1
|
Kim J, Wang H, Ercan S. Cohesin organizes 3D DNA contacts surrounding active enhancers in C. elegans. Genome Res 2025; 35:1108-1123. [PMID: 40210441 DOI: 10.1101/gr.279365.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 02/15/2025] [Indexed: 04/12/2025]
Abstract
In mammals, cohesin and CTCF organize the 3D genome into topologically associating domains (TADs) to regulate communication between cis-regulatory elements. Many organisms, including S. cerevisiae, C. elegans, and A. thaliana contain cohesin but lack CTCF. Here, we used C. elegans to investigate the function of cohesin in 3D genome organization in the absence of CTCF. Using Hi-C data, we observe cohesin-dependent features called "fountains," which have also been reported in zebrafish and mice. These are population average reflections of DNA loops originating from distinct genomic regions and are ∼20-40 kb in C. elegans Hi-C analysis upon cohesin and WAPL-1 depletion supports the idea that cohesin is preferentially loaded at sites bound by the C. elegans ortholog of NIPBL and loop extrudes in an effectively two-sided manner. ChIP-seq analyses show that cohesin translocation along the fountain trajectory depends on a fully intact complex and is extended upon WAPL-1 depletion. Hi-C contact patterns at individual fountains suggest that cohesin processivity is unequal on each side, possibly owing to collision with cohesin loaded from surrounding sites. The putative cohesin loading sites are closest to active enhancers, and fountain strength is associated with transcription. Compared with mammals, the average processivity of C. elegans cohesin is about 10-fold shorter, and the binding of NIPBL ortholog does not depend on cohesin. We propose that preferential loading and loop extrusion by cohesin is an evolutionarily conserved mechanism that regulates the 3D interactions of enhancers in animal genomes.
Collapse
Affiliation(s)
- Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Haoyu Wang
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
2
|
Paldi F, Cavalli G. 3D genome folding in epigenetic regulation and cellular memory. Trends Cell Biol 2025:S0962-8924(25)00065-0. [PMID: 40221344 DOI: 10.1016/j.tcb.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
The 3D folding of the genome is tightly linked to its epigenetic state which maintains gene expression programmes. Although the relationship between gene expression and genome organisation is highly context dependent, 3D genome organisation is emerging as a novel epigenetic layer to reinforce and stabilise transcriptional states. Whether regulatory information carried in genome folding could be transmitted through mitosis is an area of active investigation. In this review, we discuss the relationship between epigenetic state and nuclear organisation, as well as the interplay between transcriptional regulation and epigenetic genome folding. We also consider the architectural remodelling of nuclei as cells enter and exit mitosis, and evaluate the potential of the 3D genome to contribute to cellular memory.
Collapse
Affiliation(s)
- Flora Paldi
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France.
| |
Collapse
|
3
|
Liang H, Berger B, Singh R. Tracing the Shared Foundations of Gene Expression and Chromatin Structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646349. [PMID: 40235997 PMCID: PMC11996408 DOI: 10.1101/2025.03.31.646349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The three-dimensional organization of chromatin into topologically associating domains (TADs) may impact gene regulation by bringing distant genes into contact. However, many questions about TADs' function and their influence on transcription remain unresolved due to technical limitations in defining TAD boundaries and measuring the direct effect that TADs have on gene expression. Here, we develop consensus TAD maps for human and mouse with a novel "bag-of-genes" approach for defining the gene composition within TADs. This approach enables new functional interpretations of TADs by providing a way to capture species-level differences in chromatin organization. We also leverage a generative AI foundation model computed from 33 million transcriptomes to define contextual similarity, an embedding-based metric that is more powerful than co-expression at representing functional gene relationships. Our analytical framework directly leads to testable hypotheses about chromatin organization across cellular states. We find that TADs play an active role in facilitating gene co-regulation, possibly through a mechanism involving transcriptional condensates. We also discover that the TAD-linked enhancement of transcriptional context is strongest in early developmental stages and systematically declines with aging. Investigation of cancer cells show distinct patterns of TAD usage that shift with chemotherapy treatment, suggesting specific roles for TAD-mediated regulation in cellular development and plasticity. Finally, we develop "TAD signatures" to improve statistical analysis of single-cell transcriptomic data sets in predicting cancer cell-line drug response. These findings reshape our understanding of cellular plasticity in development and disease, indicating that chromatin organization acts through probabilistic mechanisms rather than deterministic rules. Software availability https://singhlab.net/tadmap.
Collapse
|
4
|
Saw AK, Madhok A, Bhattacharya A, Nandi S, Galande S. Integrated promoter-capture Hi-C and Hi-C analysis reveals fine-tuned regulation of the 3D chromatin architecture in colorectal cancer. Front Genet 2025; 16:1553469. [PMID: 40225268 PMCID: PMC11985782 DOI: 10.3389/fgene.2025.1553469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction Hi-C is a widely used technique for mapping chromosomal interactions within a 3D genomic framework, however, its resolution is often constrained by sequencing depth, making it challenging to detect fine-scale interactions. To overcome this limitation, Promoter-Capture Hi-C (PCHi-C), as it selectively enriches for promoter-associated interactions, was employed. This study integrates PCHi-C and Hi-C datasets from colorectal cancer (CRC) models investigate chromosomal interaction dynamics across various regulatory levels, from cis-regulatory elements to topologically associated domains (TADs). The primary goal is to examine how genomic structural alterations shape the epigenomic landscape in CRC and to assess their potential role in colorectal cancer susceptibility. Methods PCHi-C and Hi-C datasets from multiple colorectal cancer (CRC) studies were integrated to enhance the resolution of chromatin interaction mapping. The analysis focused on identifying fine-scale interactions within topologically associated domains (TADs) while incorporating histone modification landscapes (H3K27ac, H3K4me3) and transcriptomic signatures from CRC cell lines and the TCGA database. For experimental validation, ChIP-quantitative PCR was performed at the promoters of target genes using the highly malignant colorectal cell line HT29 and compared it to an embryonic cell line NT2D1. Results Our integrated analysis revealed significant genomic structural instability in CRC cells, closely associated with tumor-suppressive transcriptional programs. We identified nine dysregulated genes, including long non-coding RNAs (MALAT1, NEAT1, FTX, and PVT1), small nucleolar RNAs (SNORA26 and SNORA71A), and protein-coding genes (TMPRSS11D, TSPEAR, and DSG4), all of which exhibited a substantial increase in expression in CRC cell lines compared to human embryonic stem cells (hESCs). Additionally, we observed enriched activation-associated histone modifications (H3K27ac and H3K4me3) at the potential enhancer regions of these genes, indicating possible transcriptional activation. ChIP-quantitative PCRs conducted using in the highly malignant CRC cell line HT29, compared to the embryonic cell line NT2D1, further validated these findings, reinforcing the link between altered chromosomal interactions and gene dysregulation in CRC. Discussion This study sheds light on the dynamic 3D genome organization in CRC, highlighting critical structural changes associated with disease-associated loci. The identification of nine dysregulated genes points to potential biomarkers for colorectal cancer, with implications for diagnostic and therapeutic strategies. The combination of Hi-C and PCHi-C offers a refined approach for detecting chromosomal interactions at a higher resolution, laying the foundation for future studies on cancer-associated chromatin architecture.
