1
|
Storm P, Zhang Y, Nilsson F, Fiorenzano A, Krausse N, Åkerblom M, Davidsson M, Yuan J, Kirkeby A, Björklund T, Parmar M. Lineage tracing of stem cell-derived dopamine grafts in a Parkinson's model reveals shared origin of all graft-derived cells. SCIENCE ADVANCES 2024; 10:eadn3057. [PMID: 39423273 PMCID: PMC11488568 DOI: 10.1126/sciadv.adn3057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Stem cell therapies for Parkinson's disease are at an exciting time of development, and several clinical trials have recently been initiated. Human pluripotent stem cells are differentiated into transplantable dopamine (DA) progenitors which are proliferative at the time of grafting and undergo terminal differentiation and maturation in vivo. While the progenitors are homogeneous at the time of transplantation, they give rise to heterogeneous grafts composed not only of therapeutic DA neurons but also of other mature cell types. The mechanisms for graft diversification are unclear. We used single-nucleus RNA-seq and ATAC-seq to profile DA progenitors before transplantation combined with molecular barcode-based tracing to determine origin and shared lineages of the mature cell types in the grafts. Our data demonstrate that astrocytes, vascular leptomeningeal cells, and DA neurons are the main component of the DAergic grafts, originating from a common progenitor that is tripotent at the time of transplantation.
Collapse
Affiliation(s)
- Petter Storm
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yu Zhang
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Wallenberg Center for Molecular Medicine (WCMM) and Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Fredrik Nilsson
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alessandro Fiorenzano
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Niklas Krausse
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Malin Åkerblom
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Marcus Davidsson
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Joan Yuan
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Wallenberg Center for Molecular Medicine (WCMM) and Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Abedini-Nassab R, Taheri F, Emamgholizadeh A, Naderi-Manesh H. Single-Cell RNA Sequencing in Organ and Cell Transplantation. BIOSENSORS 2024; 14:189. [PMID: 38667182 PMCID: PMC11048310 DOI: 10.3390/bios14040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Single-cell RNA sequencing is a high-throughput novel method that provides transcriptional profiling of individual cells within biological samples. This method typically uses microfluidics systems to uncover the complex intercellular communication networks and biological pathways buried within highly heterogeneous cell populations in tissues. One important application of this technology sits in the fields of organ and stem cell transplantation, where complications such as graft rejection and other post-transplantation life-threatening issues may occur. In this review, we first focus on research in which single-cell RNA sequencing is used to study the transcriptional profile of transplanted tissues. This technology enables the analysis of the donor and recipient cells and identifies cell types and states associated with transplant complications and pathologies. We also review the use of single-cell RNA sequencing in stem cell implantation. This method enables studying the heterogeneity of normal and pathological stem cells and the heterogeneity in cell populations. With their remarkably rapid pace, the single-cell RNA sequencing methodologies will potentially result in breakthroughs in clinical transplantation in the coming years.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| | - Fatemeh Taheri
- Biomedical Engineering Department, University of Neyshabur, Neyshabur P.O. Box 9319774446, Iran
| | - Ali Emamgholizadeh
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Bioscience, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran;
- Department of Biophysics, Faculty of Bioscience, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| |
Collapse
|
3
|
Feng L, Li D, Tian Y, Zhao C, Sun Y, Kou X, Wu J, Wang L, Gu Q, Li W, Hao J, Hu B, Wang Y. One-step cell biomanufacturing platform: porous gelatin microcarrier beads promote human embryonic stem cell-derived midbrain dopaminergic progenitor cell differentiation in vitro and survival after transplantation in vivo. Neural Regen Res 2024; 19:458-464. [PMID: 37488911 PMCID: PMC10503631 DOI: 10.4103/1673-5374.377412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/07/2023] [Accepted: 04/10/2023] [Indexed: 07/26/2023] Open
Abstract
Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson's disease. Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson's disease. However, transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche. Here, we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells. These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion, effectively maintaining axonal integrity in vitro. Importantly, midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts. Overall, our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.
Collapse
Affiliation(s)
- Lin Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Da Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yao Tian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chengshun Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xiaolong Kou
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qi Gu
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yukai Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
6
|
Shan Q, Chen N, Liu W, Qu F, Chen A. Exposure to 2,3,3',4,4',5-hexachlorobiphenyl promotes nonalcoholic fatty liver disease development in C57BL/6 mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114563. [PMID: 32304952 DOI: 10.1016/j.envpol.2020.114563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 05/20/2023]
Abstract
Previous in vitro studies have indicated that 2,3,3',4,4',5-hexachlorobiphenyl (PCB 156) may be a new contributor to metabolic disruption and may further cause the occurrence of nonalcoholic fatty liver disease (NAFLD). However, no study has clarified the specific contributions of PCB 156 to NAFLD progression by constructing an in vivo model. Herein, we evaluated the effects of PCB 156 treatment (55 mg/kg, i.p.) on the livers of C57BL/6 mice fed a control diet (CD) or a high-fat diet (HFD). The results showed that PCB 156 administration increased intra-abdominal fat mass, hepatic lipid levels and dyslipidemia in the CD-fed group and aggravated NAFLD in HFD-fed group. By using transcriptomics studies and biological methods, we found that the genes expression involved in lipid metabolism pathways, such as lipogenesis, lipid accumulation and lipid β-oxidation, was greatly altered in liver tissues exposed to PCB 156. In addition, the cytochrome P450 pathway, peroxisome proliferator-activated receptors (PPARs) and the glutathione metabolism pathway were significantly activated following exposure to PCB 156. Furthermore, PCB 156 exposure increased serum transaminase levels and lipid peroxidation, and the redox-related genes were significantly dysregulated in liver tissue. In conclusion, our data suggested that PCB 156 could promote NAFLD development by altering the expression of genes related to lipid metabolism and inducing oxidative stress.
Collapse
Affiliation(s)
- Qiuli Shan
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China; State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Ningning Chen
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Fan Qu
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Anhui Chen
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| |
Collapse
|