1
|
Zhu Q, Guo J, Alee I, Wang C, Li L. Differential expression of bovine milk-derived exosomal miRNAs and their role in modulating endometrial receptivity during early pregnancy. Res Vet Sci 2025; 190:105636. [PMID: 40239443 DOI: 10.1016/j.rvsc.2025.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/20/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Endometrial receptivity is critical for successful implantation of bovine embryos. MicroRNA (miRNA), as a key regulator of uterine receptivity, is involved in physiological processes such as cell differentiation, proliferation, and apoptosis. The aim of this study was to identify pregnancy-specific miRNAs derived from milk exosomes of non-pregnant and early pregnant cows. In addition, bioinformatics analysis was used to assess the differential expression, target genes, and functions of these miRNAs in order to examine their significance in endometrial cell regulation. Exosomes were isolated from milk using an exosome extraction kit and then identified by Western blotting and transmission electron microscopy. We used Illumina high-throughput sequencing to profile miRNAs and identify differentially expressed miRNAs in bovine milk-derived exosomes at different stages of pregnancy (days 15, 25 and 30) and in non-pregnant cows (day 0). The sequencing data revealed a significant upregulation of bta-miR-125b in pregnant cows at days 15 and 25 compared to non-pregnant cows. Bta-miR-125b targets the Leukemia inhibitory factor (LIF), which is thought to play a critical role in the development of endometrial receptivity by regulating gene expression. KEGG pathway enrichment and Gene Ontology analysis indicated that the target genes of the differential miRNAs were significantly enriched in the key signaling pathways, including the MAPK, phosphatidylinositol signaling system and PI3K-Akt signaling pathways, as well as physiological activities such as RNA polymerase II transcriptional regulation, protein phosphorylation, apoptosis control and cell proliferation regulation. These signaling pathways and physiological activities are all indispensable parts during the process of pregnancy. These findings emphasize bta-miR-125b critical function in regulating endometrial receptivity via important signaling pathways, providing potential indicators for early pregnancy detection and insights into enhancing reproductive efficiency in dairy cows.
Collapse
Affiliation(s)
- Qi Zhu
- College of Animal Science, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China.
| | - Jiaxing Guo
- College of Animal Science, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China.
| | - Ilyas Alee
- College of Animal Science, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China.
| | - Cheng Wang
- College of Animal Science, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China.
| | - Lian Li
- College of Animal Science, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China.
| |
Collapse
|
2
|
Hu L, Jiao C, Gu H, Zhu Z, Liang M. Identification and validation of leukemia inhibitory factor as a protective factor in ischemic acute kidney injury. Am J Med Sci 2025; 369:524-536. [PMID: 39313116 DOI: 10.1016/j.amjms.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is a common pathophysiological mechanism of acute kidney injury (AKI). There is an urgent need for a more comprehensive analysis of its underlying mechanisms. MATERIALS AND METHODS The RNA-sequencing dataset GSE153625 was used to examine differentially expressed genes (DEGs) of kidney tissues in IRI-AKI mice compared with sham mice. We used 10 algorithms provided by cytohubba plugin and four external datasets (GSE192532, GSE52004, GSE98622, and GSE185383) to screen for hub genes. The IRI-AKI mouse model with different reperfusion times was established to validate the expression of hub gene in the kidneys. HK-2 cells were cultured in vitro under hypoxia/reoxygenation (H/R) conditions, via transfection with si-LIF or supplementation with the LIF protein to explore the function of the LIF gene. RESULTS We screened a total of 1,540 DEGs in the IRI group compared with the sham group and identified that the LIF hub gene may play potential roles in IRI-AKI. LIF was markedly upregulated in the kidney tissues of IRI-AKI mice, as well as in HK-2 cells grown under H/R conditions. The knockdown of LIF aggravated apoptosis and oxidative stress (OS) injury under H/R conditions. Administration of the LIF protein rescued the effects of si-LIF, alleviating cellular apoptosis and OS. CONCLUSION These findings indicate an important role of the LIF gene in term of regulating apoptosis and OS in the early phases of IRI-AKI. Targeting LIF may therefore represent a promising therapeutic strategy for IRI-AKI.
