1
|
Araoka T, Toyohara K, Ryosaka M, Inui C, Matsuura M, Ma C, Watahiki J, Li Z, Iwasaki M, Watanabe A, Yokokawa R, Tabata Y, Izpisua Belmonte JC, Osafune K. Human iPSC-derived nephron progenitor cells treat acute kidney injury and chronic kidney disease in mouse models. Sci Transl Med 2025; 17:eadt5553. [PMID: 40173262 DOI: 10.1126/scitranslmed.adt5553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/12/2025] [Indexed: 04/04/2025]
Abstract
The number of patients requiring dialysis therapy continues to increase worldwide because of the lack of effective treatments for chronic kidney disease (CKD). Furthermore, no curative treatments for acute kidney injury (AKI) have been established. The therapeutic effects of human induced pluripotent stem cell-derived nephron progenitor cells (hiPSC-NPCs) on AKI have been reported in mice but not clinically confirmed. There are also no reports examining the therapeutic potential of hiPSC-NPCs on CKD. Although large numbers of uniform hiPSC-NPCs are required for cell therapies for AKI and CKD, effective expansion cultures remain to be developed. Here, we established a culture medium for cells that enabled more than 100-fold proliferation of hiPSC-NPCs from multiple hiPSC lines in two passages. We demonstrated that hiPSC-NPCs expanded by our medium named CFY or by their conditioned medium alone attenuated kidney injury and improved survival in cisplatin-induced AKI mice. We also observed that hiPSC-NPCs prevented kidney functional decline, interstitial fibrosis, and senescence in aristolochic acid-induced CKD mice. In addition, we found c-MET to be a specific cell surface marker for hiPSC-NPCs and confirmed that purified c-MET+ hiPSC-NPCs had therapeutic effects on AKI and CKD mice. Furthermore, we found that hiPSC-NPCs exerted their therapeutic effects in AKI and CKD mice by secreting vascular endothelial growth factor A. Expanded hiPSC-NPCs may be useful cell therapies for AKI and CKD and may open avenues for treating kidney diseases.
Collapse
Affiliation(s)
- Toshikazu Araoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Kosuke Toyohara
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Ryosaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Chihiro Inui
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Maasa Matsuura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Cheng Ma
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Jun Watahiki
- Medical Innovation Center (MIC), Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Zhongwei Li
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mio Iwasaki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Akira Watanabe
- Medical Innovation Center (MIC), Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Yasuhiko Tabata
- Cell Biotechnology Group, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
2
|
Fujimori K, Yamanaka S, Shimada K, Matsui K, Kawagoe S, Kuroda T, Ikeda A, Inoue M, Kobayashi E, Yokoo T. Generation of human-pig chimeric renal organoids using iPSC technology. Commun Biol 2024; 7:1278. [PMID: 39375428 PMCID: PMC11458617 DOI: 10.1038/s42003-024-06986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024] Open
Abstract
Porcine organs and human induced pluripotent stem cell (iPSC)-derived organoids as alternative organs for human transplantation have garnered attention, but both face technical challenges. Interspecies chimeric organ production using human iPSCs shows promise in overcoming these challenges. Our group successfully generated chimeric renal organoids using human iPSC-derived nephron progenitor cells (NPCs) and fetal mouse kidneys. However, the current technology is limited to rodents. Therefore, this study focused on producing human-pig chimeric renal organoids, as pigs are the most promising species for xenotransplantation. Modification of existing culture systems enables continuous renal development in both species, resulting in the successful creation of human-pig chimeric renal organoids. Moreover, this method can be applied to generate humanized xenogeneic kidneys for future clinical applications. This study provides evidence that optimizing culture conditions enables the early-stage kidney development beyond species barriers, thus laying the foundation for accelerating research on humanized xenogeneic kidney fabrication for clinical purposes.
