1
|
Robbins DJ, Pavletich TS, Patil AT, Pahopos D, Lasarev M, Polaki US, Gahvari ZJ, Bresnick EH, Matson DR. Linking GATA2 to myeloid dysplasia and complex cytogenetics in adult myelodysplastic neoplasm and acute myeloid leukemia. Blood Adv 2024; 8:80-92. [PMID: 38029365 PMCID: PMC10787255 DOI: 10.1182/bloodadvances.2023011554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023] Open
Abstract
ABSTRACT GATA binding protein 2 (GATA2) is a conserved zinc finger transcription factor that regulates the emergence and maintenance of complex genetic programs driving development and function of hematopoietic stem and progenitor cells (HSPCs). Patients born with monoallelic GATA2 mutations develop myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML), whereas acquired GATA2 mutations are reported in 3% to 5% of sporadic AML cases. The mechanisms by which aberrant GATA2 activity promotes MDS and AML are incompletely understood. Efforts to understand GATA2 in basic biology and disease will be facilitated by the development of broadly efficacious antibodies recognizing physiologic levels of GATA2 in diverse tissue types and assays. Here, we purified a polyclonal anti-GATA2 antibody and generated multiple highly specific anti-GATA2 monoclonal antibodies, optimized them for immunohistochemistry on patient bone marrow bioosy samples, and analyzed GATA2 expression in adults with healthy bone marrow, MDS, and acute leukemia. In healthy bone marrow, GATA2 was detected in mast cells, subsets of CD34+ HSPCs, E-cadherin-positive erythroid progenitors, and megakaryocytes. In MDS, GATA2 expression correlates with bone marrow blast percentage, positively correlates with myeloid dysplasia and complex cytogenetics, and is a nonindependent negative predictor of overall survival. In acute leukemia, the percent of GATA2+ blasts closely associates with myeloid lineage, whereas a subset of lymphoblastic and undifferentiated leukemias with myeloid features also express GATA2. However, the percent of GATA2+ blasts in AML is highly variable. Elevated GATA2 expression in AML blasts correlates with peripheral neutropenia and complex AML cytogenetics but, unlike in MDS, does not predict survival.
Collapse
Affiliation(s)
- Daniel J. Robbins
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Tatiana S. Pavletich
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Apoorva T. Patil
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Demetra Pahopos
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Michael Lasarev
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Usha S. Polaki
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | | | - Emery H. Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin-Madison, Madison, WI
| | - Daniel R. Matson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
2
|
Xiong J, Zhao Y, Lin Y, Chen L, Weng Q, Shi C, Liu X, Geng Y, Liu L, Wang J, Zhang M. Identification and characterization of innate lymphoid cells generated from pluripotent stem cells. Cell Rep 2022; 41:111569. [DOI: 10.1016/j.celrep.2022.111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/18/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
|
3
|
Combining single-cell tracking and omics improves blood stem cell fate regulator identification. Blood 2022; 140:1482-1495. [PMID: 35820055 PMCID: PMC9523371 DOI: 10.1182/blood.2022016880] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Molecular programs initiating cell fate divergence (CFD) are difficult to identify. Current approaches usually compare cells long after CFD initiation, therefore missing molecular changes at its start. Ideally, single cells that differ in their CFD molecular program but are otherwise identical are compared early in CFD. This is possible in diverging sister cells, which were identical until their mother's division and thus differ mainly in CFD properties. In asymmetrically dividing cells, divergent daughter fates are prospectively committed during division, and diverging sisters can thus be identified at the start of CFD. Using asymmetrically dividing blood stem cells, we developed a pipeline (ie, trackSeq) for imaging, tracking, isolating, and transcriptome sequencing of single cells. Their identities, kinship, and histories are maintained throughout, massively improving molecular noise filtering and candidate identification. In addition to many identified blood stem CFD regulators, we offer here this pipeline for use in CFDs other than asymmetric division.
Collapse
|
4
|
Höglund J, Hadizadeh F, Ek WE, Karlsson T, Johansson Å. Gene-Based Variant Analysis of Whole-Exome Sequencing in Relation to Eosinophil Count. Front Immunol 2022; 13:862255. [PMID: 35935937 PMCID: PMC9355086 DOI: 10.3389/fimmu.2022.862255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Eosinophils play important roles in the release of cytokine mediators in response to inflammation. Many associations between common genetic variants and eosinophils have already been reported, using single nucleotide polymorphism (SNP) array data. Here, we have analyzed 200,000 whole-exome sequences (WES) from the UK Biobank cohort and performed gene-based analyses of eosinophil count. We defined five different variant weighting schemes to incorporate information on both deleteriousness and frequency. A total of 220 genes in 55 distinct (>10 Mb apart) genomic regions were found to be associated with eosinophil count, of which seven genes (ALOX15, CSF2RB, IL17RA, IL33, JAK2, S1PR4, and SH2B3) are driven by rare variants, independent of common variants identified in genome-wide association studies. Two additional genes, NPAT and RMI1, have not been associated with eosinophil count before and are considered novel eosinophil loci. These results increase our knowledge about the effect of rare variants on eosinophil count, which can be of great value for further identification of therapeutic targets.
