1
|
Campitelli LMM, Lopes KP, de Lima IL, Ferreira FB, Isidoro ND, Ferreira GM, Ponce MCF, Ferreira MCDO, Mendes LS, Marcelino PHR, Neves MM, Klein SG, Fonseca BB, Polveiro RC, da Silva MV. Methodological and Ethical Considerations in the Use of Chordate Embryos in Biomedical Research. Int J Mol Sci 2025; 26:2624. [PMID: 40141265 PMCID: PMC11941781 DOI: 10.3390/ijms26062624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Animal embryos are vital tools in scientific research, providing insights into biological processes and disease mechanisms. This paper explores their historical and contemporary significance, highlighting the shift towards the refinement of in vitro systems as alternatives to animal experimentation. We have conducted a data review of the relevant literature on the use of embryos in research and synthesized the data to highlight the importance of this model for scientific progress and the ethical considerations and regulations surrounding embryo research, emphasizing the importance of minimizing animal suffering while promoting scientific progress through the principles of replacement, reduction, and refinement. Embryos from a wide range of species, including mammals, fish, birds, amphibians, and reptiles, play a crucial experimental role in enabling us to understand factors such as substance toxicity, embryonic development, metabolic pathways, physiological processes, etc., that contribute to the advancement of the biological sciences. To apply this model effectively, it is essential to match the research objectives with the most appropriate methodology, ensuring that the chosen approach is appropriate for the scope of the study.
Collapse
Affiliation(s)
- Laura Maria Mendes Campitelli
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Karina Pereira Lopes
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Isabela Lemos de Lima
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Flávia Batista Ferreira
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Nayara Delfim Isidoro
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38410-337, MG, Brazil
| | - Giovana Magalhães Ferreira
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Maria Clara Fioravanti Ponce
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | | | - Ludmilla Silva Mendes
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Pedro Henrique Ribeiro Marcelino
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Matheus Morais Neves
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Sandra Gabriela Klein
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | | | - Richard Costa Polveiro
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Murilo Vieira da Silva
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
- Rodent Animal Facilities Complex, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
| |
Collapse
|
2
|
Kaity B, Lobo D. Emergent Tissue Shapes from the Regulatory Feedback between Morphogens and Cell Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.16.638504. [PMID: 40027769 PMCID: PMC11870555 DOI: 10.1101/2025.02.16.638504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Patterning and morphogenesis in multicellular organisms require precise dynamic coordination between cellular behaviors and mechano-chemical signals. However, the mechanisms underlying the pathways that coordinate and integrate these signals into emergent cellular behaviors and tissue shapes remain poorly understood. Here, we present a cell-centered agent-based mathematical approach to shed light on the feedback mechanisms underlying tissue growth and pattern formation. The model includes cell size dynamics governed by both intercellular diffusible morphogen concentrations and mechanical stress between cells to control their spatial organization, and does not require the use of any superimposed lattice, increasing its applicability and performance. The results show how the precise integration of the feedback loop between cellular behaviors and mechano-chemical signaling is essential for the regulation of shape and spatial patterns across the tissue scale. Furthermore, the regulation of cellular dynamics by patterning processes, such as Turing activator-inhibitor systems, can drive the formation of emergent stable tissue shapes, which, in turn, specify the domain for morphogen patterning-closing the self-regulated loop between tissue shape and morphogenetic signals. Overall, this study highlights the importance of the feedback loop between morphogen patterning and cellular behaviors in regulating tissue growth dynamics and stable shape formation. Moreover, this study establishes a framework for further experiments to understand the regulatory dynamics of whole-body development and regeneration using high spatiotemporal resolution models.