Collapse
Affiliation(s)
- Ajay Kumar Saw
- Laboratory of Chromatin Biology and Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Ayush Madhok
- Laboratory of Chromatin Biology and Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Anupam Bhattacharya
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, India
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India
| | - Soumyadeep Nandi
- Data Sciences and Computational Biology Centre, Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, Manesar, Haryana, India
| | - Sanjeev Galande
- Laboratory of Chromatin Biology and Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
- Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
5
|
Zippo A, Beyes S. Molecular mechanisms altering cell identity in cancer. Oncogene 2025:10.1038/s41388-025-03314-2. [PMID: 40011573 DOI: 10.1038/s41388-025-03314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/28/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
Intrinsic and extrinsic factors influence cancer cell identity throughout its lifespan. During tumor progression and metastasis formation, cancer cells are exposed to different environmental stimuli, resulting in a stepwise cellular reprogramming. Similar stepwise changes of cell identity have been shown as a major consequence of cancer treatment, as cells are exposed to extracellular stress that can result in the establishment of subpopulations exhibiting different epigenetic and transcriptional patterns, indicating a rapid adaptation mechanism of cellular identity by extrinsic stress factors. Both mechanisms, tumor progression-mediated changes and therapy response, rely on signaling pathways affecting the epigenetic and subsequent transcriptional landscape, which equip the cells with mechanisms for survival and tumor progression. These non-genetic alterations are propagated to the daughter cells, indicating a need for successful information propagation and transfer to the daughter generations, thereby allowing for a stepwise adaptation to environmental cues. However, the exact mechanisms how these cell identity changes are occurring, which context-specific mechanisms are behind and how this can be exploited for future therapeutic interventions is not yet fully understood and exploited. In this review, we discuss the current knowledge on cell identity maintenance mechanisms intra- and intergenerational in development and disease and how these mechanisms are altered in cancer. We will as well address how cancer treatment might target these properties.
Collapse
Affiliation(s)
- Alessio Zippo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Sven Beyes
- Robert Bosch Center for Tumor Diseases (RBCT), Stuttgart, Germany.
| |
Collapse
|
6
|
Lee U, Laguillo-Diego A, Wong W, Ni Z, Cheng L, Li J, Pelham-Webb B, Pertsinidis A, Leslie C, Apostolou E. Post-mitotic transcriptional activation and 3D regulatory interactions show locus- and differentiation-specific sensitivity to cohesin depletion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638153. [PMID: 40034648 PMCID: PMC11875242 DOI: 10.1101/2025.02.13.638153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Prior studies showed that structural loops collapse upon acute cohesin depletion, while regulatory enhancer-promoter (E-P) loops largely persist, consistent with minimal transcriptional changes. However, these studies, conducted in asynchronous cells, could not resolve whether cohesin is required for the establishment of regulatory interactions and transcriptional activation during cell division or cell state transitions. To address this gap, we degraded RAD21, a core cohesin subunit, in naïve mouse embryonic stem cells (ESCs) transitioning from mitosis to G1 either in self-renewal condition or during differentiation toward formative pluripotency. Although most structural loops failed to be re-established without cohesin, about 35% of regulatory loops reformed at normal or higher frequencies. Cohesin-independent loops showed characteristics of strong active enhancers and promoters and a significant association with H3K27ac mitotic bookmarks. However, inhibition of CBP/p300 during mitotic exit did not impact these cohesin-independent interactions, suggesting the presence of complex compensatory mechanisms. At the transcriptional level, cohesin depletion induced only minor changes, supporting that post-mitotic transcriptional reactivation is largely independent of cohesin. The few genes with impaired reactivation were directly bound by RAD21 at their promoters, engaged in many structural loops, and located within strongly insulated TADs with low gene density. Importantly, degrading cohesin during the M-to-G1 transition in the presence of EpiLC differentiation signals revealed a larger group of susceptible genes, including key signature genes and transcription factors. Impaired activation of these genes was partly due to the failure to establish de novo EpiLC-specific interactions in the absence of cohesin. These experiments revealed locus-specific and context-specific dependencies between cohesin, E-P interactions, and transcription.
