1
|
Mandolfo O, Parker H, Usman A, Learmonth YI, Holley RJ, MacDonald A, McKay T, Bigger B. Generation of a novel immunodeficient mouse model of Mucopolysaccharidosis type IIIA to test human stem cell-based therapies. Mol Genet Metab 2024; 143:108533. [PMID: 39059269 DOI: 10.1016/j.ymgme.2024.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Mucopolysaccharidosis Type IIIA (MPSIIIA) is a rare inherited lysosomal storage disease caused by mutations in the SGSH gene. This genetic variation results in the deficiency of the N-sulfoglucosamine sulfohydrolase enzyme, preventing the breakdown of heparan sulfate within lysosomes. The progressive accumulation of partially degraded substrate ultimately leads to brain pathology, for which there is currently no approved treatment. An established MPSIIIA mouse model has proved to be a vital asset to test several brain-targeting strategies. Nonetheless, the assessment of human stem cell-based products, an emerging research field, necessitates the use of an immunocompromised xenogeneic disease model. In the present study, we addressed this issue by generating a highly immunodeficient mouse model of MPSIIIA (NOD/SCID/GammaC chain null-MPSIIIA) through five generations of crossing an established MPSIIIA mouse model and a NOD/SCID/GammaC chain null (NSG) mouse. The immune system composition, behavioural phenotype and histopathological hallmarks of the NSG-MPSIIIA model were then evaluated. We demonstrated that NSG-MPSIIIA mice display compromised adaptive immunity, ultimately facilitating the successful engraftment of human iPSC-derived neural progenitor cells in the brain up to three months post-delivery. Furthermore, female NSG-MPSIIIA exhibit spatial working memory deficits and hyperactive behaviour, similar to MPSIIIA mice, which usually manifest around 5 months of age. NSG-MPSIIIA mice also developed primary disease-related neuropathological features in common with the MPSIIIA model, including lysosomal enlargement with storage of excess sulphated heparan sulphate and increased gliosis in several areas of the brain. In the future, the NSG-MPSIIIA mouse model holds the potential to serve as a valuable platform for evaluating human stem-cell based therapies for MPSIIIA patients.
Collapse
Affiliation(s)
- Oriana Mandolfo
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester M13 9PT, UK
| | - Helen Parker
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Asma'u Usman
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester M13 9PT, UK
| | - Yuko Ishikawa Learmonth
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester M13 9PT, UK
| | - Rebecca J Holley
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester M13 9PT, UK
| | - Andrew MacDonald
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Tristan McKay
- Centre for Bioscience, The Manchester Metropolitan University, E206 John Dalton Building, Manchester M1 5GD, UK
| | - Brian Bigger
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester M13 9PT, UK; Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, EH16 4UU, Edinburgh, UK.
| |
Collapse
|
2
|
Cox ST, Patterson W, Duggleby R, Jones OJR, Madrigal JA, Querol S, Salvador FR, Mata MJH, Volt F, Gluckman É, Szydlo R, Danby RD, Hernandez D. Impact of donor NKG2D and MICA gene polymorphism on clinical outcomes of adult and paediatric allogeneic cord blood transplantation for malignant diseases. Eur J Haematol 2024; 113:32-43. [PMID: 38511389 DOI: 10.1111/ejh.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVES NKG2D is an activating receptor expressed by natural killer (NK) and CD8+ T cells and activation intensity varies by NKG2D expression level or nature of its ligand. An NKG2D gene polymorphism determines high (HNK1) or low (LNK1) expression. MICA is the most polymorphic NKG2D ligand and stronger effector cell activation associates with methionine rather than valine at residue 129. We investigated correlation between cord blood (CB) NKG2D and MICA genotypes and haematopoietic stem cell (HSC) transplant outcome. METHODS We retrospectively studied 267 CB HSC recipients (178 adult and 87 paediatric) who underwent transplant for malignant disease between 2007 and 2018, analysing CB graft DNA for NKG2D and MICA polymorphisms using Sanger sequencing. Multivariate analysis was used to correlate these results with transplant outcomes. RESULTS In adult patients, LNK1 homozygous CB significantly improved 60-day neutrophil engraftment (hazard ratio (HR) 0.6; 95% confidence interval (CI) 0.4-0.9; p = .003). In paediatrics, HNK1 homozygous CB improved 60-day engraftment (HR 0.4; 95% CI 0.2-0.7; p = .003), as did MICA-129 methionine+ CB grafts (HR 1.7 95% CI 1.1-2.6; p = .02). CONCLUSION CB NKG2D and MICA genotypes potentially improve CB HSC engraftment. However, results contrast between adult and paediatric recipients and may reflect transplant procedure disparities between cohorts.
