1
|
Zhang P, Xu Z. The advancements in precision medicine for Leber congenital amaurosis: Breakthroughs from genetic diagnosis to therapy. Surv Ophthalmol 2025:S0039-6257(25)00070-0. [PMID: 40311816 DOI: 10.1016/j.survophthal.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/15/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Leber congenital amaurosis (LCA) is a hereditary retinal disease, typically manifesting as severe vision impairment in infancy. With the advancement of precision medicine, genetic diagnosis and targeted therapies offer new hope for LCA patients, significantly improving both diagnostic accuracy and therapeutic efficacy. We summarize the epidemiological characteristics, clinical manifestations, and molecular genetics underlying LCA. It also highlights recent developments in precision treatment strategies, including gene replacement therapy, CRISPR/Cas9-mediated gene editing, and antisense oligonucleotide therapies. In addition, we discuss the applications of induced pluripotent stem cells and retinal organoids in LCA treatment research. Furthermore, we explore preventive strategies and future treatment directions for LCA, including the development of novel gene therapy vectors, the optimization of combinatorial treatment strategies, and the formulation of personalized treatment approaches. These advancements hold significant potential to offer improved treatment options and enhance the quality of life for LCA patients.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Galindo-Cabello N, Caballano-Infantes E, Benites G, Pastor-Idoate S, Diaz-Corrales FJ, Usategui-Martín R. Retinal Organoids: Innovative Tools for Understanding Retinal Degeneration. Int J Mol Sci 2025; 26:3263. [PMID: 40244125 PMCID: PMC11990004 DOI: 10.3390/ijms26073263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Retinal degenerative diseases (RDDs) comprise diverse genetic and phenotypic conditions that cause progressive retinal dysfunction and cell loss, leading to vision impairment or blindness. Most RDDs lack appropriate animal models for their study, which affects understanding their disease mechanisms and delays the progress of new treatment development. Recent advances in stem cell engineering, omics, and organoid technology are facilitating research into diseases for which there are no previously existing models. The development of retinal organoids produced from human stem cells has impacted the study of retinal development as well as the development of in vitro models of diseases, opening possibilities for applications in regenerative medicine, drug discovery, and precision medicine. In this review, we recapitulate research in the retinal organoid models for RDD, mentioning some of the main pathways underlying retinal neurodegeneration that can be studied in these new models, as well as their limitations and future challenges in this rapidly advancing field.
Collapse
Affiliation(s)
- Nadia Galindo-Cabello
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
| | - Estefanía Caballano-Infantes
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain;
| | - Gregorio Benites
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
| | - Salvador Pastor-Idoate
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
- Department of Ophthalmology, University Clinical Hospital of Valladolid, 47003 Valladolid, Spain
| | - Francisco J. Diaz-Corrales
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain;
| | - Ricardo Usategui-Martín
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
| |
Collapse
|
3
|
Zhao Q, Wei L, Chen Y. From bench to bedside: Developing CRISPR/Cas-based therapy for ocular diseases. Pharmacol Res 2025; 213:107638. [PMID: 39889868 DOI: 10.1016/j.phrs.2025.107638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Vision-threatening disorders, including both hereditary and multifactorial ocular diseases, necessitate innovative therapeutic approaches. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) has emerged as a promising tool for treating ocular diseases through gene editing and expression regulation. This system has contributed to the development of representative disease models, including animal models, organoids, and cell lines, thereby facilitating investigations into the pathogenesis of disease-related genes. Besides, therapeutic applications of CRISPR/Cas have been extensively explored in preclinical in vitro and in vivo studies, targeting various ocular conditions, such as retinitis pigmentosa, Leber congenital amaurosis, Usher syndrome, fundus neovascular diseases, glaucoma, and corneal diseases. Recent advancements have demonstrated the technology's potential to restore cellular homeostasis and alleviate disease phenotypes, thereby prompting a variety of clinical trials. To date, active trials include treatments for primary open angle glaucoma with MYOC mutations, refractory herpetic viral keratitis, CEP290-associated inherited retinal degenerations, neovascular age-related macular degeneration, and retinitis pigmentosa with RHO mutations. However, challenges remain, primarily concerning off-target effects, immunogenicity, ethical considerations, and regulatory particularity. To reach higher safety and efficiency before truly transitioning from bench to bedside, future research should concentrate on improving the specificity and efficacy of Cas proteins, optimizing delivery vectors, and broadening the applicability of therapeutic targets. This review summarizes the application strategies and delivery methods of CRISPR/Cas, discusses recent progress in CRISPR/Cas-based disease models and therapies, and provides an overview of the landscape of clinical trials. Current obstacles and future directions regarding the bench-to-bedside transition are also discussed.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China; Beijing Key Laboratory of Fundus Diseases Intelligent Diagnosis & Drug/Device Development and Translation, Beijing 100730, China
| | - Linxin Wei
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China; Beijing Key Laboratory of Fundus Diseases Intelligent Diagnosis & Drug/Device Development and Translation, Beijing 100730, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China; Beijing Key Laboratory of Fundus Diseases Intelligent Diagnosis & Drug/Device Development and Translation, Beijing 100730, China.