Collapse
Affiliation(s)
- Lemei Hu
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Panfu Road, Guangzhou, Guangdong 510000, China
| | - Chen Jiao
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Panfu Road, Guangzhou, Guangdong 510000, China
| | - Haiyu Gu
- Department of Emergency Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Zhigang Zhu
- Division of Hematology & Oncology, Department of Geriatrics, Second Affiliated Hospital, Guangzhou First People's Hospital, College of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Ming Liang
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Panfu Road, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
3
|
Wu B, Neupane J, Zhou Y, Zhang J, Chen Y, Surani MA, Zhang Y, Bao S, Li X. Stem cell-based embryo models: a tool to study early human development. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2741-1. [PMID: 39969747 DOI: 10.1007/s11427-024-2741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 02/20/2025]
Abstract
How a mammalian fertilized egg acquires totipotency and develops into a full-term offspring is a fundamental scientific question. Human embryonic development is difficult to study due to limited resources, technical challenges and ethics. Moreover, the precise regulatory mechanism underlying early human embryonic development remains unknown. In recent years, the emergence of stem cell-based embryo models (SCBEM) provides the opportunity to reconstitute pre- to post-implantation development in vitro. These models to some extent mimic the embryo morphologically and transcriptionally, and thus may be used to study key events in mammalian pre- and post-implantation development. Many groups have successfully generated SCBEM of the mouse and human. Here, we provide a comparative review of the mouse and human SCBEM, discuss the capability of these models to mimic natural embryos and give a perspective on their potential future applications.
Collapse
Affiliation(s)
- Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jitesh Neupane
- The Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Yang Zhou
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yanglin Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - M Azim Surani
- The Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, 011517, China.
| |
Collapse
|
4
|
Hiew VV, Teoh PL. Differential gene expression of Wharton's jelly-derived mesenchymal cells mediated by graphene oxide in basal and osteo-induced media. Mol Biol Rep 2024; 51:383. [PMID: 38433142 DOI: 10.1007/s11033-024-09324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Graphene oxide (GO) is widespread in scaffold engineering owing to its extraordinary properties such as multiple oxygen functional groups, high hydrophilicity ability and biocompatibility. It is known to promote differentiation in mesenchymal stem cells, but concomitant comparison of its modulation on the expression profiles of Wharton's jelly (WJ)-MSC surface markers, lineage differentiation, and epigenetic regulatory genes in basal and induced condition are still lacking. Unraveling the fundamental mechanisms is essential for the effective utilization of WJ-MSCs incorporated with GO in therapy. This study aims to explore the unique gene expression profiles and epigenetic characteristics of WJ-MSCs influenced by GO. METHODS AND RESULTS The characterized GO-coated coverslip served as a substrate for culturing WJ-MSCs. In addition to investigating the impact of GO on cell proliferation and differentiation, we conducted a gene expression study using PCR array, while epigenetic control was assessed through bisulfite sequencing and Western blot analysis. Our findings indicate that the presence of GO maintained the proliferation and survival of WJ-MSCs. In the absence of induction, GO led to minor lipid and glycosaminoglycan deposition in WJ-MSCs. This was evidenced by the sustained expression of pluripotency and lineage-specific genes, demethylation at the OCT4 promoter, and a decrease in H3K9 methylation. In osteo-induced condition, the occurrence of osteogenesis appeared to be guided by BMP/TGF and ERK pathway activation, accompanied by the upregulation of osteogenic-related genes and downregulation of DNMT3b. CONCLUSIONS GO in osteo-induced condition create a favorable microenvironment that promotes the osteogenesis of WJ-MSCs by influencing genetic and epigenetic controls. This helps in advancing our knowledge on the use of GO as priming platform and WJ-MSCs an alternate source for bone repair and regeneration.
Collapse
Affiliation(s)
- Vun Vun Hiew
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Peik Lin Teoh
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
5
|
Wu B, Wang Y, Wei X, Zhang J, Wu J, Cao G, Zhang Y, Liu J, Li X, Bao S. NELFA and BCL2 induce the 2C-like state in mouse embryonic stem cells in a chemically defined medium. Cell Prolif 2024; 57:e13534. [PMID: 37592709 PMCID: PMC10849787 DOI: 10.1111/cpr.13534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023] Open
Abstract
A minority of mouse embryonic stem cells (ESCs) display totipotent features resembling 2-cell stage embryos and are known as 2-cell-like (2C-like) cells. However, how ESCs transit into this 2C-like state remains largely unknown. Here, we report that the overexpression of negative elongation factor A (Nelfa), a maternally provided factor, enhances the conversion of ESCs into 2C-like cells in chemically defined conditions, while the deletion of endogenous Nelfa does not block this transition. We also demonstrate that Nelfa overexpression significantly enhances somatic cell reprogramming efficiency. Interestingly, we found that the co-overexpression of Nelfa and Bcl2 robustly activates the 2C-like state in ESCs and endows the cells with dual cell fate potential. We further demonstrate that Bcl2 overexpression upregulates endogenous Nelfa expression and can induce the 2C-like state in ESCs even in the absence of Nelfa. Our findings highlight the importance of BCL2 in the regulation of the 2C-like state and provide insights into the mechanism underlying the roles of Nelfa and Bcl2 in the establishment and regulation of the totipotent state in mouse ESCs.
