1
|
Özgüldez HÖ, Bulut-Karslioğlu A. Dormancy, Quiescence, and Diapause: Savings Accounts for Life. Annu Rev Cell Dev Biol 2024; 40:25-49. [PMID: 38985838 DOI: 10.1146/annurev-cellbio-112122-022528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Life on Earth has been through numerous challenges over eons and, one way or another, has always triumphed. From mass extinctions to more daily plights to find food, unpredictability is everywhere. The adaptability of life-forms to ever-changing environments is the key that confers life's robustness. Adaptability has become synonymous with Darwinian evolution mediated by heritable genetic changes. The extreme gene-centric view, while being of central significance, at times has clouded our appreciation of the cell as a self-regulating entity informed of, and informing, the genetic data. An essential element that powers adaptability is the ability to regulate cell growth. In this review, we provide an extensive overview of growth regulation spanning species, tissues, and regulatory mechanisms. We aim to highlight the commonalities, as well as differences, of these phenomena and their molecular regulators. Finally, we curate open questions and areas for further exploration.
Collapse
Affiliation(s)
- Hatice Özge Özgüldez
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany;
| | - Aydan Bulut-Karslioğlu
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany;
| |
Collapse
|
2
|
Anvar Z, Chakchouk I, Sharif M, Mahadevan S, Su L, Anikar S, Naini FA, Utama AB, Van den Veyver IB. Comparison of Four Protocols for In Vitro Differentiation of Human Embryonic Stem Cells into Trophoblast Lineages by BMP4 and Dual Inhibition of Activin/Nodal and FGF2 Signaling. Reprod Sci 2024; 31:173-189. [PMID: 37658178 PMCID: PMC10784360 DOI: 10.1007/s43032-023-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
Human embryonic stem cells (hESCs) cultured in media containing bone morphogenic protein 4 (BMP4; B) differentiate into trophoblast-like cells. Supplementing media with inhibitors of activin/nodal signaling (A83-01) and of fibroblast growth factor 2 (PD173074) suppresses mesoderm and endoderm formation and improves specification of trophoblast-like lineages, but with variable effectiveness. We compared differentiation in four BMP4-containing media: mTeSR1-BMP4 only, mTeSR1-BAP, basal medium with BAP (basal-BAP), and a newly defined medium, E7-BAP. These media variably drive early differentiation towards trophoblast-like lineages with upregulation of early trophoblast markers CDX2 and KRT7 and downregulation of pluripotency markers (OCT4 and NANOG). As expected, based on differences between media in FGF2 and its inhibitors, downregulation of mesendoderm marker EOMES was variable between media. By day 7, only hESCs grown in E7-BAP or basal-BAP expressed HLA-G protein, indicating the presence of cells with extravillous trophoblast characteristics. Expression of HLA-G and other differentiation markers (hCG, KRT7, and GCM1) was highest in basal-BAP, suggesting a faster differentiation in this medium, but those cultures were more inhomogeneous and still expressed some endodermal and pluripotency markers. In E7-BAP, HLA-G expression increased later and was lower. There was also a low but maintained expression of some C19MC miRNAs, with more CpG hypomethylation of the ELF5 promoter, suggesting that E7-BAP cultures differentiate slower along the trophoblast lineage. We conclude that while all protocols drive differentiation into trophoblast lineages with varying efficiency, they have advantages and disadvantages that must be considered when selecting a protocol for specific experiments.
Collapse
Affiliation(s)
- Zahra Anvar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
| | - Imen Chakchouk
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
| | - Momal Sharif
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
| | - Sangeetha Mahadevan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
| | - Li Su
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
| | - Swathi Anikar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
| | - Fatemeh Alavi Naini
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - Ignatia B Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA.