Collapse
Affiliation(s)
| | - Shuichiro Yamanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | | | - Kenji Matsui
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shiho Kawagoe
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | - Eiji Kobayashi
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
3
|
Huang B, Zeng Z, Kim S, Fausto CC, Koppitch K, Li H, Li Z, Chen X, Guo J, Zhang CC, Ma T, Medina P, Schreiber ME, Xia MW, Vonk AC, Xiang T, Patel T, Li Y, Parvez RK, Der B, Chen JH, Liu Z, Thornton ME, Grubbs BH, Diao Y, Dou Y, Gnedeva K, Ying Q, Pastor-Soler NM, Fei T, Hallows KR, Lindström NO, McMahon AP, Li Z. Long-term expandable mouse and human-induced nephron progenitor cells enable kidney organoid maturation and modeling of plasticity and disease. Cell Stem Cell 2024; 31:921-939.e17. [PMID: 38692273 PMCID: PMC11162329 DOI: 10.1016/j.stem.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024]
Abstract
Nephron progenitor cells (NPCs) self-renew and differentiate into nephrons, the functional units of the kidney. Here, manipulation of p38 and YAP activity allowed for long-term clonal expansion of primary mouse and human NPCs and induced NPCs (iNPCs) from human pluripotent stem cells (hPSCs). Molecular analyses demonstrated that cultured iNPCs closely resemble primary human NPCs. iNPCs generated nephron organoids with minimal off-target cell types and enhanced maturation of podocytes relative to published human kidney organoid protocols. Surprisingly, the NPC culture medium uncovered plasticity in human podocyte programs, enabling podocyte reprogramming to an NPC-like state. Scalability and ease of genome editing facilitated genome-wide CRISPR screening in NPC culture, uncovering genes associated with kidney development and disease. Further, NPC-directed modeling of autosomal-dominant polycystic kidney disease (ADPKD) identified a small-molecule inhibitor of cystogenesis. These findings highlight a broad application for the reported iNPC platform in the study of kidney development, disease, plasticity, and regeneration.
Collapse
Affiliation(s)
- Biao Huang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zipeng Zeng
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sunghyun Kim
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Connor C Fausto
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hui Li
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P.R. China
| | - Xi Chen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chennan C Zhang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tianyi Ma
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pedro Medina
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Megan E Schreiber
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mateo W Xia
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ariel C Vonk
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tianyuan Xiang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tadrushi Patel
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yidan Li
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Balint Der
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Urology, Faculty of Medicine, Semmelweis University, Budapest 3170, Hungary
| | - Jyun Hao Chen
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhenqing Liu
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Matthew E Thornton
- Division of Maternal Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brendan H Grubbs
- Division of Maternal Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yali Dou
- Department of Medicine, Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ksenia Gnedeva
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Tina and Rick Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Qilong Ying
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nuria M Pastor-Soler
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P.R. China
| | - Kenneth R Hallows
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhongwei Li
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
4
|
Chung E, Deacon P, Hu YC, Lim HW, Park JS. Hedgehog signaling is required for the maintenance of mesenchymal nephron progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.12.553098. [PMID: 37645929 PMCID: PMC10461989 DOI: 10.1101/2023.08.12.553098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mesenchymal nephron progenitors (mNPs) give rise to all nephron tubules in the mammalian kidney. Since premature depletion of these cells leads to low nephron numbers, high blood pressure, and various renal diseases, it is critical that we understand how mNPs are maintained. While Fgf, Bmp, and Wnt signaling pathways are known to be required for the maintenance of these cells, it is unclear if any other signaling pathways also play roles. In this report, we explored the role of Hedgehog signaling in mNPs. We found that loss of either Shh in the collecting duct or Smo from the nephron lineage resulted in premature depletion of mNPs. Transcriptional profiling of mNPs with different Smo dosages suggested that Hedgehog signaling inhibited Notch signaling and upregulated the expression of Fox transcription factors such as Foxc1 and Foxp4. Consistent with these observations, we found that ectopic expression of Jag1 caused the premature depletion of mNPs as seen in the Smo mutant kidney. We also found that Foxc1 was capable of binding to mitotic condensed chromatin, a feature of a mitotic bookmarking factor. Our study demonstrates a previously unappreciated role of Hedgehog signaling in preventing premature depletion of mNPs by repressing Notch signaling and likely by activating the expression of Fox factors.
