal transition (EMT). Musashi (MSI) RNA-binding proteins, belonging to the evolutionarily conserved RNA-binding proteins (RBP) family, were originally discovered to regulate asymmetric cell division during embryonic development. Recently, Musashi-2 (MSI2), as a key member of MSI family, has been prevalently reported to be tightly associated with the advanced clinical stage of several cancers. Multiple oncogenic signaling pathways mediated by MSI2 play vital roles in EMT. Here, we systematically reviewed the detailed role and signal networks of MSI2 in regulating cancer development, especially in EMT signal transduction, involving EGF, TGF-β, Notch, and Wnt pathways.
Collapse
Affiliation(s)
- Jian Sun
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuteng Ma
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
15
|
Chiang S. Recent advances in smooth muscle tumors with PGR and PLAG1 gene fusions and myofibroblastic uterine neoplasms. Genes Chromosomes Cancer 2020; 60:138-146. [PMID: 33230916 DOI: 10.1002/gcc.22920] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Uterine epithelioid and myxoid leiomyosarcomas and inflammatory myofibroblastic tumors are rare mesenchymal neoplasms. Next-generation sequencing recently detected novel PGR fusions in uterine epithelioid leiomyosarcomas that demonstrate characteristic rhabdoid and spindled morphology. PLAG1 gene fusions have also been identified in a subset of myxoid leiomyosarcomas and are associated with PLAG1 overexpression. ALK rearrangements underpin the vast majority of uterine inflammatory myofibroblastic tumors, which demonstrate morphologic, and immunohistochemical features similar to those of inflammatory myofibroblastic tumors elsewhere. This review summarizes the morphologic, immunophenotypic, and molecular genetic features of PGR fusion-positive epithelioid leiomyosarcoma, PLAG1 fusion-positive myxoid leiomyosarcoma, and inflammatory myofibroblastic tumors of the uterus.
Collapse
Affiliation(s)
- Sarah Chiang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
16
|
Hu D, Tjon EC, Andersson KM, Molica GM, Pham MC, Healy B, Murugaiyan G, Pochet N, Kuchroo VK, Bokarewa MI, Weiner HL. Aberrant expression of USF2 in refractory rheumatoid arthritis and its regulation of proinflammatory cytokines in Th17 cells. Proc Natl Acad Sci U S A 2020; 117:30639-30648. [PMID: 33203678 PMCID: PMC7720234 DOI: 10.1073/pnas.2007935117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IL-17-producing Th17 cells are implicated in the pathogenesis of rheumatoid arthritis (RA) and TNF-α, a proinflammatory cytokine in the rheumatoid joint, facilitates Th17 differentiation. Anti-TNF therapy ameliorates disease in many patients with rheumatoid arthritis (RA). However, a significant proportion of patients do not respond to this therapy. The impact of anti-TNF therapy on Th17 responses in RA is not well understood. We conducted high-throughput gene expression analysis of Th17-enriched CCR6+CXCR3-CD45RA- CD4+ T (CCR6+ T) cells isolated from anti-TNF-treated RA patients classified as responders or nonresponders to therapy. CCR6+ T cells from responders and nonresponders had distinct gene expression profiles. Proinflammatory signaling was elevated in the CCR6+ T cells of nonresponders, and pathogenic Th17 signature genes were up-regulated in these cells. Gene set enrichment analysis on these signature genes identified transcription factor USF2 as their upstream regulator, which was also increased in nonresponders. Importantly, short hairpin RNA targeting USF2 in pathogenic Th17 cells led to reduced expression of proinflammatory cytokines IL-17A, IFN-γ, IL-22, and granulocyte-macrophage colony-stimulating factor (GM-CSF) as well as transcription factor T-bet. Together, our results revealed inadequate suppression of Th17 responses by anti-TNF in nonresponders, and direct targeting of the USF2-signaling pathway may be a potential therapeutic approach in the anti-TNF refractory RA.