| |
Collapse
|
4
|
Michaelides M, Laich Y, Wong SC, Oluonye N, Zaman S, Kumaran N, Kalitzeos A, Petrushkin H, Georgiou M, Tailor V, Pabst M, Staeubli K, Maimon-Mor RO, Jones PR, Scholte SH, Georgiadis A, van der Spuy J, Naylor S, Forbes A, Dekker TM, Arulmuthu ER, Smith AJ, Ali RR, Bainbridge JWB. Gene therapy in children with AIPL1-associated severe retinal dystrophy: an open-label, first-in-human interventional study. Lancet 2025; 405:648-657. [PMID: 39986747 DOI: 10.1016/s0140-6736(24)02812-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 02/24/2025]
Abstract
BACKGROUND Retinal dystrophy caused by genetic deficiency of AIPL1 causes severe and rapidly progressive impairment of sight from birth. We sought to evaluate whether early intervention by gene supplementation therapy was safe and could improve outcomes in children with this condition. METHODS This non-randomised, single-arm, clinical study conducted in the UK involved four children aged 1·0-2·8 years with severe retinal dystrophy associated with biallelic disease-causing sequence variants in AIPL1. We designed a recombinant adeno-associated viral vector comprising the human AIPL1 coding sequence driven by a human rhodopsin kinase promoter region (rAAV8.hRKp.AIPL1). The product was manufactured under a Specials Licence from the Medicines and Health products Regulatory Authority (UK) and made available to affected children with local ethics approval. We administered the product to one eye of each child by subretinal injection. The children were prescribed oral prednisolone to protect against harm from inflammation. Outcome measures included visual acuity (as assessed with a novel touchscreen test), functional vision (assessed by observing and recording the children's visual behaviour and their ability to perform simple vision-guided tasks), visual evoked potentials (assessed by recording cortical electrophysiological responses to full-screen black-and-white flickering stimuli), and retinal structure (assessed with handheld optical coherence tomography [OCT] and widefield fundus imaging). To identify adverse effects, including inflammation and retinal detachment, we conducted ocular examinations using slit-lamp biomicroscopy and dilated fundoscopy. Safety was further assessed by testing of visual acuity, ophthalmoscopy, handheld OCT and widefield fundus imaging. FINDINGS Patients were selected for treatment between July 12, 2019, and March 16, 2020. Before intervention, the children's binocular visual acuities were limited to perception of light. At a mean of 3·5 years (range 3·0-4·1) after intervention, the visual acuities of the children's treated eyes had improved to a mean of 0·9 logarithm of the minimal angle of the minimum angle of resolution ([logMAR] range 0·8-1·0); visual acuities before intervention were equivalent to 2·7 logMAR. In contrast, the visual acuities of the children's untreated eyes became unmeasurable at the final follow-up. In the two children able to comply with testing, an objective test of visual acuity confirmed improvements in visual function, and measurement of visual evoked potentials showed enhanced activity of the visual cortex, specific to the treated eyes. In three of the children, structural lamination of the outer retina was better preserved in the treated eye than in the untreated eye, and, for all four children, retinal thickness appeared better preserved in the treated eye than in the untreated eye. The treated eye of one child developed cystoid macular oedema. No other safety concerns were identified. INTERPRETATION Our findings indicate that young children with AIPL1-related retinal dystrophy benefited substantially from subretinal administration of rAAV8.hRKp.AIPL1, with improved visual acuity and functional vision and evidence of some protection against progressive retinal degeneration, without serious adverse effects. FUNDING UK National Institute for Health Research and Moorfields Eye Charity.
Collapse
Affiliation(s)
- Michel Michaelides
- NIHR Moorfields Biomedical Research Centre, London, UK; UCL Institute of Ophthalmology, University College London, London, UK.