Collapse
Affiliation(s)
- Eunah Chung
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
- Division of Pediatric Urology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Patrick Deacon
- Division of Pediatric Urology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joo-Seop Park
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
- Division of Pediatric Urology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
5
|
Nakajima T, Imai A, Ishii C, Tsuruyama K, Yamanaka R, Tomooka Y, Saito S, Adachi N, Kohno S, Sato T. SMAD2/3 signaling regulates initiation of mouse Wolffian ducts and proximal differentiation in Müllerian ducts. FEBS Open Bio 2024; 14:37-50. [PMID: 37953493 PMCID: PMC10761927 DOI: 10.1002/2211-5463.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Male and female reproductive tracts develop from anterior intermediate mesoderm with similar differentiation processes. The anterior intermediate mesoderm develops into the mesonephros, and the Wolffian duct initiates by epithelialization in the mesonephros. The Müllerian duct invaginates from the coelomic epithelium of the cranial mesonephros for ductal formation and is then regionalized into proximal to caudal female reproductive tracts. In this study, we focused on the epithelialization of the Wolffian duct, initiation of the Müllerian duct, and the regionalization step of the Müllerian ducts as a continuous process. By using intermediate mesodermal cells from mouse pluripotent stem cells, we identified that inhibition of SMAD2/3 signaling might be involved in the differentiation into mesenchymal cells, after which mesonephric cells might be then epithelialized during differentiation of the Wolffian duct. Aggregation of coelomic epithelial cells might be related to initiation of the Müllerian duct. Transcriptomic analysis predicted that consensus sequences of SMAD3/4 were enriched among highly expressed genes in the proximal Müllerian duct. SMAD2/3 signaling to regulate differentiation of the Wolffian duct was continuously activated in the proximal Müllerian duct and was involved in proximal and oviductal regionalization. Therefore, SMAD2/3 signaling may be finely tuned to regulate differentiation from initiation to regionalization steps.
Collapse
Affiliation(s)
- Tadaaki Nakajima
- Department of Biological Science and Technology, Faculty of Industrial Science and TechnologyTokyo University of ScienceJapan
- Department of ScienceYokohama City UniversityJapan
- Graduate School of NanobioscienceYokohama City UniversityJapan
| | - Akihiro Imai
- Department of Biological Science and Technology, Faculty of Industrial Science and TechnologyTokyo University of ScienceJapan
| | - Chihiro Ishii
- Department of Biological Science and Technology, Faculty of Industrial Science and TechnologyTokyo University of ScienceJapan
| | - Kota Tsuruyama
- Department of Biological Science and Technology, Faculty of Industrial Science and TechnologyTokyo University of ScienceJapan
| | - Risa Yamanaka
- Department of Biological Science and Technology, Faculty of Industrial Science and TechnologyTokyo University of ScienceJapan
| | - Yasuhiro Tomooka
- Department of Biological Science and Technology, Faculty of Industrial Science and TechnologyTokyo University of ScienceJapan
| | - Shinta Saito
- Department of ScienceYokohama City UniversityJapan
- Graduate School of NanobioscienceYokohama City UniversityJapan
| | - Noritaka Adachi
- Department of ScienceYokohama City UniversityJapan
- Graduate School of NanobioscienceYokohama City UniversityJapan
| | - Satomi Kohno
- Department of Biological SciencesSt. Cloud State UniversityMNUSA
| | - Tomomi Sato
- Department of ScienceYokohama City UniversityJapan
- Graduate School of NanobioscienceYokohama City UniversityJapan
| |
Collapse
|
6
|
Soma H, Sakai D, Nakamura Y, Tamagawa S, Warita T, Schol J, Matsushita E, Naiki M, Sato M, Watanabe M. Recombinant Laminin-511 Fragment (iMatrix-511) Coating Supports Maintenance of Human Nucleus Pulposus Progenitor Cells In Vitro. Int J Mol Sci 2023; 24:16713. [PMID: 38069038 PMCID: PMC10706138 DOI: 10.3390/ijms242316713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The angiopoietin-1 receptor (Tie2) marks specific nucleus pulposus (NP) progenitor cells, shows a rapid decline during aging and intervertebral disc degeneration, and has thus sparked interest in its utilization as a regenerative agent against disc degeneration. However, the challenge of maintaining and expanding these progenitor cells in vitro has been a significant hurdle. In this study, we investigated the potential of laminin-511 to sustain Tie2+ NP progenitor cells in vitro. We isolated cells from human NP tissue (n = 5) and cultured them for 6 days on either standard (Non-coat) or iMatrix-511 (laminin-511 product)-coated (Lami-coat) dishes. We assessed these cells for their proliferative capacity, activation of Erk1/2 and Akt pathways, as well as the expression of cell surface markers such as Tie2, GD2, and CD24. To gauge their regenerative potential, we examined their extracellular matrix (ECM) production capacity (intracellular type II collagen (Col2) and proteoglycans (PG)) and their ability to form spherical colonies within methylcellulose hydrogels. Lami-coat significantly enhanced cell proliferation rates and increased Tie2 expression, resulting in a 7.9-fold increase in Tie2-expressing cell yields. Moreover, the overall proportion of cells positive for Tie2 also increased 2.7-fold. Notably, the Col2 positivity rate was significantly higher on laminin-coated plates (Non-coat: 10.24% (±1.7%) versus Lami-coat: 26.2% (±7.5%), p = 0.010), and the ability to form spherical colonies also showed a significant improvement (Non-coat: 40.7 (±8.8)/1000 cells versus Lami-coat: 70.53 (±18.0)/1000 cells, p = 0.016). These findings demonstrate that Lami-coat enhances the potential of NP cells, as indicated by improved colony formation and proliferative characteristics. This highlights the potential of laminin-coating in maintaining the NP progenitor cell phenotype in culture, thereby supporting their translation into prospective clinical cell-transplantation products.
Collapse
Affiliation(s)
- Hazuki Soma
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Yoshihiko Nakamura
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
| | - Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Takayuki Warita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | - Jordy Schol
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Erika Matsushita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
| | | | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
7
|
Sánchez-Duffhues G, Hiepen C. Human iPSCs as Model Systems for BMP-Related Rare Diseases. Cells 2023; 12:2200. [PMID: 37681932 PMCID: PMC10487005 DOI: 10.3390/cells12172200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Disturbances in bone morphogenetic protein (BMP) signalling contribute to onset and development of a number of rare genetic diseases, including Fibrodysplasia ossificans progressiva (FOP), Pulmonary arterial hypertension (PAH), and Hereditary haemorrhagic telangiectasia (HHT). After decades of animal research to build a solid foundation in understanding the underlying molecular mechanisms, the progressive implementation of iPSC-based patient-derived models will improve drug development by addressing drug efficacy, specificity, and toxicity in a complex humanized environment. We will review the current state of literature on iPSC-derived model systems in this field, with special emphasis on the access to patient source material and the complications that may come with it. Given the essential role of BMPs during embryonic development and stem cell differentiation, gain- or loss-of-function mutations in the BMP signalling pathway may compromise iPSC generation, maintenance, and differentiation procedures. This review highlights the need for careful optimization of the protocols used. Finally, we will discuss recent developments towards complex in vitro culture models aiming to resemble specific tissue microenvironments with multi-faceted cellular inputs, such as cell mechanics and ECM together with organoids, organ-on-chip, and microfluidic technologies.
Collapse
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), ISPA-HUCA, Avda. de Roma, s/n, 33011 Oviedo, Spain
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Christian Hiepen
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany
| |
Collapse
|
8
|
Huang B, Zeng Z, Li H, Li Z, Chen X, Guo J, Zhang CC, Schreiber ME, Vonk AC, Xiang T, Patel T, Li Y, Parvez RK, Der B, Chen JH, Liu Z, Thornton ME, Grubbs BH, Diao Y, Dou Y, Gnedeva K, Lindström NO, Ying Q, Pastor-Soler NM, Fei T, Hallows KR, McMahon AP, Li Z. Modeling kidney development, disease, and plasticity with clonal expandable nephron progenitor cells and nephron organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542343. [PMID: 37293038 PMCID: PMC10245960 DOI: 10.1101/2023.05.25.542343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nephron progenitor cells (NPCs) self-renew and differentiate into nephrons, the functional units of the kidney. Here we report manipulation of p38 and YAP activity creates a synthetic niche that allows the long-term clonal expansion of primary mouse and human NPCs, and induced NPCs (iNPCs) from human pluripotent stem cells. Cultured iNPCs resemble closely primary human NPCs, generating nephron organoids with abundant distal convoluted tubule cells, which are not observed in published kidney organoids. The synthetic niche reprograms differentiated nephron cells into NPC state, recapitulating the plasticity of developing nephron in vivo. Scalability and ease of genome-editing in the cultured NPCs allow for genome-wide CRISPR screening, identifying novel genes associated with kidney development and disease. A rapid, efficient, and scalable organoid model for polycystic kidney disease was derived directly from genome-edited NPCs, and validated in drug screen. These technological platforms have broad applications to kidney development, disease, plasticity, and regeneration.