Collapse
Affiliation(s)
- Steven T Cox
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- UCL Cancer Institute, Royal Free Campus, London, UK
| | - Warren Patterson
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
| | - Richard Duggleby
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- UCL Cancer Institute, Royal Free Campus, London, UK
| | - Owen J R Jones
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
| | | | | | | | | | - Fernanda Volt
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Éliane Gluckman
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Richard Szydlo
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Robert D Danby
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- UCL Cancer Institute, Royal Free Campus, London, UK
- Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Diana Hernandez
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- UCL Cancer Institute, Royal Free Campus, London, UK
| |
Collapse
|
3
|
Fernandes de Oliveira Costa A, Olops Marani L, Mantello Bianco T, Queiroz Arantes A, Aparecida Lopes I, Antonio Pereira-Martins D, Carvalho Palma L, Santos Scheucher P, Lilian dos Santos Schiavinato J, Sarri Binelli L, Araújo Silva C, Kobayashi SS, Agostinho Machado-Neto J, Magalhães Rego E, Samuel Welner R, Lobo de Figueiredo-Pontes L. Altered distribution and function of NK-cell subsets lead to impaired tumor surveillance in JAK2V617F myeloproliferative neoplasms. Front Immunol 2022; 13:768592. [PMID: 36211444 PMCID: PMC9539129 DOI: 10.3389/fimmu.2022.768592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 08/30/2022] [Indexed: 01/15/2023] Open
Abstract
In cancer, tumor cells and their neoplastic microenvironment can sculpt the immunogenic phenotype of a developing tumor. In this context, natural killer (NK) cells are subtypes of lymphocytes of the innate immune system recognized for their potential to eliminate neoplastic cells, not only through direct cytolytic activity but also by favoring the development of an adaptive antitumor immune response. Even though the protective effect against leukemia due to NK-cell alloreactivity mediated by the absence of the KIR-ligand has already been shown, and some data on the role of NK cells in myeloproliferative neoplasms (MPN) has been explored, their mechanisms of immune escape have not been fully investigated. It is still unclear whether NK cells can affect the biology of BCR-ABL1-negative MPN and which mechanisms are involved in the control of leukemic stem cell expansion. Aiming to investigate the potential contribution of NK cells to the pathogenesis of MPN, we characterized the frequency, receptor expression, maturation profile, and function of NK cells from a conditional Jak2V617F murine transgenic model, which faithfully resembles the main clinical and laboratory characteristics of human polycythemia vera, and MPN patients. Immunophenotypic analysis was performed to characterize NK frequency, their subtypes, and receptor expression in both mutated and wild-type samples. We observed a higher frequency of total NK cells in JAK2V617F mutated MPN and a maturation arrest that resulted in low-numbered mature CD11b+ NK cells and increased immature secretory CD27+ cells in both human and murine mutated samples. In agreement, inhibitory receptors were more expressed in MPN. NK cells from Jak2V617F mice presented a lower potential for proliferation and activation than wild-type NK cells. Colonies generated by murine hematopoietic stem cells (HSC) after mutated or wild-type NK co-culture exposure demonstrated that NK cells from Jak2V617F mice were deficient in regulating differentiation and clonogenic capacity. In conclusion, our findings suggest that NK cells have an immature profile with deficient cytotoxicity that may lead to impaired tumor surveillance in MPN. These data provide a new perspective on the behavior of NK cells in the context of myeloid malignancies and can contribute to the development of new therapeutic strategies, targeting onco-inflammatory pathways that can potentially control transformed HSCs.
Collapse
Affiliation(s)
- Amanda Fernandes de Oliveira Costa
- Division of Hematology, Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Leticia Olops Marani
- Division of Hematology, Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago Mantello Bianco
- Division of Hematology, Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Adriana Queiroz Arantes
- Division of Hematology, Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Izabela Aparecida Lopes
- Division of Hematology, Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Diego Antonio Pereira-Martins
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Leonardo Carvalho Palma
- Division of Hematology, Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Priscila Santos Scheucher
- Division of Hematology, Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Josiane Lilian dos Santos Schiavinato
- Division of Hematology, Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Cleide Araújo Silva
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Susumu S. Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States,Division of Translational Genomics, Exploratory Oncology Research, and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | | | - Eduardo Magalhães Rego
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil,Division of Hematology, University of São Paulo Medical School, São Paulo, Brazil
| | - Robert Samuel Welner
- Division Hematology/Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lorena Lobo de Figueiredo-Pontes
- Division of Hematology, Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil,Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil,*Correspondence: Lorena Lobo de Figueiredo-Pontes,
| |
Collapse
|
4
|
Stem Cell Therapy and Innate Lymphoid Cells. Stem Cells Int 2022; 2022:3530520. [PMID: 35958032 PMCID: PMC9363162 DOI: 10.1155/2022/3530520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Innate lymphoid cells have the capability to communicate with other immune cell types to coordinate the immune system functioning during homeostasis and inflammation. However, these cells behave differently at the functional level, unlike T cells, these cells do not need antigen receptors for activation because they are activated by the interaction of their receptor ligation. In hematopoietic stem cell transplantation (HSCT), T cells and NK cells have been extensively studied but very few studies are available on ILCs. In this review, an attempt has been made to provide current information related to NK and ILCs cell-based stem cell therapies and role of the stem cells in the regulation of ILCs as well. Also, the latest information on the differentiation of NK cells and ILCs from CD34+ hematopoietic stem cells is covered in the article.