Collapse
Affiliation(s)
- UkJin Lee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Molecular Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, 10065, USA
| | - Alejandra Laguillo-Diego
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Wilfred Wong
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065, USA
| | - Zhangli Ni
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lingling Cheng
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jieru Li
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bobbie Pelham-Webb
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Alexandros Pertsinidis
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christina Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
7
|
Rutowicz K, Lüthi J, de Groot R, Holtackers R, Yakimovich Y, Pazmiño DM, Gandrillon O, Pelkmans L, Baroux C. Multiscale chromatin dynamics and high entropy in plant iPSC ancestors. J Cell Sci 2024; 137:jcs261703. [PMID: 38738286 PMCID: PMC11234377 DOI: 10.1242/jcs.261703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Plant protoplasts provide starting material for of inducing pluripotent cell masses that are competent for tissue regeneration in vitro, analogous to animal induced pluripotent stem cells (iPSCs). Dedifferentiation is associated with large-scale chromatin reorganisation and massive transcriptome reprogramming, characterised by stochastic gene expression. How this cellular variability reflects on chromatin organisation in individual cells and what factors influence chromatin transitions during culturing are largely unknown. Here, we used high-throughput imaging and a custom supervised image analysis protocol extracting over 100 chromatin features of cultured protoplasts. The analysis revealed rapid, multiscale dynamics of chromatin patterns with a trajectory that strongly depended on nutrient availability. Decreased abundance in H1 (linker histones) is hallmark of chromatin transitions. We measured a high heterogeneity of chromatin patterns indicating intrinsic entropy as a hallmark of the initial cultures. We further measured an entropy decline over time, and an antagonistic influence by external and intrinsic factors, such as phytohormones and epigenetic modifiers, respectively. Collectively, our study benchmarks an approach to understand the variability and evolution of chromatin patterns underlying plant cell reprogramming in vitro.
Collapse
Affiliation(s)
- Kinga Rutowicz
- Plant Developmental Genetics, Institute of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Joel Lüthi
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Reinoud de Groot
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - René Holtackers
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Yauhen Yakimovich
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Diana M. Pazmiño
- Plant Developmental Genetics, Institute of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Olivier Gandrillon
- Laboratory of Biology and Modeling of the Cell, University of Lyon, ENS de Lyon,69342 Lyon, France
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Célia Baroux
- Plant Developmental Genetics, Institute of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
8
|
Kim J, Wang H, Ercan S. Cohesin organizes 3D DNA contacts surrounding active enhancers in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.18.558239. [PMID: 37786717 PMCID: PMC10541618 DOI: 10.1101/2023.09.18.558239] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
In mammals, cohesin and CTCF organize the 3D genome into topologically associated domains (TADs) to regulate communication between cis-regulatory elements. Many organisms, including S. cerevisiae, C. elegans, and A. thaliana contain cohesin but lack CTCF. Here, we used C. elegans to investigate the function of cohesin in 3D genome organization in the absence of CTCF. Using Hi-C data, we observe cohesin-dependent features called "fountains", which are also reported in zebrafish and mice. These are population average reflections of DNA loops originating from distinct genomic regions and are ~20-40 kb in C. elegans. Hi-C analysis upon cohesin and WAPL depletion support the idea that cohesin is preferentially loaded at NIPBL occupied sites and loop extrudes in an effectively two-sided manner. ChIP-seq analyses show that cohesin translocation along the fountain trajectory depends on a fully intact complex and is extended upon WAPL-1 depletion. Hi-C contact patterns at individual fountains suggest that cohesin processivity is unequal on each side, possibly due to collision with cohesin loaded from surrounding sites. The putative cohesin loading sites are closest to active enhancers and fountain strength is associated with transcription. Compared to mammals, average processivity of C. elegans cohesin is ~10-fold shorter and NIPBL binding does not depend on cohesin. We propose that preferential loading and loop extrusion by cohesin is an evolutionarily conserved mechanism that regulates the 3D interactions of enhancers in animal genomes.
Collapse
Affiliation(s)
- Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Haoyu Wang
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| |
Collapse
|
9
|
McCreery KP, Stubb A, Stephens R, Fursova NA, Cook A, Kruse K, Michelbach A, Biggs LC, Keikhosravi A, Nykänen S, Hydén-Granskog C, Zou J, Lackmann JW, Niessen CM, Vuoristo S, Miroshnikova YA, Wickström SA. Mechano-osmotic signals control chromatin state and fate transitions in pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611779. [PMID: 39372762 PMCID: PMC11451594 DOI: 10.1101/2024.09.07.611779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Acquisition of specific cell shapes and morphologies is a central component of cell fate transitions. Although signaling circuits and gene regulatory networks that regulate pluripotent stem cell differentiation have been intensely studied, how these networks are integrated in space and time with morphological transitions and mechanical deformations to control state transitions remains a fundamental open question. Here, we focus on two distinct models of pluripotency, primed pluripotent stem cells and pre-implantation inner cell mass cells of human embryos to discover that cell fate transitions associate with rapid changes in nuclear shape and volume which collectively alter the nuclear mechanophenotype. Mechanistic studies in human induced pluripotent stem cells further reveal that these phenotypical changes and the associated active fluctuations of the nuclear envelope arise from growth factor signaling-controlled changes in chromatin mechanics and cytoskeletal confinement. These collective mechano-osmotic changes trigger global transcriptional repression and a condensation-prone environment that primes chromatin for a cell fate transition by attenuating repression of differentiation genes. However, while this mechano-osmotic chromatin priming has the potential to accelerate fate transitions and differentiation, sustained biochemical signals are required for robust induction of specific lineages. Our findings uncover a critical mechanochemical feedback mechanism that integrates nuclear mechanics, shape and volume with biochemical signaling and chromatin state to control cell fate transition dynamics.