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Zhu Q, Wang F, Gao D, Gao J, Li G, Jiao D, Zhu G, Xu K, Guo J, Chen T, Cao S, Zhi M, Zhang J, Wang Y, Zhang X, Zhang D, Yao Y, Song J, Wei H, Han J. Generation of stable integration-free pig induced pluripotent stem cells under chemically defined culture condition. Cell Prolif 2023; 56:e13487. [PMID: 37190930 PMCID: PMC10623960 DOI: 10.1111/cpr.13487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Genome integration-free pig induced pluripotent stem cells (iPSCs) bring tremendous value in pre-clinical testing of regenerative medicine, as well as conservation and exploitation of endangered or rare local pig idioplasmatic resources. However, due to a lack of appropriate culture medium, efficient induction and stable maintenance of pig iPSCs with practical value remains challenging. Here, we established an efficient induction system for exogenous gene-independent iPSCs under chemically defined culture condition previously used for generation of stable pig pre-gastrulation epiblast stem cells (pgEpiSCs). WNT suppression was found to play an essential role in establishment of exogenous gene-independent iPSCs. Strikingly, stable integration-free pig iPSCs could be established from pig somatic cells using episomal vectors in this culture condition. The iPSCs had pluripotency features and transcriptome characteristics approximating pgEpiSCs. More importantly, this induction system may be used to generate integration-free iPSCs from elderly disabled rare local pig somatic cells and the iPSCs could be gene-edited and used as donor cells for nuclear transfer. Our results provide novel insights into potential applications for genetic breeding of livestock species and pre-clinical evaluation of regenerative medicine.
Collapse
Affiliation(s)
- Qianqian Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Fengchong Wang
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jie Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Guilin Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Deling Jiao
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Gaoxiang Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Kaixiang Xu
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Jianxiong Guo
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Tianzhi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Suying Cao
- Animal Science and Technology CollegeBeijing University of AgricultureBeijingChina
| | - Minglei Zhi
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jinying Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yingjie Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiaowei Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Danru Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yixuan Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jian Song
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Hong‐Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Jianyong Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
4
|
Easwaran S, Montell DJ. The molecular mechanisms of diapause and diapause-like reversible arrest. Biochem Soc Trans 2023; 51:1847-1856. [PMID: 37800560 PMCID: PMC10657177 DOI: 10.1042/bst20221431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Diapause is a protective mechanism that many organisms deploy to overcome environmental adversities. Diapause extends lifespan and fertility to enhance the reproductive success and survival of the species. Although diapause states have been known and employed for commercial purposes, for example in the silk industry, detailed molecular and cell biological studies are an exciting frontier. Understanding diapause-like protective mechanisms will shed light on pathways that steer organisms through adverse conditions. One hope is that an understanding of the mechanisms that support diapause might be leveraged to extend the lifespan and/or health span of humans as well as species threatened by climate change. In addition, recent findings suggest that cancer cells that persist after treatment mimic diapause-like states, implying that these programs may facilitate cancer cell survival from chemotherapy and cause relapse. Here, we review the molecular mechanisms underlying diapause programs in a variety of organisms, and we discuss pathways supporting diapause-like states in tumor persister cells.
Collapse
Affiliation(s)
- Sreesankar Easwaran
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, U.S.A
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, U.S.A
| |
Collapse
|
5
|
Huang Z, Jiang C, Gu J, Uvizl M, Power S, Douglas D, Kacprzyk J. Duplications of Human Longevity-Associated Genes Across Placental Mammals. Genome Biol Evol 2023; 15:evad186. [PMID: 37831410 PMCID: PMC10588791 DOI: 10.1093/gbe/evad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023] Open
Abstract
Natural selection has shaped a wide range of lifespans across mammals, with a few long-lived species showing negligible signs of ageing. Approaches used to elucidate the genetic mechanisms underlying mammalian longevity usually involve phylogenetic selection tests on candidate genes, detections of convergent amino acid changes in long-lived lineages, analyses of differential gene expression between age cohorts or species, and measurements of age-related epigenetic changes. However, the link between gene duplication and evolution of mammalian longevity has not been widely investigated. Here, we explored the association between gene duplication and mammalian lifespan by analyzing 287 human longevity-associated genes across 37 placental mammals. We estimated that the expansion rate of these genes is eight times higher than their contraction rate across these 37 species. Using phylogenetic approaches, we identified 43 genes whose duplication levels are significantly correlated with longevity quotients (False Discovery Rate (FDR) < 0.05). In particular, the strong correlation observed for four genes (CREBBP, PIK3R1, HELLS, FOXM1) appears to be driven mainly by their high duplication levels in two ageing extremists, the naked mole rat (Heterocephalus glaber) and the greater mouse-eared bat (Myotis myotis). Further sequence and expression analyses suggest that the gene PIK3R1 may have undergone a convergent duplication event, whereby the similar region of its coding sequence was independently duplicated multiple times in both of these long-lived species. Collectively, this study identified several candidate genes whose duplications may underlie the extreme longevity in mammals, and highlighted the potential role of gene duplication in the evolution of mammalian long lifespans.