Collapse
Affiliation(s)
- Julia Höglund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Dettinger P, Kull T, Arekatla G, Ahmed N, Zhang Y, Schneiter F, Wehling A, Schirmacher D, Kawamura S, Loeffler D, Schroeder T. Open-source personal pipetting robots with live-cell incubation and microscopy compatibility. Nat Commun 2022; 13:2999. [PMID: 35637179 PMCID: PMC9151679 DOI: 10.1038/s41467-022-30643-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/10/2022] [Indexed: 01/03/2023] Open
Abstract
Liquid handling robots have the potential to automate many procedures in life sciences. However, they are not in widespread use in academic settings, where funding, space and maintenance specialists are usually limiting. In addition, current robots require lengthy programming by specialists and are incompatible with most academic laboratories with constantly changing small-scale projects. Here, we present the Pipetting Helper Imaging Lid (PHIL), an inexpensive, small, open-source personal liquid handling robot. It is designed for inexperienced users, with self-production from cheap commercial and 3D-printable components and custom control software. PHIL successfully automates pipetting (incl. aspiration) for e.g. tissue immunostainings and stimulations of live stem and progenitor cells during time-lapse microscopy using 3D printed peristaltic pumps. PHIL is cheap enough to put a personal pipetting robot within the reach of most labs and enables users without programming skills to easily automate a large range of experiments.
Collapse
Affiliation(s)
- Philip Dettinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| | - Tobias Kull
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Geethika Arekatla
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Nouraiz Ahmed
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Yang Zhang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Florin Schneiter
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Arne Wehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Daniel Schirmacher
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shunsuke Kawamura
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
6
|
Johnson KD, Soukup AA, Bresnick EH. GATA2 deficiency elevates interferon regulatory factor-8 to subvert a progenitor cell differentiation program. Blood Adv 2022; 6:1464-1473. [PMID: 35008108 PMCID: PMC8905696 DOI: 10.1182/bloodadvances.2021006182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
Cell type-specific transcription factors control stem and progenitor cell transitions by establishing networks containing hundreds of genes and proteins. Network complexity renders it challenging to discover essential versus modulatory or redundant components. This scenario is exemplified by GATA2 regulation of hematopoiesis during embryogenesis. Loss of a far upstream Gata2 enhancer (-77) disrupts the GATA2-dependent transcriptome governing hematopoietic progenitor cell differentiation. The aberrant transcriptome includes the transcription factor interferon regulatory factor 8 (IRF8) and a host of innate immune regulators. Mutant progenitors lose the capacity to balance production of diverse hematopoietic progeny. To elucidate mechanisms, we asked if IRF8 is essential, contributory, or not required. Reducing Irf8, in the context of the -77 mutant allele, reversed granulocytic deficiencies and the excessive accumulation of dendritic cell committed progenitors. Despite many dysregulated components that control vital transcriptional, signaling, and immune processes, the aberrant elevation of a single transcription factor deconstructed the differentiation program.
Collapse
Affiliation(s)
| | - Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
7
|
Ahmed N, Etzrodt M, Dettinger P, Kull T, Loeffler D, Hoppe PS, Chavez JS, Zhang Y, Camargo Ortega G, Hilsenbeck O, Nakajima H, Pietras EM, Schroeder T. Blood stem cell PU.1 upregulation is a consequence of differentiation without fast autoregulation. J Exp Med 2022; 219:e20202490. [PMID: 34817548 PMCID: PMC8624737 DOI: 10.1084/jem.20202490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/07/2021] [Accepted: 09/23/2021] [Indexed: 11/12/2022] Open
Abstract
Transcription factors (TFs) regulate cell fates, and their expression must be tightly regulated. Autoregulation is assumed to regulate many TFs' own expression to control cell fates. Here, we manipulate and quantify the (auto)regulation of PU.1, a TF controlling hematopoietic stem and progenitor cells (HSPCs), and correlate it to their future fates. We generate transgenic mice allowing both inducible activation of PU.1 and noninvasive quantification of endogenous PU.1 protein expression. The quantified HSPC PU.1 dynamics show that PU.1 up-regulation occurs as a consequence of hematopoietic differentiation independently of direct fast autoregulation. In contrast, inflammatory signaling induces fast PU.1 up-regulation, which does not require PU.1 expression or its binding to its own autoregulatory enhancer. However, the increased PU.1 levels induced by inflammatory signaling cannot be sustained via autoregulation after removal of the signaling stimulus. We conclude that PU.1 overexpression induces HSC differentiation before PU.1 up-regulation, only later generating cell types with intrinsically higher PU.1.