Collapse
Affiliation(s)
- Kaitlin P. McCreery
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Aki Stubb
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
| | - Rebecca Stephens
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nadezda A. Fursova
- System Biology of Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, MD 20892
| | - Andrew Cook
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kai Kruse
- Bioinformatics Service Unit, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Anja Michelbach
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Leah C. Biggs
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
| | - Adib Keikhosravi
- High-Throughput Imaging Facility, National Cancer Institute, National Institute of Health, Bethesda, MD 20892
| | - Sonja Nykänen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
- Gynecology and Obstetrics, Clinicum, University of Helsinki, 00290 Helsinki, Finland
| | - Christel Hydén-Granskog
- Helsinki University Hospital, Reproductive Medicine Unit, P.O. Box 150, 00029 HUS, Helsinki, Finland
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jan-Wilm Lackmann
- CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Carien M. Niessen
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Sanna Vuoristo
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
- Gynecology and Obstetrics, Clinicum, University of Helsinki, 00290 Helsinki, Finland
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| | - Yekaterina A. Miroshnikova
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara A. Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
10
|
LaFoya B, Penkert RR, Prehoda KE. The cytokinetic midbody mediates asymmetric fate specification at mitotic exit during neural stem cell division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609974. [PMID: 39253494 PMCID: PMC11383292 DOI: 10.1101/2024.08.27.609974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Asymmetric cell division (ACD) is a broadly used mechanism for generating cellular diversity. Molecules known as fate determinants are segregated during ACD to generate distinct sibling cell fates, but determinants should not be activated until fate can be specified asymmetrically. Determinants could be activated after cell division but many animal cells complete division long after mitosis ends, raising the question of how activation could occur at mitotic exit taking advantage of the unique state plasticity at this time point. Here we show that the midbody, a microtubule-rich structure that forms in the intercellular bridge connecting nascent siblings, mediates fate determinant activation at mitotic exit in neural stem cells (NSCs) of the Drosophila larval brain. The fate determinants Prospero (Pros) and Brain tumor (Brat) are sequestered at the NSC membrane at metaphase but are released immediately following nuclear division when the midbody forms, well before cell division completes. The midbody isolates nascent sibling cytoplasms, allowing determinant release from the membrane via the cell cycle phosphatase String, without influencing the fate of the incorrect sibling. Our results identify the midbody as a key facilitator of ACD that allows asymmetric fate determinant activation to be initiated before division.
Collapse
Affiliation(s)
- Bryce LaFoya
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403
| | - Rhiannon R Penkert
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403
| | - Kenneth E. Prehoda
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403
| |
Collapse
|
11
|
Martinez-Sarmiento JA, Cosma MP, Lakadamyali M. Dissecting gene activation and chromatin remodeling dynamics in single human cells undergoing reprogramming. Cell Rep 2024; 43:114170. [PMID: 38700983 PMCID: PMC11195307 DOI: 10.1016/j.celrep.2024.114170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
During cell fate transitions, cells remodel their transcriptome, chromatin, and epigenome; however, it has been difficult to determine the temporal dynamics and cause-effect relationship between these changes at the single-cell level. Here, we employ the heterokaryon-mediated reprogramming system as a single-cell model to dissect key temporal events during early stages of pluripotency conversion using super-resolution imaging. We reveal that, following heterokaryon formation, the somatic nucleus undergoes global chromatin decompaction and removal of repressive histone modifications H3K9me3 and H3K27me3 without acquisition of active modifications H3K4me3 and H3K9ac. The pluripotency gene OCT4 (POU5F1) shows nascent and mature RNA transcription within the first 24 h after cell fusion without requiring an initial open chromatin configuration at its locus. NANOG, conversely, has significant nascent RNA transcription only at 48 h after cell fusion but, strikingly, exhibits genomic reopening early on. These findings suggest that the temporal relationship between chromatin compaction and gene activation during cellular reprogramming is gene context dependent.
Collapse
Affiliation(s)
- Jose A Martinez-Sarmiento
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080 Guangzhou, China.
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Espinosa-Martínez M, Alcázar-Fabra M, Landeira D. The molecular basis of cell memory in mammals: The epigenetic cycle. SCIENCE ADVANCES 2024; 10:eadl3188. [PMID: 38416817 PMCID: PMC10901381 DOI: 10.1126/sciadv.adl3188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Cell memory refers to the capacity of cells to maintain their gene expression program once the initiating environmental signal has ceased. This exceptional feature is key during the formation of mammalian organisms, and it is believed to be in part mediated by epigenetic factors that can endorse cells with the landmarks required to maintain transcriptional programs upon cell duplication. Here, we review current literature analyzing the molecular basis of epigenetic memory in mammals, with a focus on the mechanisms by which transcriptionally repressive chromatin modifications such as methylation of DNA and histone H3 are propagated through mitotic cell divisions. The emerging picture suggests that cellular memory is supported by an epigenetic cycle in which reversible activities carried out by epigenetic regulators in coordination with cell cycle transition create a multiphasic system that can accommodate both maintenance of cell identity and cell differentiation in proliferating stem cell populations.
Collapse
Affiliation(s)
- Mencía Espinosa-Martínez
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - María Alcázar-Fabra
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Landeira
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
13
|
Murphy D, Salataj E, Di Giammartino DC, Rodriguez-Hernaez J, Kloetgen A, Garg V, Char E, Uyehara CM, Ee LS, Lee U, Stadtfeld M, Hadjantonakis AK, Tsirigos A, Polyzos A, Apostolou E. 3D Enhancer-promoter networks provide predictive features for gene expression and coregulation in early embryonic lineages. Nat Struct Mol Biol 2024; 31:125-140. [PMID: 38053013 PMCID: PMC10897904 DOI: 10.1038/s41594-023-01130-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/18/2023] [Indexed: 12/07/2023]
Abstract
Mammalian embryogenesis commences with two pivotal and binary cell fate decisions that give rise to three essential lineages: the trophectoderm, the epiblast and the primitive endoderm. Although key signaling pathways and transcription factors that control these early embryonic decisions have been identified, the non-coding regulatory elements through which transcriptional regulators enact these fates remain understudied. Here, we characterize, at a genome-wide scale, enhancer activity and 3D connectivity in embryo-derived stem cell lines that represent each of the early developmental fates. We observe extensive enhancer remodeling and fine-scale 3D chromatin rewiring among the three lineages, which strongly associate with transcriptional changes, although distinct groups of genes are irresponsive to topological changes. In each lineage, a high degree of connectivity, or 'hubness', positively correlates with levels of gene expression and enriches for cell-type specific and essential genes. Genes within 3D hubs also show a significantly stronger probability of coregulation across lineages compared to genes in linear proximity or within the same contact domains. By incorporating 3D chromatin features, we build a predictive model for transcriptional regulation (3D-HiChAT) that outperforms models using only 1D promoter or proximal variables to predict levels and cell-type specificity of gene expression. Using 3D-HiChAT, we identify, in silico, candidate functional enhancers and hubs in each cell lineage, and with CRISPRi experiments, we validate several enhancers that control gene expression in their respective lineages. Our study identifies 3D regulatory hubs associated with the earliest mammalian lineages and describes their relationship to gene expression and cell identity, providing a framework to comprehensively understand lineage-specific transcriptional behaviors.