Collapse
Affiliation(s)
- Bivash Kaity
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Daniel Lobo
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
- Center for Stem Cell Biology & Regenerative Medicine and Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Amstislavsky S, Okotrub S, Rozhkova I, Rakhmanova T, Igonina T, Brusentsev E, Kozeneva V, Lebedeva D, Omelchenko A, Okotrub K. Program freezing of diapausing embryos in the mouse. Theriogenology 2024; 217:1-10. [PMID: 38219408 DOI: 10.1016/j.theriogenology.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Embryonal diapause is a characteristic feature of about 130 mammalian species. However, very few studies have addressed cryopreservation of diapausing embryos. This work is aimed to apply program freezing to blastocysts obtained from CD1 mice, which were at diapause state after ovariectomy and the subsequent hormonal therapy. Blastocysts collected from non-operated mice of the same strain served as controls. Some diapausing as well as non-diapausing frozen-thawed blastocysts demonstrated blastocoel re-expansion after 24 h of in vitro culture (IVC) indicating their viability after cryopreservation. Raman spectroscopy assessment of phenylalanine accumulation revealed that the fraction of new synthesized proteins was lower for non-frozen as well as for frozen-thawed diapausing blastocysts compared to non-diapausing ones. Although protein metabolism was reduced in diapausing embryos, most of the protein synthesis remained active. Cell number increased after 24 h of IVC in non-frozen as well as in the frozen-thawed blastocysts of the control but not of the diapause group. However, cell numbers were increased in frozen-thawed diapausing blastocysts after 47 h of IVC in a medium supplemented with putrescine. This indicates viability of frozen-thawed diapausing embryos after cryopreservation. Besides, protein metabolism was not affected by cryopreservation in diapausing and non-diapausing murine embryos indicating their viability. Our results demonstrated the possibility of successful cryopreservation of diapausing murine embryos.
Collapse
Affiliation(s)
- Sergei Amstislavsky
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia; Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Svetlana Okotrub
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Irina Rozhkova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Tamara Rakhmanova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Tatyana Igonina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Eugeny Brusentsev
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Varvara Kozeneva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Daria Lebedeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Anastasia Omelchenko
- Novosibirsk State University, Novosibirsk, 630090, Russia; Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Konstantin Okotrub
- Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
4
|
Melrose J. Hippo cell signaling and HS-proteoglycans regulate tissue form and function, age-dependent maturation, extracellular matrix remodeling, and repair. Am J Physiol Cell Physiol 2024; 326:C810-C828. [PMID: 38223931 DOI: 10.1152/ajpcell.00683.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This review examined how Hippo cell signaling and heparan sulfate (HS)-proteoglycans (HSPGs) regulate tissue form and function. Despite being a nonweight-bearing tissue, the brain is regulated by Hippo mechanoresponsive cell signaling pathways during embryonic development. HS-proteoglycans interact with growth factors, morphogens, and extracellular matrix components to regulate development and pathology. Pikachurin and Eyes shut (Eys) interact with dystroglycan to stabilize the photoreceptor axoneme primary cilium and ribbon synapse facilitating phototransduction and neurotransduction with bipolar retinal neuronal networks in ocular vision, the primary human sense. Another HSPG, Neurexin interacts with structural and adaptor proteins to stabilize synapses and ensure specificity of neural interactions, and aids in synaptic potentiation and plasticity in neurotransduction. HSPGs also stabilize the blood-brain barrier and motor neuron basal structures in the neuromuscular junction. Agrin and perlecan localize acetylcholinesterase and its receptors in the neuromuscular junction essential for neuromuscular control. The primary cilium is a mechanosensory hub on neurons, utilized by YES associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) Hippo, Hh, Wnt, transforming growth factor (TGF)-β/bone matrix protein (BMP) receptor tyrosine kinase cell signaling. Members of the glypican HSPG proteoglycan family interact with Smoothened and Patched G-protein coupled receptors on the cilium to regulate Hh and Wnt signaling during neuronal development. Control of glycosyl sulfotransferases and endogenous protease expression by Hippo TAZ YAP represents a mechanism whereby the fine structure of HS-proteoglycans can be potentially modulated spatiotemporally to regulate tissue morphogenesis in a similar manner to how Hippo signaling controls sialyltransferase expression and mediation of cell-cell recognition, dysfunctional sialic acid expression is a feature of many tumors.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Sydney Medical School-Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|