| | - Yannik Laich
- NIHR Moorfields Biomedical Research Centre, London, UK; UCL Institute of Ophthalmology, University College London, London, UK; Eye Center, Faculty of Medicine, Freiburg University, Freiburg, Germany
| | - Sui Chien Wong
- NIHR Moorfields Biomedical Research Centre, London, UK; Great Ormond Street Hospital for Children, London, UK
| | - Ngozi Oluonye
- NIHR Moorfields Biomedical Research Centre, London, UK; Great Ormond Street Hospital for Children, London, UK
| | - Serena Zaman
- NIHR Moorfields Biomedical Research Centre, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Neruban Kumaran
- UCL Institute of Ophthalmology, University College London, London, UK; Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Angelos Kalitzeos
- NIHR Moorfields Biomedical Research Centre, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Harry Petrushkin
- NIHR Moorfields Biomedical Research Centre, London, UK; Great Ormond Street Hospital for Children, London, UK
| | - Michalis Georgiou
- NIHR Moorfields Biomedical Research Centre, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Vijay Tailor
- NIHR Moorfields Biomedical Research Centre, London, UK; UCL Institute of Ophthalmology, University College London, London, UK; Experimental Psychology, University College London, London, UK
| | - Marc Pabst
- UCL Institute of Ophthalmology, University College London, London, UK; Experimental Psychology, University College London, London, UK
| | - Kim Staeubli
- UCL Institute of Ophthalmology, University College London, London, UK; Experimental Psychology, University College London, London, UK
| | - Roni O Maimon-Mor
- UCL Institute of Ophthalmology, University College London, London, UK; Experimental Psychology, University College London, London, UK
| | - Peter R Jones
- UCL Institute of Ophthalmology, University College London, London, UK; Department of Optometry and Visual Sciences, City St George's, University of London, London, UK
| | - Steven H Scholte
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | | | | | | | | | - Tessa M Dekker
- UCL Institute of Ophthalmology, University College London, London, UK; Experimental Psychology, University College London, London, UK
| | | | - Alexander J Smith
- UCL Institute of Ophthalmology, University College London, London, UK; Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Robin R Ali
- NIHR Moorfields Biomedical Research Centre, London, UK; UCL Institute of Ophthalmology, University College London, London, UK; Guy's and St Thomas' NHS Foundation Trust, London, UK; Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK.
| | - James W B Bainbridge
- NIHR Moorfields Biomedical Research Centre, London, UK; UCL Institute of Ophthalmology, University College London, London, UK.
| |
Collapse
|
5
|
Szabó V, Varsányi B, Barboni M, Takács Á, Knézy K, Molnár MJ, Nagy ZZ, György B, Rivolta C. Insights into eye genetics and recent advances in ocular gene therapy. Mol Cell Probes 2025; 79:102008. [PMID: 39805344 DOI: 10.1016/j.mcp.2025.102008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/04/2025] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
The rapid advancements in the field of genetics have significantly propelled the development of gene therapies, paving the way for innovative treatments of various hereditary disorders. This review focuses on the genetics of ophthalmologic conditions, highlighting the currently approved ophthalmic gene therapy and exploring emerging therapeutic strategies under development. Inherited retinal dystrophies represent a heterogeneous group of genetic disorders that manifest across a broad spectrum from infancy to late middle age. Key clinical features include nyctalopia (night blindness), constriction of the visual field, impairments in color perception, reduced central visual acuity, and rapid eye movements. Recent technological advancements, such as multimodal imaging, psychophysical assessments, and electrophysiological testing, have greatly enhanced our ability to understand disease progression and establish genotype-phenotype correlations. Additionally, the integration of molecular diagnostics into clinical practice is revolutionizing patient stratification and the design of targeted interventions, underscoring the transformative potential of personalized medicine in ophthalmology. The review also covers the challenges and opportunities in developing gene therapies for other ophthalmic conditions, such as age-related macular degeneration and optic neuropathies. We discuss the viral and non-viral vector systems used in ocular gene therapy, highlighting their advantages and limitations. Additionally, we explore the potential of emerging technologies like CRISPR/Cas9 in treating genetic eye diseases. We briefly address the regulatory landscape, concerns, challenges, and future directions of gene therapy in ophthalmology. We emphasize the need for long-term safety and efficacy data as these innovative treatments move from bench to bedside.
Collapse
Affiliation(s)
- Viktória Szabó
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary.
| | - Balázs Varsányi
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary; Ganglion Medical Center, Váradi Str. 10/A, Pécs, 7621, Hungary.
| | - Mirella Barboni
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary; Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland.
| | - Ágnes Takács
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary.
| | - Krisztina Knézy
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary.
| | - Mária Judit Molnár
- Semmelweis University, Institute of Genomic Medicine and Rare Disorders, Gyulai Pál Str. 2, Budapest, 1085, Hungary.
| | - Zoltán Zsolt Nagy
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary.
| | - Bence György
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland; Department of Ophthalmology, University of Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland.