Collapse
Affiliation(s)
- Dylan Murphy
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Eralda Salataj
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Dafne Campigli Di Giammartino
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- 3D Chromatin Conformation and RNA Genomics Laboratory, Center for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Javier Rodriguez-Hernaez
- Department of Pathology, New York University Langone Health, New York, NY, USA
- Department of Medicine, New York University Langone Health, New York, NY, USA
- Applied Bioinformatics Laboratory, New York University Langone Health, New York, NY, USA
| | - Andreas Kloetgen
- Department of Pathology, New York University Langone Health, New York, NY, USA
- Department of Medicine, New York University Langone Health, New York, NY, USA
- Applied Bioinformatics Laboratory, New York University Langone Health, New York, NY, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Erin Char
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Christopher M Uyehara
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ly-Sha Ee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - UkJin Lee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Matthias Stadtfeld
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Langone Health, New York, NY, USA.
- Department of Medicine, New York University Langone Health, New York, NY, USA.
- Applied Bioinformatics Laboratory, New York University Langone Health, New York, NY, USA.
| | - Alexander Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
14
|
Murphy D, Salataj E, Di Giammartino DC, Rodriguez-Hernaez J, Kloetgen A, Garg V, Char E, Uyehara CM, Ee LS, Lee U, Stadtfeld M, Hadjantonakis AK, Tsirigos A, Polyzos A, Apostolou E. Systematic mapping and modeling of 3D enhancer-promoter interactions in early mouse embryonic lineages reveal regulatory principles that determine the levels and cell-type specificity of gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549714. [PMID: 37577543 PMCID: PMC10422694 DOI: 10.1101/2023.07.19.549714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Mammalian embryogenesis commences with two pivotal and binary cell fate decisions that give rise to three essential lineages, the trophectoderm (TE), the epiblast (EPI) and the primitive endoderm (PrE). Although key signaling pathways and transcription factors that control these early embryonic decisions have been identified, the non-coding regulatory elements via which transcriptional regulators enact these fates remain understudied. To address this gap, we have characterized, at a genome-wide scale, enhancer activity and 3D connectivity in embryo-derived stem cell lines that represent each of the early developmental fates. We observed extensive enhancer remodeling and fine-scale 3D chromatin rewiring among the three lineages, which strongly associate with transcriptional changes, although there are distinct groups of genes that are irresponsive to topological changes. In each lineage, a high degree of connectivity or "hubness" positively correlates with levels of gene expression and enriches for cell-type specific and essential genes. Genes within 3D hubs also show a significantly stronger probability of coregulation across lineages, compared to genes in linear proximity or within the same contact domains. By incorporating 3D chromatin features, we build a novel predictive model for transcriptional regulation (3D-HiChAT), which outperformed models that use only 1D promoter or proximal variables in predicting levels and cell-type specificity of gene expression. Using 3D-HiChAT, we performed genome-wide in silico perturbations to nominate candidate functional enhancers and hubs in each cell lineage, and with CRISPRi experiments we validated several novel enhancers that control expression of one or more genes in their respective lineages. Our study comprehensively identifies 3D regulatory hubs associated with the earliest mammalian lineages and describes their relationship to gene expression and cell identity, providing a framework to understand lineage-specific transcriptional behaviors.
Collapse
Affiliation(s)
- Dylan Murphy
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Eralda Salataj
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Dafne Campigli Di Giammartino
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- 3D Chromatin Conformation and RNA genomics laboratory, Instituto Italiano di Tecnologia (IIT), Center for Human Technologies (CHT), Genova, Italy (current affiliation)
| | - Javier Rodriguez-Hernaez
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA
- Applied Bioinformatics Laboratory, New York University Langone Health, New York, NY 10016, USA
| | - Andreas Kloetgen
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA
- Applied Bioinformatics Laboratory, New York University Langone Health, New York, NY 10016, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Erin Char
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, 10065, New York, USA
| | - Christopher M. Uyehara
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Ly-sha Ee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - UkJin Lee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Matthias Stadtfeld
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA
- Applied Bioinformatics Laboratory, New York University Langone Health, New York, NY 10016, USA
| | - Alexander Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
15
|
Uyehara CM, Apostolou E. 3D enhancer-promoter interactions and multi-connected hubs: Organizational principles and functional roles. Cell Rep 2023; 42:112068. [PMID: 37059094 PMCID: PMC10556201 DOI: 10.1016/j.celrep.2023.112068] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/25/2022] [Accepted: 01/20/2023] [Indexed: 04/16/2023] Open
Abstract
The spatiotemporal control of gene expression is dependent on the activity of cis-acting regulatory sequences, called enhancers, which regulate target genes over variable genomic distances and, often, by skipping intermediate promoters, suggesting mechanisms that control enhancer-promoter communication. Recent genomics and imaging technologies have revealed highly complex enhancer-promoter interaction networks, whereas advanced functional studies have started interrogating the forces behind the physical and functional communication among multiple enhancers and promoters. In this review, we first summarize our current understanding of the factors involved in enhancer-promoter communication, with a particular focus on recent papers that have revealed new layers of complexities to old questions. In the second part of the review, we focus on a subset of highly connected enhancer-promoter "hubs" and discuss their potential functions in signal integration and gene regulation, as well as the putative factors that might determine their dynamics and assembly.