Collapse
Affiliation(s)
- Biao Huang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- These authors contributed equally
| | - Zipeng Zeng
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- These authors contributed equally
| | - Hui Li
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xi Chen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chennan C. Zhang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Megan E. Schreiber
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ariel C. Vonk
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tianyuan Xiang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tadrushi Patel
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yidan Li
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Riana K. Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Balint Der
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jyun Hao Chen
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhenqing Liu
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Matthew E. Thornton
- Division of Maternal Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brendan H. Grubbs
- Division of Maternal Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yali Dou
- Department of Medicine, Department of Biochemistry and Molecular Medicine, University of Southern California, CA 90033, USA
| | - Ksenia Gnedeva
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Tina and Rick Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Nils O. Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Qilong Ying
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nuria M. Pastor-Soler
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Kenneth R. Hallows
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhongwei Li
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Lead contact
| |
Collapse
|
9
|
Production of kidney organoids arranged around single ureteric bud trees, and containing endogenous blood vessels, solely from embryonic stem cells. Sci Rep 2022; 12:12573. [PMID: 35869233 PMCID: PMC9307805 DOI: 10.1038/s41598-022-16768-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
There is intense worldwide effort in generating kidney organoids from pluripotent stem cells, for research, for disease modelling and, perhaps, for making transplantable organs. Organoids generated from pluripotent stem cells (PSC) possess accurate micro-anatomy, but they lack higher-organization. This is a problem, especially for transplantation, as such organoids will not be able to perform their physiological functions. In this study, we develop a method for generating murine kidney organoids with improved higher-order structure, through stages using chimaeras of ex-fetu and PSC-derived cells to a system that works entirely from embryonic stem cells. These organoids have nephrons organised around a single ureteric bud tree and also make vessels, with the endothelial network approaching podocytes.
Collapse
|
10
|
Davis JL, Kennedy C, Clerkin S, Treacy NJ, Dodd T, Moss C, Murphy A, Brazil DP, Cagney G, Brougham DF, Murad R, Finlay D, Vuori K, Crean J. Single-cell multiomics reveals the complexity of TGFβ signalling to chromatin in iPSC-derived kidney organoids. Commun Biol 2022; 5:1301. [PMID: 36435939 PMCID: PMC9701233 DOI: 10.1038/s42003-022-04264-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 11/11/2022] [Indexed: 11/28/2022] Open
Abstract
TGFβ1 plays a regulatory role in the determination of renal cell fate and the progression of renal fibrosis. Here we show an association between SMAD3 and the histone methyltransferase, EZH2, during cell differentiation; ChIP-seq revealed that SMAD3 and EZH2 co-occupy the genome in iPSCs and in iPSC-derived nephron progenitors. Through integration of single cell gene expression and epigenome profiling, we identified de novo ACTA2+ve/POSTN+ve myofibroblasts in kidney organoids treated with TGFβ1, characterised by increased SMAD3-dependent cis chromatin accessibility and gene expression associated with fibroblast activation. We have identified fibrosis-associated regulons characterised by enrichment of SMAD3, AP1, the ETS family of transcription factors, and NUAK1, CREB3L1, and RARG, corresponding to enriched motifs at accessible loci identified by scATACseq. Treatment with the EZH2 specific inhibitor GSK343, blocked SMAD3-dependent cis co-accessibility and inhibited myofibroblast activation. This mechanism, through which TGFβ signals directly to chromatin, represents a critical determinant of fibrotic, differentiated states.