Collapse
Affiliation(s)
- Dan Hu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Emily C Tjon
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | - Gabriela M Molica
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Minh C Pham
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Brian Healy
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Nathalie Pochet
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Gothenburg University, 405 30 Gothenburg, Sweden
| | - Vijay K Kuchroo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Maria I Bokarewa
- Sahlgrenska University Hospital, Gothenburg, 402 33 Sweden
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
17
|
Zolfaghari Emameh R, Nosrati H, Eftekhari M, Falak R, Khoshmirsafa M. Expansion of Single Cell Transcriptomics Data of SARS-CoV Infection in Human Bronchial Epithelial Cells to COVID-19. Biol Proced Online 2020; 22:16. [PMID: 32754004 PMCID: PMC7377208 DOI: 10.1186/s12575-020-00127-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 19 (COVID-19) that was emerged as a new member of coronaviruses since December 2019 in Wuhan, China and then after was spread in all continentals. Since SARS-CoV-2 has shown about 77.5% similarity to SARS-CoV, the transcriptome and immunological regulations of SARS-CoV-2 was expected to have high percentage of overlap with SARS-CoV. Results In this study, we applied the single cell transcriptomics data of human bronchial epithelial cells (2B4 cell line) infected with SARS-CoV, which was annotated in the Expression Atlas database to expand this data to COVID-19. In addition, we employed system biology methods including gene ontology (GO) and Reactome pathway analyses to define functional genes and pathways in the infected cells with SARS-CoV. The transcriptomics analysis on the Expression Atlas database revealed that most genes from infected 2B4 cell line with SARS-CoV were downregulated leading to immune system hyperactivation, induction of signaling pathways, and consequently a cytokine storm. In addition, GO:0016192 (vesicle-mediated transport), GO:0006886 (intracellular protein transport), and GO:0006888 (ER to Golgi vesicle-mediated transport) were shown as top three GOs in the ontology network of infected cells with SARS-CoV. Meanwhile, R-HAS-6807070 (phosphatase and tensin homolog or PTEN regulation) showed the highest association with other Reactome pathways in the network of infected cells with SARS-CoV. PTEN plays a critical role in the activation of dendritic cells, B- and T-cells, and secretion of proinflammatory cytokines, which cooperates with downregulated genes in the promotion of cytokine storm in the COVID-19 patients. Conclusions Based on the high similarity percentage of the transcriptome of SARS-CoV with SARS-CoV-2, the data of immunological regulations, signaling pathways, and proinflammatory cytokines in SARS-CoV infection can be expanded to COVID-19 to have a valid platform for future pharmaceutical and vaccine studies.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Hassan Nosrati
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mahyar Eftekhari
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Laaref AM, Manchon L, Bareche Y, Lapasset L, Tazi J. The core spliceosomal factor U2AF1 controls cell-fate determination via the modulation of transcriptional networks. RNA Biol 2020; 17:857-871. [PMID: 32150510 PMCID: PMC7549707 DOI: 10.1080/15476286.2020.1733800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing (AS) plays a central role during cell-fate determination. However, how the core spliceosomal factors (CSFs) are involved in this process is poorly understood. Here, we report the down-regulation of the U2AF1 CSF during stem cell differentiation. To investigate its function in stemness and differentiation, we downregulated U2AF1 in human induced pluripotent stem cells (hiPSCs), using an inducible-shRNA system, to the level found in differentiated ectodermal, mesodermal and endodermal cells. RNA sequencing and computational analysis reveal that U2AF1 down-regulation modulates the expression of development-regulating genes and regulates transcriptional networks involved in cell-fate determination. Furthermore, U2AF1 down-regulation induces a switch in the AS of transcription factors (TFs) required to establish specific cell lineages, and favours the splicing of a differentiated cell-specific isoform of DNMT3B. Our results showed that the differential expression of the core spliceosomal factor U2AF1, between stem cells and the precursors of the three germ layers regulates a cell-type-specific alternative splicing programme and a transcriptional network involved in cell-fate determination via the modulation of gene expression and alternative splicing of transcription regulators.
