1
|
Saks DG, Sachdev PS. Monogenic causes of cerebral small vessel disease- models for vascular cognitive impairment and dementia? Curr Opin Psychiatry 2025; 38:112-118. [PMID: 39840612 PMCID: PMC11789596 DOI: 10.1097/yco.0000000000000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
PURPOSE OF REVIEW Recent advancements in molecular biomarkers and therapeutic options for Alzheimer's disease have brought into focus the need for greater progress in the second most common cause of dementia, vascular cognitive impairment and dementia (VCID). We examine how the study of monogenic causes of VCID has contributed to the understanding of its pathophysiology and potential biomarker and treatment research. RECENT FINDINGS It is widely accepted that conditions which disrupt the cerebral small vessels contribute to vascular pathologies including stroke and cerebral microbleeds, ultimately leading to vascular cognitive impairment and dementia. Among these conditions are a range of monogenic small vessel diseases (SVDs) such as CADASIL, CARASIL, Fabry disease and COL4A-related disorders. SUMMARY This review indicates the importance of furthering research into monogenic SVDs in order to gain insight into the pathomechanisms of VCID more broadly. Monogenic conditions are easier to model than sporadic VCID and can serve as a guide for identifying biomarkers for diagnosis, monitoring and intervention outcomes.
Collapse
Affiliation(s)
- Danit G. Saks
- Centre for Healthy Brain Ageing, University of New South Wales
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, University of New South Wales
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
2
|
Liu C, Chen X, Yang S, Wang X, Sun P, Wang J, Zhu G. Insight into cerebral microvessel endothelial regulation of cognitive impairment: A systematic review of the causes and consequences. Exp Neurol 2025; 385:115116. [PMID: 39675515 DOI: 10.1016/j.expneurol.2024.115116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Research on cognitive impairment (CI) has increasingly focused on the central nervous system, identifying numerous neuronal targets and circuits of relevance for CI pathogenesis and treatment. Brain microvascular endothelial cells (BMECs) form a barrier between the peripheral and central nervous systems, constituting the primary component of the blood-brain barrier (BBB) and playing a vital role in maintaining neural homeostasis. Stemming from the recognition of the close link between vascular dysfunction and CI, in recent years intense research has been devoted to characterize the pathological changes and molecular mechanisms underlying BMEC dysfunction both during normal aging and in disorders of cognition such as Alzheimer's disease and vascular dementia. In this review, keywords such as "dementia", "cognitive impairment", and "endothelium" were used to search PubMed and Web of Science. Based on the literature thus retrieved, we first review some common triggers of CI, i.e., amyloid beta and tau deposition, chronic cerebral hypoperfusion, hyperglycemia, viral infections, and neuroinflammation, and describe the specific mechanisms responsible for endothelial damage. Second, we review molecular aspects of endothelial damage leading to BBB disruption, neuronal injury, and myelin degeneration, which are crucial events underlying CI. Finally, we summarize the potential targets of endothelial damage in the development of cognitive dysfunction associated with Alzheimer's disease, vascular dementia, type 2 diabetes mellitus, and physiological aging. A thorough understanding of the induction mechanism and potential outcomes of microvascular endothelial damage is of great significance for the study of CI, to guide both diagnostic and therapeutic approaches for its prevention and treatment.
Collapse
Affiliation(s)
- Chang Liu
- Graduate School of Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiaoyu Chen
- Graduate School of Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shaojie Yang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China
| | - Xuncui Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peiyang Sun
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China.