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland.
| |
Collapse
|
6
|
Lee YJ, Jo DH. Retinal Organoids from Induced Pluripotent Stem Cells of Patients with Inherited Retinal Diseases: A Systematic Review. Stem Cell Rev Rep 2025; 21:167-197. [PMID: 39422807 PMCID: PMC11762450 DOI: 10.1007/s12015-024-10802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Currently, most inherited retinal diseases lack curative interventions, and available treatment modalities are constrained to symptomatic approaches. Retinal organoid technology has emerged as a method for treating inherited retinal diseases, with growing academic interest in recent years. The purpose of this review was to systematically organize the current protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal disease and to investigate the application of retinal organoids in inherited retinal disease research. METHODS Data were collected from the PubMed, Scopus, and Web of Science databases using a keyword search. The main search term used was "retinal organoid," accompanied by secondary keywords such as "optic cup," "three-dimensional," and "self-organizing." The final search was conducted on October 2, 2024. RESULTS Of the 2,129 studies retrieved, 130 were included in the qualitative synthesis. The protocols for the generation of retinal organoids in inherited retinal disease research use five major approaches, categorized into 3D and a combination of 2D/3D approaches, implemented with modifications. Disease phenotypes have been successfully reproduced via the generation of retinal organoids from the induced pluripotent stem cells of individuals with inherited retinal diseases, facilitating the progression of research into novel therapeutic developments. Cells have been obtained from retinal organoids for cell therapy, and progress toward their potential integration into clinical practice is underway. Considering their potential applications, retinal organoid technology has shown promise across various domains. CONCLUSION In this systematic review, we organized protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal diseases. Retinal organoid technology has various applications including disease modeling, screening for novel therapies, and cell replacement therapy. Further advancements would make this technology a clinically significant tool for patients with inherited retinal diseases.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Department of Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
7
|
Alsalloum A, Gornostal E, Mingaleva N, Pavlov R, Kuznetsova E, Antonova E, Nadzhafova A, Kolotova D, Kadyshev V, Mityaeva O, Volchkov P. A Comparative Analysis of Models for AAV-Mediated Gene Therapy for Inherited Retinal Diseases. Cells 2024; 13:1706. [PMID: 39451224 PMCID: PMC11506034 DOI: 10.3390/cells13201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent a diverse group of genetic disorders leading to progressive degeneration of the retina due to mutations in over 280 genes. This review focuses on the various methodologies for the preclinical characterization and evaluation of adeno-associated virus (AAV)-mediated gene therapy as a potential treatment option for IRDs, particularly focusing on gene therapies targeting mutations, such as those in the RPE65 and FAM161A genes. AAV vectors, such as AAV2 and AAV5, have been utilized to deliver therapeutic genes, showing promise in preserving vision and enhancing photoreceptor function in animal models. Despite their advantages-including high production efficiency, low pathogenicity, and minimal immunogenicity-AAV-mediated therapies face limitations such as immune responses beyond the retina, vector size constraints, and challenges in large-scale manufacturing. This review systematically compares different experimental models used to investigate AAV-mediated therapies, such as mouse models, human retinal explants (HREs), and induced pluripotent stem cell (iPSC)-derived retinal organoids. Mouse models are advantageous for genetic manipulation and detailed investigations of disease mechanisms; however, anatomical differences between mice and humans may limit the translational applicability of results. HREs offer valuable insights into human retinal pathophysiology but face challenges such as tissue degradation and lack of systemic physiological effects. Retinal organoids, on the other hand, provide a robust platform that closely mimics human retinal development, thereby enabling more comprehensive studies on disease mechanisms and therapeutic strategies, including AAV-based interventions. Specific outcomes targeted in these studies include vision preservation and functional improvements of retinas damaged by genetic mutations. This review highlights the strengths and weaknesses of each experimental model and advocates for their combined use in developing targeted gene therapies for IRDs. As research advances, optimizing AAV vector design and delivery methods will be critical for enhancing therapeutic efficacy and improving clinical outcomes for patients with IRDs.
Collapse
Affiliation(s)
- Almaqdad Alsalloum
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
| | | | - Natalia Mingaleva
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Roman Pavlov
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | | | - Ekaterina Antonova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Aygun Nadzhafova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Daria Kolotova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
8
|
Ma SC, Xie YL, Wang Q, Fu SG, Wu HZ. Application of eye organoids in the study of eye diseases. Exp Eye Res 2024; 247:110068. [PMID: 39233304 DOI: 10.1016/j.exer.2024.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The eyes are one of the most important sensory organs in the human body. Currently, diseases such as limbal stem cell deficiency, cataract, retinitis pigmentosa and dry eye seriously threaten the quality of people's lives, and the treatment of advanced blinding eye disease and dry eye is ineffective and costly. Thus, new treatment modalities are urgently needed to improve patients' symptoms and suffering. In recent years, stem cell-derived three-dimensional structural organoids have been shown to mimic specific structures and functions similar to those of organs in the human body. Currently, 3D culture systems are used to construct organoids for different ocular growth and development models and ocular disease models to explore their physiological and pathological mechanisms. Eye organoids can also be used as a platform for drug screening. This paper reviews the latest research progress in regard to eye organoids (the cornea, lens, retina, lacrimal gland, and conjunctiva).