Collapse
Affiliation(s)
- Christopher M Uyehara
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
16
|
Sanalkumar R, Dong R, Lee L, Xing YH, Iyer S, Letovanec I, La Rosa S, Finzi G, Musolino E, Papait R, Chebib I, Nielsen GP, Renella R, Cote GM, Choy E, Aryee M, Stegmaier K, Stamenkovic I, Rivera MN, Riggi N. Highly connected 3D chromatin networks established by an oncogenic fusion protein shape tumor cell identity. SCIENCE ADVANCES 2023; 9:eabo3789. [PMID: 37000878 DOI: 10.1126/sciadv.abo3789] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 01/18/2023] [Indexed: 06/19/2023]
Abstract
Cell fate transitions observed in embryonic development involve changes in three-dimensional genomic organization that provide proper lineage specification. Whether similar events occur within tumor cells and contribute to cancer evolution remains largely unexplored. We modeled this process in the pediatric cancer Ewing sarcoma and investigated high-resolution looping and large-scale nuclear conformation changes associated with the oncogenic fusion protein EWS-FLI1. We show that chromatin interactions in tumor cells are dominated by highly connected looping hubs centered on EWS-FLI1 binding sites, which directly control the activity of linked enhancers and promoters to establish oncogenic expression programs. Conversely, EWS-FLI1 depletion led to the disassembly of these looping networks and a widespread nuclear reorganization through the establishment of new looping patterns and large-scale compartment configuration matching those observed in mesenchymal stem cells, a candidate Ewing sarcoma progenitor. Our data demonstrate that major architectural features of nuclear organization in cancer cells can depend on single oncogenes and are readily reversed to reestablish latent differentiation programs.
Collapse
Affiliation(s)
- Rajendran Sanalkumar
- Experimental Pathology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rui Dong
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Lukuo Lee
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yu-Hang Xing
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sowmya Iyer
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Igor Letovanec
- Department of Histopathology, Central Institute, Valais Hospital, Sion, Switzerland
- Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stefano La Rosa
- Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giovanna Finzi
- Department of Pathology, ASST Sette Laghi, Varese, Italy
| | - Elettra Musolino
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Roberto Papait
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCSS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Ivan Chebib
- Department of Pathology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - G Petur Nielsen
- Department of Pathology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raffaele Renella
- Department Woman-Mother-Child, Division of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gregory M Cote
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Edwin Choy
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Martin Aryee
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Charlestown, MA, USA
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Kimberly Stegmaier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Ivan Stamenkovic
- Experimental Pathology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Miguel N Rivera
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Charlestown, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Nicolò Riggi
- Experimental Pathology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Zhang M, Li J, Wang Q, Urabe G, Tang R, Huang Y, Mosquera JV, Kent KC, Wang B, Miller CL, Guo LW. Gene-repressing epigenetic reader EED unexpectedly enhances cyclinD1 gene activation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:717-729. [PMID: 36923952 PMCID: PMC10009644 DOI: 10.1016/j.omtn.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Epigenetically switched, proliferative vascular smooth muscle cells (SMCs) form neointima, engendering stenotic diseases. Histone-3 lysine-27 trimethylation (H3K27me3) and acetylation (H3K27ac) marks are associated with gene repression and activation, respectively. The polycomb protein embryonic ectoderm development (EED) reads H3K27me3 and also enhances its deposition, hence is a canonical gene repressor. However, herein we found an unexpected role for EED in activating the bona fide pro-proliferative gene Ccnd1 (cyclinD1). EED overexpression in SMCs increased Ccnd1 mRNA, seemingly contradicting its gene-repressing function. However, consistently, EED co-immunoprecipitated with gene-activating H3K27ac reader BRD4, and they co-occupied at both mitogen-activated Ccnd1 and mitogen-repressed P57 (bona fide anti-proliferative gene), as indicated by chromatin immunoprecipitation qPCR. These results were abolished by an inhibitor of either the EED/H3K27me3 or BRD4/H3K27ac reader function. In accordance, elevating BRD4 increased H3K27me3. In vivo, while EED was upregulated in rat and human neointimal lesions, selective EED inhibition abated angioplasty-induced neointima and reduced cyclinD1 in rat carotid arteries. Thus, results uncover a previously unknown role for EED in Ccnd1 activation, likely via its cooperativity with BRD4 that enhances each other's reader function; i.e., activating pro-proliferative Ccnd1 while repressing anti-proliferative P57. As such, this study confers mechanistic implications for the epigenetic intervention of neointimal pathology.
Collapse
Affiliation(s)
- Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jing Li
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Qingwei Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Go Urabe
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Runze Tang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jose Verdezoto Mosquera
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - K. Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Clint L. Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
18
|
May D, Yun S, Gonzalez DG, Park S, Chen Y, Lathrop E, Cai B, Xin T, Zhao H, Wang S, Gonzalez LE, Cockburn K, Greco V. Live imaging reveals chromatin compaction transitions and dynamic transcriptional bursting during stem cell differentiation in vivo. eLife 2023; 12:83444. [PMID: 36880644 PMCID: PMC10027315 DOI: 10.7554/elife.83444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/06/2023] [Indexed: 03/08/2023] Open
Abstract
Stem cell differentiation requires dramatic changes in gene expression and global remodeling of chromatin architecture. How and when chromatin remodels relative to the transcriptional, behavioral, and morphological changes during differentiation remain unclear, particularly in an intact tissue context. Here, we develop a quantitative pipeline which leverages fluorescently-tagged histones and longitudinal imaging to track large-scale chromatin compaction changes within individual cells in a live mouse. Applying this pipeline to epidermal stem cells, we reveal that cell-to-cell chromatin compaction heterogeneity within the stem cell compartment emerges independent of cell cycle status, and instead is reflective of differentiation status. Chromatin compaction state gradually transitions over days as differentiating cells exit the stem cell compartment. Moreover, establishing live imaging of Keratin-10 (K10) nascent RNA, which marks the onset of stem cell differentiation, we find that Keratin-10 transcription is highly dynamic and largely precedes the global chromatin compaction changes associated with differentiation. Together, these analyses reveal that stem cell differentiation involves dynamic transcriptional states and gradual chromatin rearrangement.