| | - Jingji Wang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
3
|
Kremer R, Williams A, Wardlaw J. Endothelial cells as key players in cerebral small vessel disease. Nat Rev Neurosci 2025; 26:179-188. [PMID: 39743557 DOI: 10.1038/s41583-024-00892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
Cerebral small vessel disease (SVD) is a vascular disorder that increases the risk of stroke and dementia and is diagnosed through brain MRI. Current primary prevention and secondary treatment of SVD are focused on lifestyle interventions and vascular risk factor control, including blood pressure reduction. However, these interventions have limited effects, a proportion of individuals with sporadic SVD do not have hypertension, and SVD shows strong familial and genetic underpinnings. Here, we describe the increasing evidence that cerebral endothelial cell dysfunction is a key mechanism of SVD. Dysfunctional endothelial cells can cause cerebral blood vessel dysfunction, alter blood-brain barrier integrity and interfere with cell-cell interactions in the neuro-glial-vascular unit, thereby causing damage to adjacent brain tissue. Endothelial cells in SVD may become dysfunctional through intrinsic mechanisms via genetic vulnerability to SVD and/or via extrinsic factors such as hypertension, smoking and diabetes. Drugs that act on endothelial pathways are already looking promising in clinical trials, and understanding their action on endothelial cells and the surrounding brain may lead to the development of other therapies to limit disease progression and improve outcomes for individuals with SVD.
Collapse
Affiliation(s)
- Ronja Kremer
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Joanna Wardlaw
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK.
- Row Fogo Centre for Research into Ageing and the Brain, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
McNeilly S, Thomson CR, Gonzalez-Trueba L, Sin YY, Granata A, Hamilton G, Lee M, Boland E, McClure JD, Lumbreras-Perales C, Aman A, Kumar AA, Cantini M, Gök C, Graham D, Tomono Y, Anderson CD, Lu Y, Smith C, Markus HS, Abramowicz M, Vilain C, Al-Shahi Salman R, Salmeron-Sanchez M, Hainsworth AH, Fuller W, Kadler KE, Bulleid NJ, Van Agtmael T. Collagen IV deficiency causes hypertrophic remodeling and endothelium-dependent hyperpolarization in small vessel disease with intracerebral hemorrhage. EBioMedicine 2024; 107:105315. [PMID: 39216230 PMCID: PMC11402910 DOI: 10.1016/j.ebiom.2024.105315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Genetic variants in COL4A1 and COL4A2 (encoding collagen IV alpha chain 1/2) occur in genetic and sporadic forms of cerebral small vessel disease (CSVD), a leading cause of stroke, dementia and intracerebral haemorrhage (ICH). However, the molecular mechanisms of CSVD with ICH and COL4A1/COL4A2 variants remain obscure. METHODS Vascular function and molecular investigations in mice with a Col4a1 missense mutation and heterozygous Col4a2 knock-out mice were combined with analysis of human brain endothelial cells harboring COL4A1/COL4A2 mutations, and brain tissue of patients with sporadic CSVD with ICH. FINDINGS Col4a1 missense mutations cause early-onset CSVD independent of hypertension, with enhanced vasodilation of small arteries due to endothelial dysfunction, vascular wall thickening and reduced stiffness. Mechanistically, the early-onset dysregulated endothelium-dependent hyperpolarization (EDH) is due to reduced collagen IV levels with elevated activity and levels of endothelial Ca2+-sensitive K+ channels. This results in vasodilation via the Na/K pump in vascular smooth muscle cells. Our data support this endothelial dysfunction preceding development of CSVD-associated ICH is due to increased cytoplasmic Ca2+ levels in endothelial cells. Moreover, cerebral blood vessels of patients with sporadic CSVD show genotype-dependent mechanisms with wall thickening and lower collagen IV levels in those harboring common non-coding COL4A1/COL4A2 risk alleles. INTERPRETATION COL4A1/COL4A2 variants act in genetic and sporadic CSVD with ICH via dysregulated EDH, and altered vascular wall thickness and biomechanics due to lower collagen IV levels and/or mutant collagen IV secretion. These data highlight EDH and collagen IV levels as potential treatment targets. FUNDING MRC, Wellcome Trust, BHF.