Collapse
Affiliation(s)
- Jessica L. Davis
- grid.7886.10000 0001 0768 2743UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Ciaran Kennedy
- grid.7886.10000 0001 0768 2743UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Shane Clerkin
- grid.7886.10000 0001 0768 2743UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Niall J. Treacy
- grid.7886.10000 0001 0768 2743UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Thomas Dodd
- grid.7886.10000 0001 0768 2743UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Catherine Moss
- grid.7886.10000 0001 0768 2743UCD Genomics Core Facility, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Alison Murphy
- grid.7886.10000 0001 0768 2743UCD Genomics Core Facility, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Derek P. Brazil
- grid.4777.30000 0004 0374 7521Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, BT9 7BL Northern Ireland, UK
| | - Gerard Cagney
- grid.7886.10000 0001 0768 2743UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Dermot F. Brougham
- grid.7886.10000 0001 0768 2743UCD School of Chemistry, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Rabi Murad
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Institute for Medical Discovery, La Jolla, CA 92037 USA
| | - Darren Finlay
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Institute for Medical Discovery, La Jolla, CA 92037 USA
| | - Kristiina Vuori
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Institute for Medical Discovery, La Jolla, CA 92037 USA
| | - John Crean
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4, Ireland.
| |
Collapse
|
11
|
Vanslambrouck JM, Wilson SB, Tan KS, Groenewegen E, Rudraraju R, Neil J, Lawlor KT, Mah S, Scurr M, Howden SE, Subbarao K, Little MH. Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.10.14.464320. [PMID: 35665006 PMCID: PMC9164445 DOI: 10.1101/2021.10.14.464320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses.
Collapse
Affiliation(s)
- Jessica M. Vanslambrouck
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Sean B. Wilson
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Ker Sin Tan
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Ella Groenewegen
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Jessica Neil
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Kynan T. Lawlor
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Sophia Mah
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Michelle Scurr
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Sara E. Howden
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Melissa H. Little
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC, Australia
- Author for correspondence: M.H.L.: +61 3 9936 6206;
| |
Collapse
|
12
|
Namestnikov M, Dekel B. Moving To A New Dimension: 3D Kidney Cultures For Kidney Regeneration. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Little MH, Humphreys BD. Regrow or Repair: An Update on Potential Regenerative Therapies for the Kidney. J Am Soc Nephrol 2022; 33:15-32. [PMID: 34789545 PMCID: PMC8763179 DOI: 10.1681/asn.2021081073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fifteen years ago, this journal published a review outlining future options for regenerating the kidney. At that time, stem cell populations were being identified in multiple tissues, the concept of stem cell recruitment to a site of injury was of great interest, and the possibility of postnatal renal stem cells was growing in momentum. Since that time, we have seen the advent of human induced pluripotent stem cells, substantial advances in our capacity to both sequence and edit the genome, global and spatial transcriptional analysis down to the single-cell level, and a pandemic that has challenged our delivery of health care to all. This article will look back over this period of time to see how our view of kidney development, disease, repair, and regeneration has changed and envision a future for kidney regeneration and repair over the next 15 years.
Collapse
Affiliation(s)
- Melissa H. Little
- Murdoch Children’s Research Institute, Parkville, Melbourne, Victoria, Australia,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Melbourne, Victoria, Australia,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, Missouri,Department of Developmental Biology, Washington University in St. Louis School of Medicine, Missouri
| |
Collapse
|
14
|
Namestnikov M, Pleniceanu O, Dekel B. Mixing Cells for Vascularized Kidney Regeneration. Cells 2021; 10:1119. [PMID: 34066487 PMCID: PMC8148539 DOI: 10.3390/cells10051119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
The worldwide rise in prevalence of chronic kidney disease (CKD) demands innovative bio-medical solutions for millions of kidney patients. Kidney regenerative medicine aims to replenish tissue which is lost due to a common pathological pathway of fibrosis/inflammation and rejuvenate remaining tissue to maintain sufficient kidney function. To this end, cellular therapy strategies devised so far utilize kidney tissue-forming cells (KTFCs) from various cell sources, fetal, adult, and pluripotent stem-cells (PSCs). However, to increase engraftment and potency of the transplanted cells in a harsh hypoxic diseased environment, it is of importance to co-transplant KTFCs with vessel forming cells (VFCs). VFCs, consisting of endothelial cells (ECs) and mesenchymal stem-cells (MSCs), synergize to generate stable blood vessels, facilitating the vascularization of self-organizing KTFCs into renovascular units. In this paper, we review the different sources of KTFCs and VFCs which can be mixed, and report recent advances made in the field of kidney regeneration with emphasis on generation of vascularized kidney tissue by cell transplantation.