Collapse
Affiliation(s)
| | | | - Yacine Bareche
- IGMM, CNRS, University of Montpellier, Montpellier, France
- Breast Cancer Translational Research Laboratory, J. C. Heuson, Institut Jules Bordet, Université Libre De Bruxelles, Brussels, Belgium
| | - Laure Lapasset
- IGMM, CNRS, University of Montpellier, Montpellier, France
- VP research, CNRS, University of Montpellier, Montpellier, France
| | - Jamal Tazi
- IGMM, CNRS, University of Montpellier, Montpellier, France
- Lead Contact
| |
Collapse
|
19
|
Wang M, Sun XY, Zhou YC, Zhang KJ, Lu YZ, Liu J, Huang YC, Wang GZ, Jiang S, Zhou GB. Suppression of Musashi‑2 by the small compound largazole exerts inhibitory effects on malignant cells. Int J Oncol 2020; 56:1274-1283. [PMID: 32319553 DOI: 10.3892/ijo.2020.4993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/30/2020] [Indexed: 12/24/2022] Open
Abstract
RNA‑binding protein Musashi‑2 (MSI2) serves as a regulator of numerous pivotal biological processes associated with cancer initiation, development and resistance to treatment, and may represent a promising drug target. However, whether MSI2 inhibition is of value in antitumor treatment remains to be determined. The present study demonstrated that MSI2 was upregulated in non‑small cell lung cancer (NSCLC) and was inversely associated with the clinical outcome of the patients. Molecular docking analysis demonstrated that the small compound largazole binds to and may be a potential inhibitor of MSI2. Largazole markedly decreased the protein and mRNA levels of MSI2 and suppressed its downstream mammalian target of rapamycin signaling pathway. Largazole also inhibited the proliferation and induced apoptosis of NSCLC and chronic myeloid leukemia (CML) cells (including bone marrow mononuclear cells harvested from CML patients). These results indicate that MSI2 is an emerging therapeutic target for NSCLC and CML, and the MSI2 inhibitor largazole may hold promise as a treatment for these malignancies.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xiao-Yan Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yong-Chun Zhou
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650106, P.R. China
| | - Kuo-Jun Zhang
- State Key Laboratory of Natural Medicines, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yong-Zhi Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Yun-Chao Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650106, P.R. China
| | - Gui-Zhen Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Guang-Biao Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|
20
|
Goto Y, Ibi M, Sato H, Tanaka J, Yasuhara R, Aota K, Azuma M, Fukada T, Mishima K, Irié T. PLAG1 enhances the stemness profiles of acinar cells in normal human salivary glands in a cell type-specific manner. J Oral Biosci 2020; 62:99-106. [PMID: 32007659 DOI: 10.1016/j.job.2020.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/27/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Details of the histogenesis of salivary gland tumors are largely unknown. The oncogenic role of PLAG1 in the salivary gland has been demonstrated in vivo. Herein, we demonstrate PLAG1 roles in the acinar and ductal cells of normal human salivary glands to clarify the early events that occur during the histogenesis of salivary gland tumors. METHODS Normal salivary gland cells with acinar and ductal phenotypes were transfected with PLAG1 plasmid DNA. Subsequently, PLAG1 overexpressed and mock cells were examined by cell proliferation, transwell migration, and salisphere formation assays. Differentiation and salivary and pluripotent stem cell marker expression levels were evaluated by quantitative reverse transcription-polymerase chain reaction and immunofluorescence. Alterations in transcriptional expressions were investigated via cap analysis of gene expression with gene-enrichment and functional annotation analysis. RESULTS PLAG1 promoted cell proliferation and transwell migration in the acinar and ductal cells, and markedly enhanced the stemness profiles and luminal cell-like profiles in acinar cells; the stemness profiles were partially increased in the ductal cells. CONCLUSION PLAG1 enhanced the stemness profiles in the acinar cells of normal human salivary glands in a cell type-specific manner. Thus, it may be involved in salivary gland tumorigenesis by increasing the stemness character of the normal salivary gland cells.