Collapse
Affiliation(s)
- Shi-Chao Ma
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi-Lin Xie
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Qian Wang
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shan-Gui Fu
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hong-Ze Wu
- Department of Traditional Chinese Medicine, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, 332007, Jiangxi, China.
| |
Collapse
|
9
|
Poudel BH, Fletcher S, Wilton SD, Aung-Htut M. Limb Girdle Muscular Dystrophy Type 2B (LGMD2B): Diagnosis and Therapeutic Possibilities. Int J Mol Sci 2024; 25:5572. [PMID: 38891760 PMCID: PMC11171558 DOI: 10.3390/ijms25115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Dysferlin is a large transmembrane protein involved in critical cellular processes including membrane repair and vesicle fusion. Mutations in the dysferlin gene (DYSF) can result in rare forms of muscular dystrophy; Miyoshi myopathy; limb girdle muscular dystrophy type 2B (LGMD2B); and distal myopathy. These conditions are collectively known as dysferlinopathies and are caused by more than 600 mutations that have been identified across the DYSF gene to date. In this review, we discuss the key molecular and clinical features of LGMD2B, the causative gene DYSF, and the associated dysferlin protein structure. We also provide an update on current approaches to LGMD2B diagnosis and advances in drug development, including splice switching antisense oligonucleotides. We give a brief update on clinical trials involving adeno-associated viral gene therapy and the current progress on CRISPR/Cas9 mediated therapy for LGMD2B, and then conclude by discussing the prospects of antisense oligomer-based intervention to treat selected mutations causing dysferlinopathies.
Collapse
Affiliation(s)
- Bal Hari Poudel
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia
| | - May Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
10
|
Kurzawa-Akanbi M, Tzoumas N, Corral-Serrano JC, Guarascio R, Steel DH, Cheetham ME, Armstrong L, Lako M. Pluripotent stem cell-derived models of retinal disease: Elucidating pathogenesis, evaluating novel treatments, and estimating toxicity. Prog Retin Eye Res 2024; 100:101248. [PMID: 38369182 DOI: 10.1016/j.preteyeres.2024.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Blindness poses a growing global challenge, with approximately 26% of cases attributed to degenerative retinal diseases. While gene therapy, optogenetic tools, photosensitive switches, and retinal prostheses offer hope for vision restoration, these high-cost therapies will benefit few patients. Understanding retinal diseases is therefore key to advance effective treatments, requiring in vitro models replicating pathology and allowing quantitative assessments for drug discovery. Pluripotent stem cells (PSCs) provide a unique solution given their limitless supply and ability to differentiate into light-responsive retinal tissues encompassing all cell types. This review focuses on the history and current state of photoreceptor and retinal pigment epithelium (RPE) cell generation from PSCs. We explore the applications of this technology in disease modelling, experimental therapy testing, biomarker identification, and toxicity studies. We consider challenges in scalability, standardisation, and reproducibility, and stress the importance of incorporating vasculature and immune cells into retinal organoids. We advocate for high-throughput automation in data acquisition and analyses and underscore the value of advanced micro-physiological systems that fully capture the interactions between the neural retina, RPE, and choriocapillaris.
Collapse
|
11
|
Mansouri M, Fussenegger M. Small-Molecule Regulators for Gene Switches to Program Mammalian Cell Behaviour. Chembiochem 2024; 25:e202300717. [PMID: 38081780 DOI: 10.1002/cbic.202300717] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Synthetic or natural small molecules have been extensively employed as trigger signals or inducers to regulate engineered gene circuits introduced into living cells in order to obtain desired outputs in a controlled and predictable manner. Here, we provide an overview of small molecules used to drive synthetic-biology-based gene circuits in mammalian cells, together with examples of applications at different levels of control, including regulation of DNA manipulation, RNA synthesis and editing, and protein synthesis, maturation, and trafficking. We also discuss the therapeutic potential of these small-molecule-responsive gene circuits, focusing on the advantages and disadvantages of using small molecules as triggers, the mechanisms involved, and the requirements for selecting suitable molecules, including efficiency, specificity, orthogonality, and safety. Finally, we explore potential future directions for translation of these devices to clinical medicine.