Collapse
Affiliation(s)
- Dennis May
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Sangwon Yun
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - David G Gonzalez
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Sangbum Park
- Department of Genetics, Yale University School of Medicine, New Haven, United States
- Institute for Quantitative Health Science & Engineering (IQ), Michigan State University, East Lansing, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, United States
| | - Yanbo Chen
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Elizabeth Lathrop
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Biao Cai
- Department of Biostatistics, Yale University School of Public Health, New Haven, United States
| | - Tianchi Xin
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Hongyu Zhao
- Department of Genetics, Yale University School of Medicine, New Haven, United States
- Department of Biostatistics, Yale University School of Public Health, New Haven, United States
| | - Siyuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, United States
- Deparment of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Lauren E Gonzalez
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Katie Cockburn
- Department of Genetics, Yale University School of Medicine, New Haven, United States
- Department of Biochemistry and Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| | - Valentina Greco
- Department of Genetics, Yale University School of Medicine, New Haven, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, United States
- Departments of Cell Biology and Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
19
|
Abstract
Virtually all cell types have the same DNA, yet each type exhibits its own cell-specific pattern of gene expression. During the brief period of mitosis, the chromosomes exhibit changes in protein composition and modifications, a marked condensation, and a consequent reduction in transcription. Yet as cells exit mitosis, they reactivate their cell-specific programs with high fidelity. Initially, the field focused on the subset of transcription factors that are selectively retained in, and hence bookmark, chromatin in mitosis. However, recent studies show that many transcription factors can be retained in mitotic chromatin and that, surprisingly, such retention can be due to nonspecific chromatin binding. Here, we review the latest studies focusing on low-level transcription via promoters, rather than enhancers, as contributing to mitotic memory, as well as new insights into chromosome structure dynamics, histone modifications, cell cycle signaling, and nuclear envelope proteins that together ensure the fidelity of gene expression through a round of mitosis.
Collapse
Affiliation(s)
- Kenji Ito
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | | |
Collapse
|
20
|
Hörnblad A, Remeseiro S. Epigenetics, Enhancer Function and 3D Chromatin Organization in Reprogramming to Pluripotency. Cells 2022; 11:cells11091404. [PMID: 35563711 PMCID: PMC9105757 DOI: 10.3390/cells11091404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022] Open
Abstract
Genome architecture, epigenetics and enhancer function control the fate and identity of cells. Reprogramming to induced pluripotent stem cells (iPSCs) changes the transcriptional profile and chromatin landscape of the starting somatic cell to that of the pluripotent cell in a stepwise manner. Changes in the regulatory networks are tightly regulated during normal embryonic development to determine cell fate, and similarly need to function in cell fate control during reprogramming. Switching off the somatic program and turning on the pluripotent program involves a dynamic reorganization of the epigenetic landscape, enhancer function, chromatin accessibility and 3D chromatin topology. Within this context, we will review here the current knowledge on the processes that control the establishment and maintenance of pluripotency during somatic cell reprogramming.
Collapse
Affiliation(s)
- Andreas Hörnblad
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (A.H.); (S.R.)
| | - Silvia Remeseiro
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (A.H.); (S.R.)
| |
Collapse
|
21
|
Herrmann JC, Beagrie RA, Hughes JR. Making connections: enhancers in cellular differentiation. Trends Genet 2022; 38:395-408. [PMID: 34753603 DOI: 10.1016/j.tig.2021.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/23/2023]
Abstract
Deciphering the process by which hundreds of distinct cell types emerge from a single zygote to form a complex multicellular organism remains one of the greatest challenges in biological research. Enhancers are known to be central to cell type-specific gene expression, yet many questions regarding how these genomic elements interact both temporally and spatially with other cis- and trans-acting factors to control transcriptional activity during differentiation and development remain unanswered. Here, we review our current understanding of the role of enhancers and their interactions in this context and highlight recent progress achieved with experimental methods of unprecedented resolution.
Collapse
Affiliation(s)
- Jennifer C Herrmann
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Robert A Beagrie
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Yan J, Huangfu D. Epigenome rewiring in human pluripotent stem cells. Trends Cell Biol 2022; 32:259-271. [PMID: 34955367 PMCID: PMC8840982 DOI: 10.1016/j.tcb.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023]
Abstract
The epigenome plays a crucial role in modulating the activity of regulatory elements, thereby orchestrating diverse transcriptional programs during embryonic development. Human (h)PSC stepwise differentiation provides an excellent platform for capturing dynamic epigenomic events during lineage transition in human development. Here we discuss how recent technological advances, from epigenomic mapping to targeted perturbation, are providing a more comprehensive appreciation of remodeling of the chromatin landscape during human development with implications for aberrant rewiring in disease. We predict that the continuous innovation of hPSC differentiation methods, epigenome mapping, and CRISPR (clustered regularly interspaced short palindromic repeats) perturbation technologies will allow researchers to build toward not only a comprehensive understanding of the epigenomic mechanisms governing development, but also a highly flexible way to model diseases with opportunities for translation.
Collapse
Affiliation(s)
- Jielin Yan
- Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Danwei Huangfu
- Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
23
|
Miura H, Hiratani I. Cell cycle dynamics and developmental dynamics of the 3D genome: toward linking the two timescales. Curr Opin Genet Dev 2022; 73:101898. [PMID: 35026526 DOI: 10.1016/j.gde.2021.101898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/11/2021] [Accepted: 12/15/2021] [Indexed: 11/03/2022]
Abstract
In the mammalian cell nucleus, chromosomes are folded differently in interphase and mitosis. Interphase chromosomes are relatively decondensed and display at least two unique layers of higher-order organization: topologically associating domains (TADs) and cell-type-specific A/B compartments, which correlate well with early/late DNA replication timing (RT). In mitosis, these structures rapidly disappear but are gradually reconstructed during G1 phase, coincident with the establishment of the RT program. However, these structures also change dynamically during cell differentiation and reprogramming, and yet we are surprisingly ignorant about the relationship between their cell cycle dynamics and developmental dynamics. In this review, we summarize the recent findings on this topic, discuss how these two processes might be coordinated with each other and its potential significance.