Collapse
|
5
|
Gu C, Lin C, Zhu Z, Hu L, Wang F, Wang X, Ruan J, Zhao X, Huang S. The IFN-γ-related long non-coding RNA signature predicts prognosis and indicates immune microenvironment infiltration in uterine corpus endometrial carcinoma. Front Oncol 2022; 12:955979. [PMID: 35957871 PMCID: PMC9360323 DOI: 10.3389/fonc.2022.955979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/30/2022] [Indexed: 12/01/2022] Open
Abstract
Background One of the most common diseases that have a negative impact on women’s health is endometrial carcinoma (EC). Advanced endometrial cancer has a dismal prognosis and lacks solid prognostic indicators. IFN-γ is a key cytokine in the inflammatory response, and it has also been suggested that it has a role in the tumor microenvironment. The significance of IFN-γ-related genes and long non-coding RNAs in endometrial cancer, however, is unknown. Methods The Cancer Genome Atlas (TCGA) database was used to download RNA-seq data from endometrial cancer tissues and normal controls. Genes associated with IFN-γ were retrieved from the gene set enrichment analysis (GSEA) website. Co-expression analysis was performed to find lncRNAs linked to IFN-γ gene. The researchers employed weighted co-expression network analysis (WGCNA) to find lncRNAs that were strongly linked to survival. The prognostic signature was created using univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression. The training cohort, validation cohort, and entire cohort of endometrial cancer patients were then split into high-risk and low-risk categories. To investigate variations across different risk groups, we used survival analysis, enrichment analysis, and immune microenvironment analysis. The platform for analysis is R software (version X64 3.6.1). Results Based on the transcript expression of IFN-γ-related lncRNAs, two distinct subgroups of EC from TCGA cohort were formed, each with different outcomes. Ten IFN-γ-related lncRNAs were used to build a predictive signature using Cox regression analysis and the LASSO regression, including CFAP58, LINC02014, UNQ6494, AC006369.1, NRAV, BMPR1B-DT, AC068134.2, AP002840.2, GS1-594A7.3, and OLMALINC. The high-risk group had a considerably worse outcome (p < 0.05). In the immunological microenvironment, there were also substantial disparities across different risk categories. Conclusion Our findings give a reference for endometrial cancer prognostic type and immunological status assessment, as well as prospective molecular markers for the disease.
Collapse
Affiliation(s)
- Chunyan Gu
- Department of Obstetrics and Gynecology, Nantong Haimen People’s Hospital, Nantong, China
| | - Chen Lin
- Vectors and Parasitosis Control and Prevention Section, Center of Disease Prevention and Control in Pudong New Area of Shanghai, Shanghai, China
| | - Zheng Zhu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Hu
- Department of Medicine, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Fengxu Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xuehai Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Junpu Ruan
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
- *Correspondence: Xinyuan Zhao, ; Sen Huang,
| | - Sen Huang
- Department of Obstetrics and Gynecology, Nantong Haimen People’s Hospital, Nantong, China
- *Correspondence: Xinyuan Zhao, ; Sen Huang,
| |
Collapse
|
6
|
Lobo de Figueiredo-Pontes L, Adamcova MK, Welner RS, Tenen DG, Alberich-Jorda M. Response to NK cell content does not seem to influence engraftment in ex vivo T cell depleted haploidentical stem cell transplantation. Stem Cell Reports 2022; 17:446-447. [PMID: 35263572 PMCID: PMC9039837 DOI: 10.1016/j.stemcr.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Lorena Lobo de Figueiredo-Pontes
- Hematology Division, Department of Medical Images, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14048-900, Brazil
| | - Miroslava K Adamcova
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 142 00, Czech Republic; Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague 150 06, Czech Republic
| | - Robert S Welner
- Department of Medicine, Division Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore.
| | - Meritxell Alberich-Jorda
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 142 00, Czech Republic; Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague 150 06, Czech Republic.
| |
Collapse
|
7
|
Merli P, Eichholz T, Catanoso ML, Lang P, Locatelli F. NK cell content does not seem to influence engraftment in ex vivo T cell depleted haploidentical stem cell transplantation. Stem Cell Reports 2022; 17:443-445. [PMID: 35263571 PMCID: PMC9039855 DOI: 10.1016/j.stemcr.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Pietro Merli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Thomas Eichholz
- Children's University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Maria Luigia Catanoso
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Peter Lang
- Children's University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Sapienza, University of Rome, Rome, Italy
| |
Collapse
|