Collapse
Affiliation(s)
- Maysam Mansouri
- ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, CH-4056, Basel, Switzerland
| | - Martin Fussenegger
- ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, CH-4056, Basel, Switzerland
- University of Basel, Faculty of Science, Klingelbergstrasse 48, CH-4056, Basel, Switzerland
| |
Collapse
|
12
|
Sai H, Ollington B, Rezek FO, Chai N, Lane A, Georgiadis T, Bainbridge J, Michaelides M, Sacristan-Reviriego A, Perdigão PR, Leung A, van der Spuy J. Effective AAV-mediated gene replacement therapy in retinal organoids modeling AIPL1-associated LCA4. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102148. [PMID: 38439910 PMCID: PMC10910061 DOI: 10.1016/j.omtn.2024.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
Biallelic variations in the aryl hydrocarbon receptor interacting protein-like 1 (AIPL1) gene cause Leber congenital amaurosis subtype 4 (LCA4), an autosomal recessive early-onset severe retinal dystrophy that leads to the rapid degeneration of retinal photoreceptors and the severe impairment of sight within the first few years of life. Currently, there is no treatment or cure for AIPL1-associated LCA4. In this study, we investigated the potential of adeno-associated virus-mediated AIPL1 gene replacement therapy in two previously validated human retinal organoid (RO) models of LCA4. We report here that photoreceptor-specific AIPL1 gene replacement therapy, currently being tested in a first-in-human application, effectively rescued molecular features of AIPL1-associated LCA4 in these models. Notably, the loss of retinal phosphodiesterase 6 was rescued and elevated cyclic guanosine monophosphate (cGMP) levels were reduced following treatment. Transcriptomic analysis of untreated and AAV-transduced ROs revealed transcriptomic changes in response to elevated cGMP levels and viral infection, respectively. Overall, this study supports AIPL1 gene therapy as a promising therapeutic intervention for LCA4.
Collapse
Affiliation(s)
- Hali Sai
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Bethany Ollington
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Farah O. Rezek
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Niuzheng Chai
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | | | | | - James Bainbridge
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- NIHR Moorfields Biomedical Research Centre, London EC1V 2PD, UK
| | - Michel Michaelides
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- NIHR Moorfields Biomedical Research Centre, London EC1V 2PD, UK
| | - Almudena Sacristan-Reviriego
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Institute of Clinical Trials and Methodology, University College London, London WC1V 6LJ, UK
| | - Pedro R.L. Perdigão
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Amy Leung
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Jacqueline van der Spuy
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| |
Collapse
|
13
|
Liang Y, Sun X, Duan C, Tang S, Chen J. Application of patient-derived induced pluripotent stem cells and organoids in inherited retinal diseases. Stem Cell Res Ther 2023; 14:340. [PMID: 38012786 PMCID: PMC10683306 DOI: 10.1186/s13287-023-03564-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Inherited retinal diseases (IRDs) can induce severe sight-threatening retinal degeneration and impose a considerable economic burden on patients and society, making efforts to cure blindness imperative. Transgenic animals mimicking human genetic diseases have long been used as a primary research tool to decipher the underlying pathogenesis, but there are still some obvious limitations. As an alternative strategy, patient-derived induced pluripotent stem cells (iPSCs), particularly three-dimensional (3D) organoid technology, are considered a promising platform for modeling different forms of IRDs, including retinitis pigmentosa, Leber congenital amaurosis, X-linked recessive retinoschisis, Batten disease, achromatopsia, and best vitelliform macular dystrophy. Here, this paper focuses on the status of patient-derived iPSCs and organoids in IRDs in recent years concerning disease modeling and therapeutic exploration, along with potential challenges for translating laboratory research to clinical application. Finally, the importance of human iPSCs and organoids in combination with emerging technologies such as multi-omics integration analysis, 3D bioprinting, or microfluidic chip platform are highlighted. Patient-derived retinal organoids may be a preferred choice for more accurately uncovering the mechanisms of human retinal diseases and will contribute to clinical practice.
Collapse
Affiliation(s)
- Yuqin Liang
- Aier Eye Institute, Changsha, 410015, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xihao Sun
- Aier Eye Institute, Changsha, 410015, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chunwen Duan
- Aier Eye Institute, Changsha, 410015, China
- Changsha Aier Eye Hospital, Changsha, 410015, China
| | - Shibo Tang
- Aier Eye Institute, Changsha, 410015, China.
- Changsha Aier Eye Hospital, Changsha, 410015, China.
| | - Jiansu Chen
- Aier Eye Institute, Changsha, 410015, China.