Collapse
Affiliation(s)
- Sarah McNeilly
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cameron R Thomson
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Laura Gonzalez-Trueba
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Yuan Yan Sin
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge and Royal Papworth Hospital, Cambridge, UK
| | - Graham Hamilton
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; Glasgow Polyomics, University of Glasgow, Glasgow, UK
| | - Michelle Lee
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Erin Boland
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - John D McClure
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cristina Lumbreras-Perales
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alisha Aman
- School of Health and Wellbeing, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Apoorva A Kumar
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK; Princess Royal University Hospital, Kings College Hospital NHS Foundation Trust, London, UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment, School of Science and Engineering, University of Glasgow, Glasgow, UK
| | - Caglar Gök
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Delyth Graham
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Yasuko Tomono
- Division of Molecular & Cell Biology, Shigei Medical Research Institute, Okayama, Japan
| | - Christopher D Anderson
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yinhui Lu
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Colin Smith
- Academic Neuropathology, University of Edinburgh, Edinburgh, UK
| | - Hugh S Markus
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Marc Abramowicz
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
| | - Catheline Vilain
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
| | | | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, School of Science and Engineering, University of Glasgow, Glasgow, UK
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - William Fuller
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Karl E Kadler
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Neil J Bulleid
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tom Van Agtmael
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
5
|
Dithmer S, Blasig IE, Fraser PA, Qin Z, Haseloff RF. The Basic Requirement of Tight Junction Proteins in Blood-Brain Barrier Function and Their Role in Pathologies. Int J Mol Sci 2024; 25:5601. [PMID: 38891789 PMCID: PMC11172262 DOI: 10.3390/ijms25115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways.
Collapse
Affiliation(s)
- Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | - Ingolf E. Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | | | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100049, China
| | - Reiner F. Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| |
Collapse
|
6
|
Jiao YC, Wang YX, Liu WZ, Xu JW, Zhao YY, Yan CZ, Liu FC. Advances in the differentiation of pluripotent stem cells into vascular cells. World J Stem Cells 2024; 16:137-150. [PMID: 38455095 PMCID: PMC10915963 DOI: 10.4252/wjsc.v16.i2.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 02/26/2024] Open
Abstract
Blood vessels constitute a closed pipe system distributed throughout the body, transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys. Changes in blood vessels are related to many disorders like stroke, myocardial infarction, aneurysm, and diabetes, which are important causes of death worldwide. Translational research for new approaches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems. Although mice or rats have been widely used, applying data from animal studies to human-specific vascular physiology and pathology is difficult. The rise of induced pluripotent stem cells (iPSCs) provides a reliable in vitro resource for disease modeling, regenerative medicine, and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells. This review summarizes the latest progress from the establishment of iPSCs, the strategies for differentiating iPSCs into vascular cells, and the in vivo transplantation of these vascular derivatives. It also introduces the application of these technologies in disease modeling, drug screening, and regenerative medicine. Additionally, the application of high-tech tools, such as omics analysis and high-throughput sequencing, in this field is reviewed.
Collapse
Affiliation(s)
- Yi-Chang Jiao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ying-Xin Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Wen-Zhu Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Jing-Wen Xu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yu-Ying Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Chuan-Zhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao) of Shandong University, Qingdao 266103, Shandong Province, China
- Brain Science Research Institute, Shandong University, Jinan 250012, Shandong Province, China
| | - Fu-Chen Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Brain Science Research Institute, Shandong University, Jinan 250012, Shandong Province, China.
| |
Collapse
|
7
|
Singh AA, Shetty DK, Jacob AG, Bayraktar S, Sinha S. Understanding genomic medicine for thoracic aortic disease through the lens of induced pluripotent stem cells. Front Cardiovasc Med 2024; 11:1349548. [PMID: 38440211 PMCID: PMC10910110 DOI: 10.3389/fcvm.2024.1349548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Thoracic aortic disease (TAD) is often silent until a life-threatening complication occurs. However, genetic information can inform both identification and treatment at an early stage. Indeed, a diagnosis is important for personalised surveillance and intervention plans, as well as cascade screening of family members. Currently, only 20% of heritable TAD patients have a causative mutation identified and, consequently, further advances in genetic coverage are required to define the remaining molecular landscape. The rapid expansion of next generation sequencing technologies is providing a huge resource of genetic data, but a critical issue remains in functionally validating these findings. Induced pluripotent stem cells (iPSCs) are patient-derived, reprogrammed cell lines which allow mechanistic insights, complex modelling of genetic disease and a platform to study aortic genetic variants. This review will address the need for iPSCs as a frontline diagnostic tool to evaluate variants identified by genomic discovery studies and explore their evolving role in biological insight through to drug discovery.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| |
Collapse
|