1
|
Lin XL, Zhou YM, Meng K, Yang JY, Zhang H, Lin JH, Wu HY, Wang XY, Zhao H, Feng SS, Park KS, Cai DQ, Zheng L, Qi XF. CRISPR/Cas-mediated mRNA knockdown in the embryos of Xenopus tropicalis. Cell Biosci 2025; 15:52. [PMID: 40270035 PMCID: PMC12020200 DOI: 10.1186/s13578-025-01397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
The Xenopus tropicalis (Western clawed frog) is an important amphibian model for genetics, developmental and regenerative biology, due to its diploid genetic background and short generation time. CRISPR-Cas13 and CRISPR interference (CRISPRi) systems have recently been employed to suppress mRNA expression in many organisms such as yeast, plants, and mammalian cells. However, no systematic study of these two systems has been carried out in Xenopus tropicalis. Here, we show that CRISPRi rather than CRISPR-Cas13 is an effective and suitable approach to suppress specific mRNA transcription in Xenopus tropicalis embryos. We demonstrated that CRISPRi composed of dCas9 and KRAB-MeCP2 (dCas9-KM) can efficiently target exogenous and endogenous transcripts in Xenopus tropicalis embryos. Moreover, our data suggest that the new KRAB domain from ZIM3 protein (ZIM3-KRAB, ZIM3K) alone has a comparable transcript targeting capacity in Xenopus tropicalis embryos to the traditional fusion repressor KRAB-MeCP2 in which the KRAB domain from KOX1 protein. In conclusion, our results demonstrate that CRISPRi rather than CRISPR-Cas13 is an efficient knockdown platform to explore specific gene function in Xenopus tropicalis embryos.
Collapse
Affiliation(s)
- Xiao-Lin Lin
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Yi-Min Zhou
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Ke Meng
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Jia-Yi Yang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Han Zhang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Jin-Hua Lin
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Hai-Yan Wu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Xiao-Yu Wang
- Division of Histology & Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shan-Shan Feng
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Kyu-Sang Park
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, 220-701, Korea
| | - Dong-Qing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Xu-Feng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Franks SN, Heon-Roberts R, Ryan BJ. CRISPRi: a way to integrate iPSC-derived neuronal models. Biochem Soc Trans 2024; 52:539-551. [PMID: 38526223 PMCID: PMC11088925 DOI: 10.1042/bst20230190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
The genetic landscape of neurodegenerative diseases encompasses genes affecting multiple cellular pathways which exert effects in an array of neuronal and glial cell-types. Deconvolution of the roles of genes implicated in disease and the effects of disease-associated variants remains a vital step in the understanding of neurodegeneration and the development of therapeutics. Disease modelling using patient induced pluripotent stem cells (iPSCs) has enabled the generation of key cell-types associated with disease whilst maintaining the genomic variants that predispose to neurodegeneration. The use of CRISPR interference (CRISPRi), alongside other CRISPR-perturbations, allows the modelling of the effects of these disease-associated variants or identifying genes which modify disease phenotypes. This review summarises the current applications of CRISPRi in iPSC-derived neuronal models, such as fluorescence-activated cell sorting (FACS)-based screens, and discusses the future opportunities for disease modelling, identification of disease risk modifiers and target/drug discovery in neurodegeneration.
Collapse
Affiliation(s)
- Sarah N.J. Franks
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Rachel Heon-Roberts
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Brent J. Ryan
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
3
|
Abstract
Assigning functions to genes and learning how to control their expression are part of the foundation of cell biology and therapeutic development. An efficient and unbiased method to accomplish this is genetic screening, which historically required laborious clone generation and phenotyping and is still limited by scale today. The rapid technological progress on modulating gene function with CRISPR-Cas and measuring it in individual cells has now relaxed the major experimental constraints and enabled pooled screening with complex readouts from single cells. Here, we review the principles and practical considerations for pooled single-cell CRISPR screening. We discuss perturbation strategies, experimental model systems, matching the perturbation to the individual cells, reading out cell phenotypes, and data analysis. Our focus is on single-cell RNA sequencing and cell sorting-based readouts, including image-enabled cell sorting. We expect this transformative approach to fuel biomedical research for the next several decades.
Collapse
Affiliation(s)
- Daniel Schraivogel
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany;
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany;
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA;
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, California, USA
| | | |
Collapse
|
4
|
Balmas E, Sozza F, Bottini S, Ratto ML, Savorè G, Becca S, Snijders KE, Bertero A. Manipulating and studying gene function in human pluripotent stem cell models. FEBS Lett 2023; 597:2250-2287. [PMID: 37519013 DOI: 10.1002/1873-3468.14709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Human pluripotent stem cells (hPSCs) are uniquely suited to study human development and disease and promise to revolutionize regenerative medicine. These applications rely on robust methods to manipulate gene function in hPSC models. This comprehensive review aims to both empower scientists approaching the field and update experienced stem cell biologists. We begin by highlighting challenges with manipulating gene expression in hPSCs and their differentiated derivatives, and relevant solutions (transfection, transduction, transposition, and genomic safe harbor editing). We then outline how to perform robust constitutive or inducible loss-, gain-, and change-of-function experiments in hPSCs models, both using historical methods (RNA interference, transgenesis, and homologous recombination) and modern programmable nucleases (particularly CRISPR/Cas9 and its derivatives, i.e., CRISPR interference, activation, base editing, and prime editing). We further describe extension of these approaches for arrayed or pooled functional studies, including emerging single-cell genomic methods, and the related design and analytical bioinformatic tools. Finally, we suggest some directions for future advancements in all of these areas. Mastering the combination of these transformative technologies will empower unprecedented advances in human biology and medicine.
Collapse
Affiliation(s)
- Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Federica Sozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Maria Luisa Ratto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Giulia Savorè
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Silvia Becca
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Kirsten Esmee Snijders
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| |
Collapse
|