- Changsha Aier Eye Hospital, Changsha, 410015, China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
14
|
Sanjurjo-Soriano C, Jimenez-Medina C, Erkilic N, Cappellino L, Lefevre A, Nagel-Wolfrum K, Wolfrum U, Van Wijk E, Roux AF, Meunier I, Kalatzis V. USH2A variants causing retinitis pigmentosa or Usher syndrome provoke differential retinal phenotypes in disease-specific organoids. HGG ADVANCES 2023; 4:100229. [PMID: 37654703 PMCID: PMC10465966 DOI: 10.1016/j.xhgg.2023.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
There is an emblematic clinical and genetic heterogeneity associated with inherited retinal diseases (IRDs). The most common form is retinitis pigmentosa (RP), a rod-cone dystrophy caused by pathogenic variants in over 80 different genes. Further complexifying diagnosis, different variants in individual RP genes can also alter the clinical phenotype. USH2A is the most prevalent gene for autosomal-recessive RP and one of the most challenging because of its large size and, hence, large number of variants. Moreover, USH2A variants give rise to non-syndromic and syndromic RP, known as Usher syndrome (USH) type 2, which is associated with vision and hearing loss. The lack of a clear genotype-phenotype correlation or prognostic models renders diagnosis highly challenging. We report here a long-awaited differential non-syndromic RP and USH phenotype in three human disease-specific models: fibroblasts, induced pluripotent stem cells (iPSCs), and mature iPSC-derived retinal organoids. Moreover, we identified distinct retinal phenotypes in organoids from multiple RP and USH individuals, which were validated by isogenic-corrected controls. Non-syndromic RP organoids showed compromised photoreceptor differentiation, whereas USH organoids showed a striking and unexpected cone phenotype. Furthermore, complementary clinical investigations identified macular atrophy in a high proportion of USH compared with RP individuals, further validating our observations that USH2A variants differentially affect cones. Overall, identification of distinct non-syndromic RP and USH phenotypes in multiple models provides valuable and robust readouts for testing the pathogenicity of USH2A variants as well as the efficacy of therapeutic approaches in complementary cell types.
Collapse
Affiliation(s)
- Carla Sanjurjo-Soriano
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Carla Jimenez-Medina
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Nejla Erkilic
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Luisina Cappellino
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Arnaud Lefevre
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, Montpellier, France
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Erwin Van Wijk
- Department of Otorhinolaryngology, Hearing, & Genes, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| | - Anne-Françoise Roux
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
- Molecular Genetics Laboratory, University of Montpellier, CHU, Montpellier, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, Montpellier, France
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
15
|
Li S, Li J, Shi W, Nie Z, Zhang S, Ma F, Hu J, Chen J, Li P, Xie X. Pharmaceuticals Promoting Premature Termination Codon Readthrough: Progress in Development. Biomolecules 2023; 13:988. [PMID: 37371567 DOI: 10.3390/biom13060988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Around 11% of all known gene lesions causing human genetic diseases are nonsense mutations that introduce a premature stop codon (PTC) into the protein-coding gene sequence. Drug-induced PTC readthrough is a promising therapeutic strategy for treating hereditary diseases caused by nonsense mutations. To date, it has been found that more than 50 small-molecular compounds can promote PTC readthrough, known as translational readthrough-inducing drugs (TRIDs), and can be divided into two major categories: aminoglycosides and non-aminoglycosides. This review summarizes the pharmacodynamics and clinical application potential of the main TRIDs discovered so far, especially some newly discovered TRIDs in the past decade. The discovery of these TRIDs brings hope for treating nonsense mutations in various genetic diseases. Further research is still needed to deeply understand the mechanism of eukaryotic cell termination and drug-induced PTC readthrough so that patients can achieve the greatest benefit from the various TRID treatments.
Collapse
Affiliation(s)
- Shan Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Juan Li
- Central Laboratory, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Genetic Study of Hematopathy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ziyan Nie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jun Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianjun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peiqiang Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
Wagner RN, Wießner M, Friedrich A, Zandanell J, Breitenbach-Koller H, Bauer JW. Emerging Personalized Opportunities for Enhancing Translational Readthrough in Rare Genetic Diseases and Beyond. Int J Mol Sci 2023; 24:6101. [PMID: 37047074 PMCID: PMC10093890 DOI: 10.3390/ijms24076101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Nonsense mutations trigger premature translation termination and often give rise to prevalent and rare genetic diseases. Consequently, the pharmacological suppression of an unscheduled stop codon represents an attractive treatment option and is of high clinical relevance. At the molecular level, the ability of the ribosome to continue translation past a stop codon is designated stop codon readthrough (SCR). SCR of disease-causing premature termination codons (PTCs) is minimal but small molecule interventions, such as treatment with aminoglycoside antibiotics, can enhance its frequency. In this review, we summarize the current understanding of translation termination (both at PTCs and at cognate stop codons) and highlight recently discovered pathways that influence its fidelity. We describe the mechanisms involved in the recognition and readthrough of PTCs and report on SCR-inducing compounds currently explored in preclinical research and clinical trials. We conclude by reviewing the ongoing attempts of personalized nonsense suppression therapy in different disease contexts, including the genetic skin condition epidermolysis bullosa.