Collapse
Affiliation(s)
- Michael Namestnikov
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel;
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel;
- ediatric Nephrology Division, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel;
| | - Oren Pleniceanu
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel;
- The Kidney Research Lab, Institute of Nephrology and Hypertension, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel;
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel;
| |
Collapse
|
15
|
Shimizu T, Yamagata K, Osafune K. Kidney organoids: Research in developmental biology and emerging applications. Dev Growth Differ 2021; 63:166-177. [PMID: 33569792 DOI: 10.1111/dgd.12714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
Kidney organoids generated from human pluripotent stem cells (hPSCs) have drastically changed the field of stem cell research on human kidneys within a few years. They are self-organizing multicellular structures that contain nephron components such as glomeruli and renal tubules in most cases, but hPSC-derived ureteric buds, the progenitors of collecting ducts and ureters, can also form three-dimensional organoids. Today's challenges facing human kidney organoids are further maturation and anatomical integrity in order to achieve a complete model of the developing kidneys and ultimately a complete adult organ. Since chronic kidney disease (CKD) and impaired kidney function are an increasing burden on public health worldwide, there is an urgent need to develop effective treatments for various renal conditions. In this regard, hPSC-derived kidney organoids may impact medicine by providing new translational approaches. The unique ability of kidney organoids derived from disease-specific hPSCs to reproduce human diseases caused by genetic alterations may help provide the next generation of kidney disease models. Recent advances in the field of kidney organoid research have been generally accompanied by progress in developmental biology and other technological breakthroughs. In this review, we consider the current trends in kidney organoid technology, especially focusing on the relationship to the study of human kidney development, and discuss the remaining hurdles and prospects in regenerating human kidney structures beyond organoids.
Collapse
Affiliation(s)
- Tatsuya Shimizu
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Impaired NEPHRIN localization in kidney organoids derived from nephrotic patient iPS cells. Sci Rep 2021; 11:3982. [PMID: 33597637 PMCID: PMC7890052 DOI: 10.1038/s41598-021-83501-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Mutations in the NPHS1 gene, which encodes NEPHRIN, cause congenital nephrotic syndrome, resulting from impaired slit diaphragm (SD) formation in glomerular podocytes. We previously reported NEPHRIN and SD abnormalities in the podocytes of kidney organoids generated from patient-derived induced pluripotent stem cells (iPSCs) with an NPHS1 missense mutation (E725D). However, the mechanisms underlying the disease may vary depending on the mutations involved, and thus generation of iPSCs from multiple patients is warranted. Here we established iPSCs from two additional patients with different NPHS1 mutations and examined the podocyte abnormalities in kidney organoids derived from these cells. One patient had truncating mutations, and NEPHRIN was undetectable in the resulting organoids. The other patient had a missense mutation (R460Q), and the mutant NEPHRIN in the organoids failed to accumulate on the podocyte surface to form SD precursors. However, the same mutant protein behaved normally when overexpressed in heterologous cells, suggesting that NEPHRIN localization is cell context-dependent. The localization of another SD-associated protein, PODOCIN, was impaired in both types of mutant organoids in a cell domain-specific manner. Thus, the new iPSC lines and resultant kidney organoids will be useful resources for dissecting the disease mechanisms, as well as for drug development for therapies.