Collapse
Affiliation(s)
- Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland LivestockInner Mongolia UniversityHohhotChina
- Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life SciencesInner Mongolia UniversityHohhotChina
| | - Yanqiu Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland LivestockInner Mongolia UniversityHohhotChina
- Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life SciencesInner Mongolia UniversityHohhotChina
| | - Xinhua Wei
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland LivestockInner Mongolia UniversityHohhotChina
- Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life SciencesInner Mongolia UniversityHohhotChina
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| | - Jiahui Wu
- School of Veterinary MedicineInner Mongolia Agricultural UniversityHohhotChina
| | - Guifang Cao
- School of Veterinary MedicineInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic AnimalHohhotChina
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland LivestockInner Mongolia UniversityHohhotChina
- Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life SciencesInner Mongolia UniversityHohhotChina
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic AnimalHohhotChina
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland LivestockInner Mongolia UniversityHohhotChina
- Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life SciencesInner Mongolia UniversityHohhotChina
| |
Collapse
|
6
|
Dillingham CM, Cormaty H, Morgan EC, Tak AI, Esgdaille DE, Boutz PL, Sridharan R. KDM3A and KDM3B Maintain Naïve Pluripotency Through the Regulation of Alternative Splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.31.543088. [PMID: 37398291 PMCID: PMC10312572 DOI: 10.1101/2023.05.31.543088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Histone modifying enzymes play a central role in maintaining cell identity by establishing a conducive chromatin environment for lineage specific transcription factor activity. Pluripotent embryonic stem cell (ESC) identity is characterized by a lower abundance of gene repression associated histone modifications that enables rapid response to differentiation cues. The KDM3 family of histone demethylases removes the repressive histone H3 lysine 9 dimethylation (H3K9me2). Here we uncover a surprising role for the KDM3 proteins in the maintenance of the pluripotent state through post-transcriptional regulation. We find that KDM3A and KDM3B interact with RNA processing factors such as EFTUD2 and PRMT5. Acute selective degradation of the endogenous KDM3A and KDM3B proteins resulted in altered splicing independent of H3K9me2 status or catalytic activity. These splicing changes partially resemble the splicing pattern of the more blastocyst-like ground state of pluripotency and occurred in important chromatin and transcription factors such as Dnmt3b, Tbx3 and Tcf12. Our findings reveal non-canonical roles of histone demethylating enzymes in splicing to regulate cell identity.
Collapse
Affiliation(s)
- Caleb M Dillingham
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Harshini Cormaty
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ellen C Morgan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Andrew I Tak
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dakarai E Esgdaille
- Department of Biochemistry and Biophysics, Center for RNA Biology, Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry
| | - Paul L Boutz
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
| |
Collapse
|
7
|
Zhang H, Yang T, Wu H, Yi W, Dai C, Chen X, Zhang W, Ye Y. MPP8 Governs the Activity of the LIF/STAT3 Pathway and Plays a Crucial Role in the Differentiation of Mouse Embryonic Stem Cells. Cells 2023; 12:2023. [PMID: 37626833 PMCID: PMC10453500 DOI: 10.3390/cells12162023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) possess the remarkable characteristics of unlimited self-renewal and pluripotency, which render them highly valuable for both fundamental research and clinical applications. A comprehensive understanding of the molecular mechanisms underlying mESC function is of the utmost importance. The Human Silence Hub (HUSH) complex, comprising FAM208A, MPP8, and periphilin, constitutes an epigenetic silencing complex involved in suppressing retroviruses and transposons during early embryonic development. However, its precise role in regulating mESC pluripotency and differentiation remains elusive. In this study, we generated homogenous miniIAA7-tagged Mpp8 mouse ES cell lines. Upon induction of MPP8 protein degradation, we observed the impaired proliferation and reduced colony formation ability of mESCs. Furthermore, this study unveils the involvement of MPP8 in regulating the activity of the LIF/STAT3 signaling pathway and Nanog expression in mESCs. Finally, we provide compelling evidence that degradation of the MPP8 protein impairs the differentiation of mESC.