Collapse
Affiliation(s)
- Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Chongyi Jiang
- Institute of Ecology and Evolution, Friedrich Schiller University, Jena, Germany
| | - Jiayun Gu
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Marek Uvizl
- Department of Zoology, National Museum, Prague, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Sarahjane Power
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Declan Douglas
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Haston S, Gonzalez-Gualda E, Morsli S, Ge J, Reen V, Calderwood A, Moutsopoulos I, Panousopoulos L, Deletic P, Carreno G, Guiho R, Manshaei S, Gonzalez-Meljem JM, Lim HY, Simpson DJ, Birch J, Pallikonda HA, Chandra T, Macias D, Doherty GJ, Rassl DM, Rintoul RC, Signore M, Mohorianu I, Akbar AN, Gil J, Muñoz-Espín D, Martinez-Barbera JP. Clearance of senescent macrophages ameliorates tumorigenesis in KRAS-driven lung cancer. Cancer Cell 2023; 41:1242-1260.e6. [PMID: 37267953 DOI: 10.1016/j.ccell.2023.05.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/07/2023] [Accepted: 05/05/2023] [Indexed: 06/04/2023]
Abstract
The accumulation of senescent cells in the tumor microenvironment can drive tumorigenesis in a paracrine manner through the senescence-associated secretory phenotype (SASP). Using a new p16-FDR mouse line, we show that macrophages and endothelial cells are the predominant senescent cell types in murine KRAS-driven lung tumors. Through single cell transcriptomics, we identify a population of tumor-associated macrophages that express a unique array of pro-tumorigenic SASP factors and surface proteins and are also present in normal aged lungs. Genetic or senolytic ablation of senescent cells, or macrophage depletion, result in a significant decrease in tumor burden and increased survival in KRAS-driven lung cancer models. Moreover, we reveal the presence of macrophages with senescent features in human lung pre-malignant lesions, but not in adenocarcinomas. Taken together, our results have uncovered the important role of senescent macrophages in the initiation and progression of lung cancer, highlighting potential therapeutic avenues and cancer preventative strategies.
Collapse
Affiliation(s)
- Scott Haston
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London WC1N 1EH, UK.
| | | | - Samir Morsli
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jianfeng Ge
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Virinder Reen
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Alexander Calderwood
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Ilias Moutsopoulos
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Leonidas Panousopoulos
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Polina Deletic
- Division of Medicine, University College London, London, UK
| | - Gabriela Carreno
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Romain Guiho
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Saba Manshaei
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | | | - Hui Yuan Lim
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | | | - Jodie Birch
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Husayn A Pallikonda
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Tamir Chandra
- MRC Human Generics Unit, University of Edinburgh, Edinburgh, UK
| | - David Macias
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Gary J Doherty
- Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Doris M Rassl
- Royal Papworth Hospital NHS Foundation Trust. Cambridge Biomedical Campus, Cambridge CB2 0AY, UK
| | - Robert C Rintoul
- Royal Papworth Hospital NHS Foundation Trust. Cambridge Biomedical Campus, Cambridge CB2 0AY, UK; Department of Oncology, University of Cambridge, Cambridge, UK; CRUK Cambridge Centre Thoracic Cancer Programme, Cambridge, UK
| | - Massimo Signore
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Irina Mohorianu
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Arne N Akbar
- Division of Medicine, University College London, London, UK
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Daniel Muñoz-Espín
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK; CRUK Cambridge Centre Thoracic Cancer Programme, Cambridge, UK.
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London WC1N 1EH, UK.
| |
Collapse
|
7
|
Rüegg AB, Ulbrich SE. Review: Embryonic diapause in the European roe deer - slowed, but not stopped. Animal 2023; 17 Suppl 1:100829. [PMID: 37567662 DOI: 10.1016/j.animal.2023.100829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 08/13/2023] Open
Abstract
Embryonic diapause in mammals describes a transient reduction of proliferation and developmental progression occurring at the blastocyst stage. It was first described in the European roe deer (Capreolus capreolus) in the 19th century, and later found to occur in at least over 130 mammalian species across several taxa. Diapause is often displayed as an interruption, a halt, or an arrest of embryonic development. In this review, we explore reduced, but not stopped pace of growth, proliferation and developmental progression during embryonic diapause and revisit early embryonic proliferation and continued slow development as peculiar phenomenon in the roe deer.