Collapse
Affiliation(s)
- Yuriko Goto
- Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Miho Ibi
- Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Hirotaka Sato
- Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Junichi Tanaka
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Rika Yasuhara
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Keiko Aota
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Masayuki Azuma
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Toshiyuki Fukada
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro, Tokushima, 770-8055, Japan; RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Tarou Irié
- Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan; Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
21
|
Xu J, Wang G, Gong W, Guo S, Li D, Zhan Q. The noncoding function of NELFA mRNA promotes the development of oesophageal squamous cell carcinoma by regulating the Rad17-RFC2-5 complex. Mol Oncol 2020; 14:611-624. [PMID: 31845510 PMCID: PMC7053240 DOI: 10.1002/1878-0261.12619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Recently, RNAs interacting with proteins have been implicated in playing an important role in the occurrence and progression of oesophageal squamous cell carcinoma (ESCC). In this study, we found that NELFA mRNA interacts with Rad17 through a novel noncoding mode in the nucleus and that the aberrant expression of USF2 contributed to the upregulation of Rad17 and NELFA. Subsequent experiments demonstrated that the deletion of NELFA mRNA significantly decreased ESCC proliferation and colony formation in vitro. Moreover, NELFA mRNA knockdown inhibited DNA damage repair and promoted apoptosis. Mechanistic studies indicated that NELFA mRNA regulated the interaction between Rad17 and RFC2‐5, which had a major impact on the phosphorylation of CHK1, CHK2 and BRCA1. NELFA mRNA expression was consistently elevated in ESCC patients and closely related to decreased overall survival. Taken together, our results confirmed the critical role of the noncoding function of NELFA mRNA in ESCC tumorigenesis and indicated that NELFA mRNA can be regarded as a therapeutic target and an independent prognostic indicator in ESCC patients.
Collapse
Affiliation(s)
- Jiancheng Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangchao Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Gong
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shichao Guo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
22
|
Sakai H, Fujii Y, Kuwayama N, Kawaji K, Gotoh Y, Kishi Y. Plag1 regulates neuronal gene expression and neuronal differentiation of neocortical neural progenitor cells. Genes Cells 2020; 24:650-666. [PMID: 31442350 DOI: 10.1111/gtc.12718] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 01/23/2023]
Abstract
Neural progenitor cells (NPCs, also known as radial glial progenitors) produce neurons and then glial cells such as astrocytes during development of the mouse neocortex. Given that this sequential generation of neural cells is critical for proper brain formation, the neurogenic potential of NPCs must be precisely controlled. Here, we show that the transcription factor Plag1 plays an important role in the regulation of neurogenic potential in mouse neocortical NPCs. We found that Hmga2, a key neurogenic factor in neocortical NPCs, induces expression of the Plag1 gene. Analysis of the effects of over-expression or knockdown of Plag1 indicated that Plag1 promotes the production of neurons at the expense of astrocyte production in embryonic neocortical cultures. Furthermore, over-expression of Plag1 promoted and knockdown of Plag1 suppressed neuronal differentiation of neocortical NPCs in vivo. Transcriptomic analysis showed that Plag1 increases the expression of a set of neuronal genes in NPCs. Our results thus identify Plag1 as a regulator of neuronal gene expression and neuronal differentiation in NPCs of the developing mouse neocortex.
Collapse
Affiliation(s)
- Hiroshi Sakai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yuki Fujii
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Naohiro Kuwayama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Keita Kawaji
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Yao HL, Liu M, Wang WJ, Wang XL, Song J, Song QQ, Han J. Construction of miRNA-target networks using microRNA profiles of CVB3-infected HeLa cells. Sci Rep 2019; 9:17876. [PMID: 31784561 PMCID: PMC6884461 DOI: 10.1038/s41598-019-54188-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in regulating gene expression in multiple biological processes and diseases. Thus, to understand changes in miRNA during CVB3 infection, specific miRNA expression profiles were investigated at 3 h, 6 h, and 9 h postinfection in HeLa cells by small-RNA high-throughput sequencing. Biological implications of 68 differentially expressed miRNAs were analyzed through GO and KEGG pathways. Interaction networks between 34 known highly differentially expressed miRNAs and targets were constructed by mirDIP and Navigator. The predicted targets showed that FAM135A, IKZF2, PLAG1, ZNF148, PHC3, LCOR and DYRK1A, which are associated with cellular differentiation and transcriptional regulation, were recognized by 8 miRNAs or 9 miRNAs through interactional regulatory networks. Seven target genes were confirmed by RT-qPCR. The results showed that the expression of DYRK1A, FAM135A, PLAG1, ZNF148, and PHC3 were obviously inhibited at 3 h, 6 h, and 9 h postinfection. The expression of LCOR did not show a significant change, and the expression of IKZF2 increased gradually with prolonged infection time. Our findings improve the understanding of the pathogenic mechanism of CVB3 infection on cellular differentiation and development through miRNA regulation, which has implications for interventional approaches to CVB3-infection therapy. Our results also provide a new method for screening target genes of microRNA regulation in virus-infected cells.