Collapse
Affiliation(s)
- Heyao Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Tenghui Yang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Hao Wu
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Wen Yi
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China (X.C.)
| | - Chunhong Dai
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Xi Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China (X.C.)
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
- Zhejiang Stem and Ageing Research (Z-StAR) Institute, International Campus, Zhejiang University, Haining 314400, China
| | - Ying Ye
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Wu B, Yang Z, Liu Y, Li J, Chen C, Li X, Bao S. A chemically defined system supports two distinct types of stem cell from a single blastocyst and their self-assembly to generate blastoid. Cell Prolif 2023:e13396. [PMID: 36593753 DOI: 10.1111/cpr.13396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
The pluripotent stem cells exist in a narrow window during early development and its derivation depends on intrinsic and extrinsic growth signalling in vitro. It has remained challenging to derive two or three distinct cell lines that are representative of blastocyst-stage lineages from one preimplantation embryo simultaneously in a chemical defined condition. Therefore, it is desirable to establish a system by manipulating extrinsic signalling in culture to derive multiple types of stem cells from a single blastocyst. This study used a defined medium containing Activin A, WNT activator and LIF (ACL medium), enabling establishment of ACL-ESCs and ACL-XEN cells from one blastocyst. ACL-blastoids were generated by suspending ACL-ESCs and ACL-XEN cells with ACL-blastoid medium in three-dimensional culture system. Lineage markers expression of ACL-blastoids were performed by immunofluorescence. Our results indicate that ACL-ESCs and ACL-XEN cells derived from one blastocyst represent ICM and PrE lineages. Importantly, we obtained ACL-blastoid from ACL-ESCs and ACL-XEN cells self-aggregation, partially recapitulating early development and initiation of early implantation events. This study would not only provide ACL culture system for derivation and maintenance of two types of cell lines corresponding to ICM as well as PrE, but also reconstruct blastoids with them to deepen our understanding of early embryogenesis and widen insights into translational application of stem cells.
Collapse
Affiliation(s)
- Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhiqing Yang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yijie Liu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jianwen Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chen Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
9
|
Leukemia Inhibitory Factor Facilitates Self-Renewal and Differentiation and Attenuates Oxidative Stress of BMSCs by Activating PI3K/AKT Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5772509. [PMID: 36105481 PMCID: PMC9467750 DOI: 10.1155/2022/5772509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022]
Abstract
Objective. Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) remains a hopeful therapeutic approach for bone defect reconstruction. Herein, we investigated the effects and mechanisms of leukemia inhibitory factor (LIF) in the function and viability of hypoxic BMSCs as well as bone defect repair. Methods. The effects of LIF on apoptosis (flow cytometry, TUNEL staining), mitochondrial activity (JC-1 staining), proliferation (colony formation, EdU staining), and differentiation (CD105, CD90, and CD29 via flow sorting) were examined in hypoxic BMSCs. LIF, LIFR, gp130, Keap1, Nrf2, antioxidant enzymes (SOD1, catalase, GPx-3), bone-specific matrix proteins (ALP, BSP, OCN), PI3K, and Akt were detected via immunoblotting or immunofluorescent staining. BMSCs combined with biphasic calcium phosphate scaffolds were implanted into calvarial bone defect mice, and the therapeutic effect of LIF on bone defect was investigated. Results. Hypoxic BMSCs had increased apoptosis and oxidative stress and reduced mitochondrial activity. Additionally, LIF, LIFR, and gp130 were upregulated and PI3K/Akt activity was depressed in hypoxic BMSCs. Upregulated LIF alleviated apoptosis and oxidative stress and heightened mitochondrial activity and PI3K/Akt signaling in hypoxic BMSCs. Additionally, LIF overexpression promoted self-renewal and osteogenic differentiation of BMSCs with hypoxic condition. Mechanically, LIF facilitated self-renewal and differentiation as well as attenuated oxidative stress of BMSCs through enhancing PI3K/AKT signaling activity. Implantation of LIF-overexpressed BMSC-loaded BCP scaffolds promoted osteogenesis as well as alleviated oxidative stress and apoptosis through PI3K/Akt signaling. Conclusion. Our findings demonstrate that LIF facilitates self-renewal and differentiation and attenuates oxidative stress of BMSCs by PI3K/AKT signaling.