Collapse
Affiliation(s)
- Roland N. Wagner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Michael Wießner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Andreas Friedrich
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Johanna Zandanell
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Johann W. Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
17
|
Perdigão PRL, Ollington B, Sai H, Leung A, Sacristan-Reviriego A, van der Spuy J. Retinal Organoids from an AIPL1 CRISPR/Cas9 Knockout Cell Line Successfully Recapitulate the Molecular Features of LCA4 Disease. Int J Mol Sci 2023; 24:ijms24065912. [PMID: 36982987 PMCID: PMC10057647 DOI: 10.3390/ijms24065912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is expressed in photoreceptors where it facilitates the assembly of phosphodiesterase 6 (PDE6) which hydrolyses cGMP within the phototransduction cascade. Genetic variations in AIPL1 cause type 4 Leber congenital amaurosis (LCA4), which presents as rapid loss of vision in early childhood. Limited in vitro LCA4 models are available, and these rely on patient-derived cells harbouring patient-specific AIPL1 mutations. While valuable, the use and scalability of individual patient-derived LCA4 models may be limited by ethical considerations, access to patient samples and prohibitive costs. To model the functional consequences of patient-independent AIPL1 mutations, CRISPR/Cas9 was implemented to produce an isogenic induced pluripotent stem cell line harbouring a frameshift mutation in the first exon of AIPL1. Retinal organoids were generated using these cells, which retained AIPL1 gene transcription, but AIPL1 protein was undetectable. AIPL1 knockout resulted in a decrease in rod photoreceptor-specific PDE6α and β, and increased cGMP levels, suggesting downstream dysregulation of the phototransduction cascade. The retinal model described here provides a novel platform to assess functional consequences of AIPL1 silencing and measure the rescue of molecular features by potential therapeutic approaches targeting mutation-independent pathogenesis.
Collapse
Affiliation(s)
- Pedro R L Perdigão
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Bethany Ollington
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Hali Sai
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Amy Leung
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | | | | |
Collapse
|
18
|
Cheng L, Kuehn MH. Human Retinal Organoids in Therapeutic Discovery: A Review of Applications. Handb Exp Pharmacol 2023; 281:157-187. [PMID: 37608005 PMCID: PMC11631198 DOI: 10.1007/164_2023_691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Human embryonic stem cells (hESCs)- and induced pluripotent stem cells (hiPSCs)-derived retinal organoids (ROs) are three-dimensional laminar structures that recapitulate the developmental trajectory of the human retina. The ROs provide a fascinating tool for basic science research, eye disease modeling, treatment development, and biobanking for tissue/cell replacement. Here we review the previous studies that paved the way for RO technology, the two most widely accepted, standardized protocols to generate ROs, and the utilization of ROs in medical discovery. This review is conducted from the perspective of basic science research, transplantation for regenerative medicine, disease modeling, and therapeutic development for drug screening and gene therapy. ROs have opened avenues for new technologies such as assembloids, coculture with other organoids, vasculature or immune cells, microfluidic devices (organ-on-chip), extracellular vesicles for drug delivery, biomaterial engineering, advanced imaging techniques, and artificial intelligence (AI). Nevertheless, some shortcomings of ROs currently limit their translation for medical applications and pose a challenge for future research. Despite these limitations, ROs are a powerful tool for functional studies and therapeutic strategies for retinal diseases.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, IA, USA.
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, IA, USA
- Institute for Vision Research, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
19
|
Benati D, Leung A, Perdigao P, Toulis V, van der Spuy J, Recchia A. Induced Pluripotent Stem Cells and Genome-Editing Tools in Determining Gene Function and Therapy for Inherited Retinal Disorders. Int J Mol Sci 2022; 23:ijms232315276. [PMID: 36499601 PMCID: PMC9735568 DOI: 10.3390/ijms232315276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal disorders (IRDs) affect millions of people worldwide and are a major cause of irreversible blindness. Therapies based on drugs, gene augmentation or transplantation approaches have been widely investigated and proposed. Among gene therapies for retinal degenerative diseases, the fast-evolving genome-editing CRISPR/Cas technology has emerged as a new potential treatment. The CRISPR/Cas system has been developed as a powerful genome-editing tool in ophthalmic studies and has been applied not only to gain proof of principle for gene therapies in vivo, but has also been extensively used in basic research to model diseases-in-a-dish. Indeed, the CRISPR/Cas technology has been exploited to genetically modify human induced pluripotent stem cells (iPSCs) to model retinal disorders in vitro, to test in vitro drugs and therapies and to provide a cell source for autologous transplantation. In this review, we will focus on the technological advances in iPSC-based cellular reprogramming and gene editing technologies to create human in vitro models that accurately recapitulate IRD mechanisms towards the development of treatments for retinal degenerative diseases.
Collapse
Affiliation(s)
- Daniela Benati
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Amy Leung
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Pedro Perdigao
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | - Alessandra Recchia
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: (J.v.d.S.); (A.R.)
| |
Collapse
|