Collapse
|
17
|
Little MH, Lawlor KT. Recreating, expanding and using nephron progenitor populations. Nat Rev Nephrol 2020; 16:75-76. [PMID: 31811252 DOI: 10.1038/s41581-019-0238-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Melissa H Little
- Murdoch Children's Research Institute, Parkville, VIC, Australia. .,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia. .,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia.
| | - Kynan T Lawlor
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| |
Collapse
|
18
|
Khoshdel Rad N, Aghdami N, Moghadasali R. Cellular and Molecular Mechanisms of Kidney Development: From the Embryo to the Kidney Organoid. Front Cell Dev Biol 2020; 8:183. [PMID: 32266264 PMCID: PMC7105577 DOI: 10.3389/fcell.2020.00183] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/04/2020] [Indexed: 12/27/2022] Open
Abstract
Development of the metanephric kidney is strongly dependent on complex signaling pathways and cell-cell communication between at least four major progenitor cell populations (ureteric bud, nephron, stromal, and endothelial progenitors) in the nephrogenic zone. In recent years, the improvement of human-PSC-derived kidney organoids has opened new avenues of research on kidney development, physiology, and diseases. Moreover, the kidney organoids provide a three-dimensional (3D) in vitro model for the study of cell-cell and cell-matrix interactions in the developing kidney. In vitro re-creation of a higher-order and vascularized kidney with all of its complexity is a challenging issue; however, some progress has been made in the past decade. This review focuses on major signaling pathways and transcription factors that have been identified which coordinate cell fate determination required for kidney development. We discuss how an extensive knowledge of these complex biological mechanisms translated into the dish, thus allowed the establishment of 3D human-PSC-derived kidney organoids.
Collapse
Affiliation(s)
- Niloofar Khoshdel Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
19
|
Tsujimoto H, Araoka T, Nishi Y, Ohta A, Nakahata T, Osafune K. Small molecule TCS21311 can replace BMP7 and facilitate cell proliferation in in vitro expansion culture of nephron progenitor cells. Biochem Biophys Res Commun 2020; 558:231-238. [PMID: 32113685 DOI: 10.1016/j.bbrc.2020.02.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/29/2022]
Abstract
Several groups have developed in vitro expansion cultures for mouse metanephric nephron progenitor cells (NPCs) using cocktails of small molecules and growth factors including BMP7. However, the detailed mechanisms by which BMP7 acts in the NPC expansion remain to be elucidated. Here, by performing chemical screening for BMP substitutes, we identified a small molecule, TCS21311, that can replace BMP7 and revealed a novel inhibitory role of BMP7 in JAK3-STAT3 signaling in NPC expansion culture. Further, we found that TCS21311 facilitates the proliferation of mouse embryonic NPCs and human induced pluripotent stem cell-derived NPCs when added to the expansion culture. These results will contribute to understanding the mechanisms of action of BMP7 in NPC proliferation in vitro and in vivo and to the stable supply of NPCs for regenerative therapy, disease modeling and drug discovery for kidney diseases.
Collapse
Affiliation(s)
- Hiraku Tsujimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshikazu Araoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yohei Nishi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Ohta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
20
|
Faraj R, Irizarry-Alfonzo A, Puri P. Molecular characterization of nephron progenitors and their early epithelial derivative structures in the nephrogenic zone of the canine fetal kidney. Eur J Histochem 2019; 63. [PMID: 31544449 PMCID: PMC6763752 DOI: 10.4081/ejh.2019.3049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/10/2019] [Indexed: 01/14/2023] Open
Abstract
Nephron progenitors (NPs) and nephrogenesis have been extensively studied in mice and humans and have provided insights into the mechanisms of renal development, disease and possibility of NP-based therapies. However, molecular features of NPs and their derivatives in the canine fetal kidney (CFK) remain unknown. This study was focused to characterize the expression of potential markers of canine NPs and their derivatives by immuno-fluorescence and western blot analysis. Transcription factors (TFs) SIX1 and SIX2, well-characterized human NP markers, were expressed in NPs surrounding the ureteric bud in the CFK. Canine NPs also expressed ITGA8 and NCAM1, surface markers previously used to isolate NPs from the mouse and human fetal kidneys. TF, PAX2 was detected in the ureteric bud, NPs and their derivative structures such as renal vesicle and S-shaped body. This study highlights the similarities in dog, mouse and human renal development and characterizes markers to identify canine NPs and their derivatives. These results will facilitate the isolation of canine NPs and their functional characterization to develop NP-based therapies for canine renal diseases.
Collapse
Affiliation(s)
- Rawah Faraj
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee.
| | | | | |
Collapse
|