Collapse
|
10
|
Collagen Modulates the Biological Characteristics of WJ-MSCs in Basal and Osteoinduced Conditions. Stem Cells Int 2022; 2022:2116367. [PMID: 36071734 PMCID: PMC9441371 DOI: 10.1155/2022/2116367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/10/2022] [Indexed: 12/04/2022] Open
Abstract
Transcriptomic analysis revealed mesenchymal stem/stromal cells (MSCs) from various origins exhibited distinct gene and protein expression profiles dictating their biological properties. Although collagen type 1 (COL) has been widely studied in bone marrow MSCs, its role in regulating cell fate of Wharton jelly- (WJ-) MSCs is not well understood. In this study, we investigated the effects of collagen on the characteristics of WJ-MSCs associated with proliferation, surface markers, adhesion, migration, self-renewal, and differentiation capabilities through gene expression studies. The isolated WJ-MSCs expressed positive surface markers but not negative markers. Gene expression profiles showed that COL not only maintained the pluripotency, self-renewal, and immunophenotype of WJ-MSCs but also primed cells toward lineage differentiations by upregulating BMP2 and TGFB1 genes. Upon osteoinduction, WJ-MSC-COL underwent osteogenesis by switching on the transcription of BMP6/7 and TGFB3 followed by activation of downstream target genes such as INS, IGF1, RUNX2, and VEGFR2 through p38 signalling. This molecular event was also accompanied by hypomethylation at the OCT4 promoter and increase of H3K9 acetylation. In conclusion, COL provides a conducive cellular environment in priming WJ-MSCs that undergo a lineage specification upon receiving an appropriate signal from extrinsic factor. These findings would contribute to better control of fate determination of MSCs for therapeutic applications related to bone disease.
Collapse
|
11
|
Zhang M, Gao Y, Li Q, Cao H, Yang J, Cai X, Xiao J. Downregulation of DNA methyltransferase-3a ameliorates the osteogenic differentiation ability of adipose-derived stem cells in diabetic osteoporosis via Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2022; 13:397. [PMID: 35927735 PMCID: PMC9351106 DOI: 10.1186/s13287-022-03088-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/23/2022] [Indexed: 02/06/2023] Open
Abstract
Background Diabetes-related osteoporosis (DOP) is a chronic disease caused by the high glucose environment that induces a metabolic disorder of osteocytes and osteoblast-associated mesenchymal stem cells. The processes of bone defect repair and regeneration become extremely difficult with DOP. Adipose-derived stem cells (ASCs), as seed cells in bone tissue engineering technology, provide a promising therapeutic approach for bone regeneration in DOP patients. The osteogenic ability of ASCs is lower in a DOP model than that of control ASCs. DNA methylation, as a mechanism of epigenetic regulation, may be involved in DNA methylation of various genes, thereby participating in biological behaviors of various cells. Emerging evidence suggests that increased DNA methylation levels are associated with activation of Wnt/β-catenin signaling pathway. The purpose of this study was to investigate the influence of the diabetic environment on the osteogenic potential of ASCs, to explore the role of DNA methylation on osteogenic differentiation of DOP-ASCs via Wnt/β-catenin signaling pathway, and to improve the osteogenic differentiation ability of ASCs with DOP. Methods DOP-ASCs and control ASCs were isolated from DOP C57BL/6 and control mice, respectively. The multipotency of DOP-ASCs was confirmed by Alizarin Red-S, Oil Red-O, and Alcian blue staining. Real-time polymerase chain reaction (RT-PCR), immunofluorescence, and western blotting were used to analyze changes in markers of osteogenic differentiation, DNA methylation, and Wnt/β-catenin signaling. Alizarin Red-S staining was also used to confirm changes in the osteogenic ability. DNMT small interfering RNA (siRNA), shRNA-Dnmt3a, and LVRNA-Dnmt3a were used to assess the role of Dnmt3a in osteogenic differentiation of control ASCs and DOP-ASCs. Micro-computed tomography, hematoxylin and eosin staining, and Masson staining were used to analyze changes in the osteogenic capability while downregulating Dnmt3a with lentivirus in DOP mice in vivo. Results The proliferative ability of DOP-ASCs was lower than that of control ASCs. DOP-ASCs showed a decrease in osteogenic differentiation capacity, lower Wnt/β-catenin signaling pathway activity, and a higher level of Dnmt3a than control ASCs. When Dnmt3a was downregulated by siRNA and shRNA, osteogenic-related factors Runt-related transcription factor 2 and osteopontin, and activity of Wnt/β-catenin signaling pathway were increased, which rescued the poor osteogenic potential of DOP-ASCs. When Dnmt3a was upregulated by LVRNA-Dnmt3a, the osteogenic ability was inhibited. The same results were obtained in vivo. Conclusions Dnmt3a silencing rescues the negative effects of DOP on ASCs and provides a possible approach for bone tissue regeneration in patients with diabetic osteoporosis.