Collapse
Affiliation(s)
- Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 Japan.
| |
Collapse
|
24
|
Zhao K, Wang M, Gao S, Chen J. Chromatin architecture reorganization during somatic cell reprogramming. Curr Opin Genet Dev 2021; 70:104-114. [PMID: 34530248 DOI: 10.1016/j.gde.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 01/14/2023]
Abstract
It has been nearly 60 years since Dr John Gurdon achieved the first cloning of Xenopus by somatic cell nuclear transfer (SCNT). Later, in 2006, Takahashi and Yamanaka published their landmark study demonstrating the application of four transcription factors to induce pluripotency. These two amazing discoveries both clearly established that cell identity can be reprogrammed and that mature cells still contain the information required for lineage specification. Considering that different cell types possess identical genomes, what orchestrates reprogramming has attracted wide interest. Epigenetics, including high-level chromatin structure, might provide some answers. Benefitting from the tremendous progress in high-throughput and multi-omics techniques, we here address the roles and interactions of genome architecture, chromatin modifications, and transcription regulation during somatic cell reprogramming that were previously beyond reach. In addition, we provide perspectives on recent technical advances that might help to overcome certain barriers in the field.
Collapse
Affiliation(s)
- Kun Zhao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Mingzhu Wang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Jiayu Chen
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| |
Collapse
|
25
|
Colussi C, Grassi C. Epigenetic regulation of neural stem cells: The emerging role of nucleoporins. STEM CELLS (DAYTON, OHIO) 2021; 39:1601-1614. [PMID: 34399020 PMCID: PMC9290943 DOI: 10.1002/stem.3444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/28/2021] [Indexed: 11/06/2022]
Abstract
Nucleoporins (Nups) are components of the nuclear pore complex that, besides regulating nucleus-cytoplasmic transport, emerged as a hub for chromatin interaction and gene expression modulation. Specifically, Nups act in a dynamic manner both at specific gene level and in the topological organization of chromatin domains. As such, they play a fundamental role during development and determination of stemness/differentiation balance in stem cells. An increasing number of reports indicate the implication of Nups in many central nervous system functions with great impact on neurogenesis, neurophysiology, and neurological disorders. Nevertheless, the role of Nup-mediated epigenetic regulation in embryonic and adult neural stem cells (NSCs) is a field largely unexplored and the comprehension of their mechanisms of action is only beginning to be unveiled. After a brief overview of epigenetic mechanisms, we will present and discuss the emerging role of Nups as new effectors of neuroepigenetics and as dynamic platform for chromatin function with specific reference to the biology of NSCs.
Collapse
Affiliation(s)
- Claudia Colussi
- Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti" (IASI)-CNR, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
26
|
Scourzic L, Salataj E, Apostolou E. Deciphering the Complexity of 3D Chromatin Organization Driving Lymphopoiesis and Lymphoid Malignancies. Front Immunol 2021; 12:669881. [PMID: 34054841 PMCID: PMC8160312 DOI: 10.3389/fimmu.2021.669881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Proper lymphopoiesis and immune responses depend on the spatiotemporal control of multiple processes, including gene expression, DNA recombination and cell fate decisions. High-order 3D chromatin organization is increasingly appreciated as an important regulator of these processes and dysregulation of genomic architecture has been linked to various immune disorders, including lymphoid malignancies. In this review, we present the general principles of the 3D chromatin topology and its dynamic reorganization during various steps of B and T lymphocyte development and activation. We also discuss functional interconnections between architectural, epigenetic and transcriptional changes and introduce major key players of genomic organization in B/T lymphocytes. Finally, we present how alterations in architectural factors and/or 3D genome organization are linked to dysregulation of the lymphopoietic transcriptional program and ultimately to hematological malignancies.
Collapse
Affiliation(s)
| | | | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
27
|
Pelham-Webb B, Polyzos A, Wojenski L, Kloetgen A, Li J, Di Giammartino DC, Sakellaropoulos T, Tsirigos A, Core L, Apostolou E. H3K27ac bookmarking promotes rapid post-mitotic activation of the pluripotent stem cell program without impacting 3D chromatin reorganization. Mol Cell 2021; 81:1732-1748.e8. [PMID: 33730542 PMCID: PMC8052294 DOI: 10.1016/j.molcel.2021.02.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 01/15/2021] [Accepted: 02/22/2021] [Indexed: 01/19/2023]
Abstract
During self-renewal, cell-type-defining features are drastically perturbed in mitosis and must be faithfully reestablished upon G1 entry, a process that remains largely elusive. Here, we characterized at a genome-wide scale the dynamic transcriptional and architectural resetting of mouse pluripotent stem cells (PSCs) upon mitotic exit. We captured distinct waves of transcriptional reactivation with rapid induction of stem cell genes and transient activation of lineage-specific genes. Topological reorganization at different hierarchical levels also occurred in an asynchronous manner and showed partial coordination with transcriptional resetting. Globally, rapid transcriptional and architectural resetting associated with mitotic retention of H3K27 acetylation, supporting a bookmarking function. Indeed, mitotic depletion of H3K27ac impaired the early reactivation of bookmarked, stem-cell-associated genes. However, 3D chromatin reorganization remained largely unaffected, suggesting that these processes are driven by distinct forces upon mitotic exit. This study uncovers principles and mediators of PSC molecular resetting during self-renewal.
Collapse
Affiliation(s)
- Bobbie Pelham-Webb
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD program, New York, NY 10021, USA
| | - Alexander Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Luke Wojenski
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Andreas Kloetgen
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jiexi Li
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dafne Campigli Di Giammartino
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Aristotelis Tsirigos
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Leighton Core
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
28
|
Abstract
Here we outline the contents of Stem Cell Reports' first special issue, on chromatin and nuclear architecture in stem cells. It features both reviews and original research articles, covering emerging topics in nuclear architecture including 3D genome organization in stem cells and early development, membraneless organelles, epigenetics-related therapy, and more.
Collapse
Affiliation(s)
- Eran Meshorer
- Department of Genetics, The Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Israel.
| | - Kathrin Plath
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|