Collapse
Affiliation(s)
- Anna B Rüegg
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, 8092 Zurich, Switzerland.
| |
Collapse
|
8
|
Hussein AM, Balachandar N, Mathieu J, Ruohola-Baker H. Molecular Regulators of Embryonic Diapause and Cancer Diapause-like State. Cells 2022; 11:cells11192929. [PMID: 36230891 PMCID: PMC9562880 DOI: 10.3390/cells11192929] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Embryonic diapause is an enigmatic state of dormancy that interrupts the normally tight connection between developmental stages and time. This reproductive strategy and state of suspended development occurs in mice, bears, roe deer, and over 130 other mammals and favors the survival of newborns. Diapause arrests the embryo at the blastocyst stage, delaying the post-implantation development of the embryo. This months-long quiescence is reversible, in contrast to senescence that occurs in aging stem cells. Recent studies have revealed critical regulators of diapause. These findings are important since defects in the diapause state can cause a lack of regeneration and control of normal growth. Controlling this state may also have therapeutic applications since recent findings suggest that radiation and chemotherapy may lead some cancer cells to a protective diapause-like, reversible state. Interestingly, recent studies have shown the metabolic regulation of epigenetic modifications and the role of microRNAs in embryonic diapause. In this review, we discuss the molecular mechanism of diapause induction.
Collapse
Affiliation(s)
- Abdiasis M. Hussein
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Nanditaa Balachandar
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai 603203, India
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Comparative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
9
|
Tong R, Wang H, Jin Y, Li H. Transcription factor HESX1 enhances mesendodermal commitment of human embryonic stem cells by modulating ERK1/2 signaling. Biochem Biophys Res Commun 2022; 619:27-33. [PMID: 35728281 DOI: 10.1016/j.bbrc.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Transcription factors are key determinants of lineage commitment during mammalian development. However, the function and molecular mechanism for the transcription factors in the formation of three primary germ layers during human embryonic development are not fully elucidated. Here, we report that homeobox-containing transcription factor HESX1 plays a critical role in mesendodermal (ME) commitment of human embryonic stem cells (hESCs). Our results show that expression of HESX1 in hESCs is regulated by OCT4 and NANOG, and that its expression level changes with hESC differentiation. We find that knockdown of HESX1 does not disrupt the undifferentiated state of hESCs, in terms of cell morphology and expression levels of pluripotency-associated genes. However, HESX1 deficiency in hESCs impairs their ME commitment, whereas forced expression of HESX1 significantly enhances ME marker expression during ME commitment. Interestingly, HESX1 knockdown in hESCs represses ERK1/2 signaling activated by ME induction, while overexpression of HESX1 markedly enhances ERK1/2 activity during ME commitment of hESCs. Of note, MEK inhibitor PD0325901 weakens or even eliminates HESX1 overexpression-mediated promotive effects on ME induction in a dosage-dependent manner. Together, this study identifies a novel role of HESX1 in hESC commitment to ME cells and establishes the functional link between a transcription factor and lineage-associated signaling. These findings would help to better understand early human development and develop more efficient protocols to induce hESC differentiation to desired lineages.
Collapse
Affiliation(s)
- Ran Tong
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Wang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jin
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Basic Clinical Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hui Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Basic Clinical Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Markitantova Y, Simirskii V. Inherited Eye Diseases with Retinal Manifestations through the Eyes of Homeobox Genes. Int J Mol Sci 2020; 21:E1602. [PMID: 32111086 PMCID: PMC7084737 DOI: 10.3390/ijms21051602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal development is under the coordinated control of overlapping networks of signaling pathways and transcription factors. The paper was conceived as a review of the data and ideas that have been formed to date on homeobox genes mutations that lead to the disruption of eye organogenesis and result in inherited eye/retinal diseases. Many of these diseases are part of the same clinical spectrum and have high genetic heterogeneity with already identified associated genes. We summarize the known key regulators of eye development, with a focus on the homeobox genes associated with monogenic eye diseases showing retinal manifestations. Recent advances in the field of genetics and high-throughput next-generation sequencing technologies, including single-cell transcriptome analysis have allowed for deepening of knowledge of the genetic basis of inherited retinal diseases (IRDs), as well as improve their diagnostics. We highlight some promising avenues of research involving molecular-genetic and cell-technology approaches that can be effective for IRDs therapy. The most promising neuroprotective strategies are aimed at mobilizing the endogenous cellular reserve of the retina.
Collapse
|