Collapse
Affiliation(s)
- Maorui Zhang
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yujin Gao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qing Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Huayue Cao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jianghua Yang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China. .,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China. .,Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
12
|
Chen G, Yin S, Zeng H, Li H, Wan X. Regulation of Embryonic Stem Cell Self-Renewal. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081151. [PMID: 36013330 PMCID: PMC9410528 DOI: 10.3390/life12081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Embryonic stem cells (ESCs) are a type of cells capable of self-renewal and multi-directional differentiation. The self-renewal of ESCs is regulated by factors including signaling pathway proteins, transcription factors, epigenetic regulators, cytokines, and small molecular compounds. Similarly, non-coding RNAs, small RNAs, and microRNAs (miRNAs) also play an important role in the process. Functionally, the core transcription factors interact with helper transcription factors to activate the expression of genes that contribute to maintaining pluripotency, while suppressing the expression of differentiation-related genes. Additionally, cytokines such as leukemia suppressor factor (LIF) stimulate downstream signaling pathways and promote self-renewal of ESCs. Particularly, LIF binds to its receptor (LIFR/gp130) to trigger the downstream Jak-Stat3 signaling pathway. BMP4 activates the downstream pathway and acts in combination with Jak-Stat3 to promote pluripotency of ESCs in the absence of serum. In addition, activation of the Wnt-FDZ signaling pathway has been observed to facilitate the self-renewal of ESCs. Small molecule modulator proteins of the pathway mentioned above are widely used in in vitro culture of stem cells. Multiple epigenetic regulators are involved in the maintenance of ESCs self-renewal, making the epigenetic status of ESCs a crucial factor in this process. Similarly, non-coding RNAs and cellular energetics have been described to promote the maintenance of the ESC's self-renewal. These factors regulate the self-renewal and differentiation of ESCs by forming signaling networks. This review focused on the role of major transcription factors, signaling pathways, small molecular compounds, epigenetic regulators, non-coding RNAs, and cellular energetics in ESC's self-renewal.
Collapse
Affiliation(s)
- Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Shasha Yin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, China;
| | - Haisen Li
- School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| |
Collapse
|
13
|
Zhang H, Li Y, Ma Y, Lai C, Yu Q, Shi G, Li J. Epigenetic integrity of paternal imprints enhances the developmental potential of androgenetic haploid embryonic stem cells. Protein Cell 2021; 13:102-119. [PMID: 34865203 PMCID: PMC8783938 DOI: 10.1007/s13238-021-00890-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/26/2021] [Indexed: 11/24/2022] Open
Abstract
The use of two inhibitors of Mek1/2 and Gsk3β (2i) promotes the generation of mouse diploid and haploid embryonic stem cells (ESCs) from the inner cell mass of biparental and uniparental blastocysts, respectively. However, a system enabling long-term maintenance of imprints in ESCs has proven challenging. Here, we report that the use of a two-step a2i (alternative two inhibitors of Src and Gsk3β, TSa2i) derivation/culture protocol results in the establishment of androgenetic haploid ESCs (AG-haESCs) with stable DNA methylation at paternal DMRs (differentially DNA methylated regions) up to passage 60 that can efficiently support generating mice upon oocyte injection. We also show coexistence of H3K9me3 marks and ZFP57 bindings with intact DMR methylations. Furthermore, we demonstrate that TSa2i-treated AG-haESCs are a heterogeneous cell population regarding paternal DMR methylation. Strikingly, AG-haESCs with late passages display increased paternal-DMR methylations and improved developmental potential compared to early-passage cells, in part through the enhanced proliferation of H19-DMR hypermethylated cells. Together, we establish AG-haESCs that can long-term maintain paternal imprints.