Collapse
Affiliation(s)
- Nouraiz Ahmed
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Martin Etzrodt
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Philip Dettinger
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Tobias Kull
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Dirk Loeffler
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Philipp S. Hoppe
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - James S. Chavez
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Yang Zhang
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Germán Camargo Ortega
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Oliver Hilsenbeck
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eric M. Pietras
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Timm Schroeder
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| |
Collapse
|
8
|
Dahlin JS, Maurer M, Metcalfe DD, Pejler G, Sagi‐Eisenberg R, Nilsson G. The ingenious mast cell: Contemporary insights into mast cell behavior and function. Allergy 2022; 77:83-99. [PMID: 33955017 DOI: 10.1111/all.14881] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Mast cells are (in)famous for their role in allergic diseases, but the physiological and pathophysiological roles of this ingenious cell are still not fully understood. Mast cells are important for homeostasis and surveillance of the human system, recognizing both endogenous and exogenous agents, which induce release of a variety of mediators acting on both immune and non-immune cells, including nerve cells, fibroblasts, endothelial cells, smooth muscle cells, and epithelial cells. During recent years, clinical and experimental studies on human mast cells, as well as experiments using animal models, have resulted in many discoveries that help decipher the function of mast cells in health and disease. In this review, we focus particularly on new insights into mast cell biology, with a focus on mast cell development, recruitment, heterogeneity, and reactivity. We also highlight the development in our understanding of mast cell-driven diseases and discuss the development of novel strategies to treat such conditions.
Collapse
Affiliation(s)
- Joakim S. Dahlin
- Division of Immunology and Allergy Department of Medicine Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Marcus Maurer
- Department of Dermatology and Allergy Dermatological Allergology Allergie‐Centrum‐Charité Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, Berlin Institute of Health Berlin Germany
| | - Dean D. Metcalfe
- Mast Cell Biology Section Laboratory of Allergic Diseases NIAID, NIH Bethesda MD USA
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology Uppsala University Uppsala Sweden
- Department of Anatomy, Physiology and Biochemistry Swedish University of Agricultural Sciences Uppsala Sweden
| | - Ronit Sagi‐Eisenberg
- Department of Cell and Developmental Biology Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Gunnar Nilsson
- Division of Immunology and Allergy Department of Medicine Karolinska Institutet Karolinska University Hospital Stockholm Sweden
- Department of Medical Sciences Uppsala University Uppsala Sweden
| |
Collapse
|
9
|
Wanet A, Bassal MA, Patel SB, Marchi F, Mariani SA, Ahmed N, Zhang H, Borchiellini M, Chen S, Zhang J, Di Ruscio A, Miyake K, Tsai M, Paranjape A, Park SY, Karasuyama H, Schroeder T, Dzierzak E, Galli SJ, Tenen DG, Welner RS. E-cadherin is regulated by GATA-2 and marks the early commitment of mouse hematopoietic progenitors to the basophil and mast cell fates. Sci Immunol 2021; 6:6/56/eaba0178. [PMID: 33547048 DOI: 10.1126/sciimmunol.aba0178] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 09/09/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
E-cadherin is a calcium-dependent cell-cell adhesion molecule extensively studied for its involvement in tissue formation, epithelial cell behavior, and suppression of cancer. However, E-cadherin expression in the hematopoietic system has not been fully elucidated. Combining single-cell RNA-sequencing analyses and immunophenotyping, we revealed that progenitors expressing high levels of E-cadherin and contained within the granulocyte-monocyte progenitors (GMPs) fraction have an enriched capacity to differentiate into basophils and mast cells. We detected E-cadherin expression on committed progenitors before the expression of other reported markers of these lineages. We named such progenitors pro-BMPs (pro-basophil and mast cell progenitors). Using RNA sequencing, we observed transcriptional priming of pro-BMPs to the basophil and mast cell lineages. We also showed that GATA-2 directly regulates E-cadherin expression in the basophil and mast cell lineages, thus providing a mechanistic connection between the expression of this cell surface marker and the basophil and mast cell fate specification.
Collapse
Affiliation(s)
- Anaïs Wanet
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Mahmoud A Bassal
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sweta B Patel
- Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Samanta A Mariani
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Nouraiz Ahmed
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Haoran Zhang
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Marta Borchiellini
- Department of Health Sciences, University of Eastern Piedmont, Novara 28100, Italy.,Department of Translational Medicine, University of Eastern Piedmont, Novara 28100, Italy
| | - Sisi Chen
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Junyan Zhang
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Annalisa Di Ruscio
- Department of Translational Medicine, University of Eastern Piedmont, Novara 28100, Italy.,Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Kensuke Miyake
- Inflammation, Infection, Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anuya Paranjape
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shin-Young Park
- Transfusion Medicine, Boston Children's Hospital and Harvard Medical School, Harvard Medical School, Boston, MA 02115, USA
| | - Hajime Karasuyama
- Inflammation, Infection, Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Elaine Dzierzak
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology and Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Robert S Welner
- Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
10
|
Dahlin JS. Cutting down the hematopoietic tree: E-cadherin reveals a landscape of differentiating basophils and mast cells. Sci Immunol 2021; 6:eabf7901. [PMID: 33547049 DOI: 10.1126/sciimmunol.abf7901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 11/02/2022]
Abstract
GATA-2-mediated E-cadherin expression marks early progenitors primed to the basophil and mast cell lineages in mouse hematopoiesis (see the related Research Article by Wanet et al.).
Collapse
Affiliation(s)
- Joakim S Dahlin
- Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|