Collapse
Affiliation(s)
- Hai Lan Yao
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, 2 YaBao Rd, Beijing, 100020, China
| | - Mi Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing, 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Science, 44 Xiao HongShan, Wuhan, Hubei, 430071, China
| | - Wen Jun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing, 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Science, 44 Xiao HongShan, Wuhan, Hubei, 430071, China
| | - Xin Ling Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing, 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Science, 44 Xiao HongShan, Wuhan, Hubei, 430071, China
| | - Juan Song
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing, 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Science, 44 Xiao HongShan, Wuhan, Hubei, 430071, China
| | - Qin Qin Song
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing, 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Science, 44 Xiao HongShan, Wuhan, Hubei, 430071, China
| | - Jun Han
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing, 102206, China.
- Center for Biosafety Mega-Science, Chinese Academy of Science, 44 Xiao HongShan, Wuhan, Hubei, 430071, China.
| |
Collapse
|
24
|
Espinoza DA, Fan X, Yang D, Cordes SF, Truitt LL, Calvo KR, Yabe IM, Demirci S, Hope KJ, Hong SG, Krouse A, Metzger M, Bonifacino A, Lu R, Uchida N, Tisdale JF, Wu X, DeRavin SS, Malech HL, Donahue RE, Wu C, Dunbar CE. Aberrant Clonal Hematopoiesis following Lentiviral Vector Transduction of HSPCs in a Rhesus Macaque. Mol Ther 2019; 27:1074-1086. [PMID: 31023523 PMCID: PMC6554657 DOI: 10.1016/j.ymthe.2019.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 01/21/2023] Open
Abstract
Lentiviral vectors (LVs) are used for delivery of genes into hematopoietic stem and progenitor cells (HSPCs) in clinical trials worldwide. LVs, in contrast to retroviral vectors, are not associated with insertion site-associated malignant clonal expansions and, thus, are considered safer. Here, however, we present a case of markedly abnormal dysplastic clonal hematopoiesis affecting the erythroid, myeloid, and megakaryocytic lineages in a rhesus macaque transplanted with HSPCs that were transduced with a LV containing a strong retroviral murine stem cell virus (MSCV) constitutive promoter-enhancer in the LTR. Nine insertions were mapped in the abnormal clone, resulting in overexpression and aberrant splicing of several genes of interest, including the cytokine stem cell factor and the transcription factor PLAG1. This case represents the first clear link between lentiviral insertion-induced clonal expansion and a clinically abnormal transformed phenotype following transduction of normal primate or human HSPCs, which is concerning, and suggests that strong constitutive promoters should not be included in LVs.
Collapse
Affiliation(s)
- Diego A Espinoza
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xing Fan
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Di Yang
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Stefan F Cordes
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Lauren L Truitt
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Katherine R Calvo
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Idalia M Yabe
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Selami Demirci
- Sickle Cell and Vascular Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Kristin J Hope
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Allen Krouse
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Mark Metzger
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Aylin Bonifacino
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Rong Lu
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Naoya Uchida
- Sickle Cell and Vascular Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - John F Tisdale
- Sickle Cell and Vascular Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Suk See DeRavin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Robert E Donahue
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA.
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|