Collapse
Affiliation(s)
- Hongling Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanyuan Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yongjian Ma
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chongping Lai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qian Yu
- Animal Core Facility, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guangyong Shi
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
14
|
Global Transcriptional Analyses of the Wnt-Induced Development of Neural Stem Cells from Human Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms22147473. [PMID: 34299091 PMCID: PMC8308016 DOI: 10.3390/ijms22147473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
The differentiation of human pluripotent stem cells (hPSCs) to neural stem cells (NSCs) is the key initial event in neurogenesis and is thought to be dependent on the family of Wnt growth factors, their receptors and signaling proteins. The delineation of the transcriptional pathways that mediate Wnt-induced hPSCs to NSCs differentiation is vital for understanding the global genomic mechanisms of the development of NSCs and, potentially, the creation of new protocols in regenerative medicine. To understand the genomic mechanism of Wnt signaling during NSCs development, we treated hPSCs with Wnt activator (CHIR-99021) and leukemia inhibitory factor (LIF) in a chemically defined medium (N2B27) to induce NSCs, referred to as CLNSCs. The CLNSCs were subcultured for more than 40 passages in vitro; were positive for AP staining; expressed neural progenitor markers such as NESTIN, PAX6, SOX2, and SOX1; and were able to differentiate into three neural lineage cells: neurons, astrocytes, and oligodendrocytes in vitro. Our transcriptome analyses revealed that the Wnt and Hedgehog signaling pathways regulate hPSCs cell fate decisions for neural lineages and maintain the self-renewal of CLNSCs. One interesting network could be the deregulation of the Wnt/β-catenin signaling pathway in CLNSCs via the downregulation of c-MYC, which may promote exit from pluripotency and neural differentiation. The Wnt-induced spinal markers HOXA1-4, HOXA7, HOXB1-4, and HOXC4 were increased, however, the brain markers FOXG1 and OTX2, were absent in the CLNSCs, indicating that CLNSCs have partial spinal cord properties. Finally, a CLNSC simple culture condition, when applied to hPSCs, supports the generation of NSCs, and provides a new and efficient cell model with which to untangle the mechanisms during neurogenesis.
Collapse
|
15
|
Wang Y, Na Q, Li X, Tee WW, Wu B, Bao S. Retinoic acid induces NELFA-mediated 2C-like state of mouse embryonic stem cells associates with epigenetic modifications and metabolic processes in chemically defined media. Cell Prolif 2021; 54:e13049. [PMID: 33960560 PMCID: PMC8168409 DOI: 10.1111/cpr.13049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/24/2021] [Accepted: 04/13/2021] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Mouse embryonic stem cells (ESCs) are derived from the inner cell mass of blastocyst-stage embryos and cultured in different culture media with varied pluripotency. Sporadically, a small population of ESCs exhibit 2-cell stage embryonic features in serum containing medium. However, whether ESCs can transit into 2-cell embryo-like (2C-like) cells in the chemically defined media remains largely unknown. MATERIALS AND METHODS We established a robust in vitro induction system, based on retinoic acid (RA) containing chemically defined media, which can efficiently increase the subpopulation of 2C-like cells. Further test the pluripotency and 2C features of ESCs cultured in RA. 2C reporter-positive cells were selected by FACS; the level of protein was detected via immunofluorescence staining and western blot; the level gene expressions were measured by RNA-seq. RESULTS Retinoic acid drives a NELFA (negative elongation factor A)-mediated 2C-like state in mouse ESCs, characterized with 2C-specific transcriptional networks and the ability to contribute trophectoderm (TE) when injected into developing embryos. In addition, RA treatment triggers DNA hypomethylation, active histone modification, suppressed glycolysis metabolism and reduced protein synthesis activity of ESCs. CONCLUSIONS We showed that RA has a broader role in 2C-like cells state, not only is one of the upstream regulators of the 2C-like state in chemically defined media but also illuminates genetic and epigenetic regulations that govern ESCs to 2C-like transition.
Collapse
Affiliation(s)
- Yanqiu Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Qin Na
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Huhhot, China
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Huhhot, China
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|