1
|
Feng H, Khalil S, Neubig RR, Sidiropoulos C. A mechanistic review on GNAO1-associated movement disorder. Neurobiol Dis 2018; 116:131-141. [PMID: 29758257 DOI: 10.1016/j.nbd.2018.05.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/28/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Mutations in the GNAO1 gene cause a complex constellation of neurological disorders including epilepsy, developmental delay, and movement disorders. GNAO1 encodes Gαo, the α subunit of Go, a member of the Gi/o family of heterotrimeric G protein signal transducers. Go is the most abundant membrane protein in the mammalian central nervous system and plays major roles in synaptic neurotransmission and neurodevelopment. GNAO1 mutations were first reported in early infantile epileptic encephalopathy 17 (EIEE17) but are also associated with a more common syndrome termed neurodevelopmental disorder with involuntary movements (NEDIM). Here we review a mechanistic model in which loss-of-function (LOF) GNAO1 alleles cause epilepsy and gain-of-function (GOF) alleles are primarily associated with movement disorders. We also develop a signaling framework related to cyclic AMP (cAMP), synaptic vesicle release, and neural development and discuss gene mutations perturbing those mechanisms in a range of genetic movement disorders. Finally, we analyze clinical reports of patients carrying GNAO1 mutations with respect to their symptom onset and discuss pharmacological/surgical treatments in the context of our mechanistic model.
Collapse
Affiliation(s)
- Huijie Feng
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Suad Khalil
- Department of Neurology & Ophthalmology, Michigan State University, East Lansing, MI 48824, USA
| | - Richard R Neubig
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - Christos Sidiropoulos
- Department of Neurology & Ophthalmology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
2
|
Liu X, Qian ZY, Xie F, Fan W, Nelson JW, Xiao X, Kaul S, Barnes AP, Alkayed NJ. Functional screening for G protein-coupled receptor targets of 14,15-epoxyeicosatrienoic acid. Prostaglandins Other Lipid Mediat 2017; 132:31-40. [PMID: 27649858 PMCID: PMC6424572 DOI: 10.1016/j.prostaglandins.2016.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 01/01/2023]
Abstract
Epoxyeicosatrienoic acids (EETs) are potent vasodilators that play important roles in cardiovascular physiology and disease, yet the molecular mechanisms underlying the biological actions of EETs are not fully understood. Multiple lines of evidence suggest that the actions of EETs are in part mediated via G protein-coupled receptor (GPCR) signaling, but the identity of such a receptor has remained elusive. We sought to identify 14,15-EET-responsive GPCRs. A set of 105 clones were expressed in Xenopus oocyte and screened for their ability to activate cAMP-dependent chloride current. Several receptors responded to micromolar concentrations of 14,15-EET, with the top five being prostaglandin receptor subtypes (PTGER2, PTGER4, PTGFR, PTGDR, PTGER3IV). Overall, our results indicate that multiple low-affinity 14,15-EET GPCRs are capable of increasing cAMP levels following 14,15-EET stimulation, highlighting the potential for cross-talk between prostanoid and other ecosanoid GPCRs. Our data also indicate that none of the 105 GPCRs screened met our criteria for a high-affinity receptor for 14,15-EET.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Cyclic AMP/metabolism
- Cystic Fibrosis Transmembrane Conductance Regulator/metabolism
- Drug Evaluation, Preclinical
- Extracellular Signal-Regulated MAP Kinases/metabolism
- HEK293 Cells
- Humans
- Intracellular Space/drug effects
- Intracellular Space/metabolism
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/physiology
- Mice
- Oocytes/metabolism
- Phosphorylation/drug effects
- Protein Transport/drug effects
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Prostaglandin/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Vasoconstriction/drug effects
- Xenopus
- beta-Arrestins/metabolism
Collapse
Affiliation(s)
- Xuehong Liu
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Zu-Yuan Qian
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Fuchun Xie
- Departments of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, United States
| | - Wei Fan
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Jonathan W Nelson
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Xiangshu Xiao
- Departments of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, United States; The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Sanjiv Kaul
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Anthony P Barnes
- Departments of Pediatrics, Oregon Health & Science University, Portland, OR, United States; The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.
| | - Nabil J Alkayed
- Departments of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, United States; Departments of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, United States; The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
3
|
Abstract
The genomic actions of thyroid hormone and steroids depend upon primary interactions of the hormones with their specific nuclear receptor proteins. Formation of nuclear co-activator or co-repressor complexes involving the liganded receptors subsequently result in transcriptional events-either activation or suppression-at genes that are specific targets of thyroid hormone or steroids. Nongenomic actions of thyroid hormone and steroids are in contrast initiated at binding sites on the plasma membrane or in cytoplasm or organelles and do not primarily require formation of intranuclear receptor protein-hormone complexes. Importantly, hormonal actions that begin nongenomically outside the nucleus often culminate in changes in nuclear transcriptional events that are regulated by both traditional intranuclear receptors as well as other nuclear transcription factors. In the case of thyroid hormone, the extranuclear receptor can be the classical "nuclear" thyroid receptor (TR), a TR isoform, or integrin αvβ3. In the case of steroid hormones, the membrane receptor is usually, but not always, the classical "nuclear" steroid receptor. This concept defines the paradigm of overlapping nongenomic and genomic hormone mechanisms of action. Here we review some examples of how extranuclear signaling by thyroid hormone and by estrogens and androgens modulates intranuclear hormone signaling to regulate a number of vital biological processes both in normal physiology and in cancer progression. We also point out that nongenomic actions of thyroid hormone may mimic effects of estrogen in certain tumors.
Collapse
Affiliation(s)
- Stephen R Hammes
- Division of Endocrinology, Department of Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Paul J Davis
- Department of Medicine, Albany Medical College, Albany, NY, USA; Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.
| |
Collapse
|
4
|
|
5
|
Abstract
The participation of extranuclear steroid receptor signaling in organ physiology and the impact for pathobiology has increasingly been demonstrated. Important functions of membrane estrogen receptors in the cardiovascular system demonstrate new mechanisms of rapid steroid signaling to gene regulation, preventing cardiovascular disease and maintaining healthy arterial function. In cancer cells, kinase signaling initiated by extranuclear estrogen, progesterone, and androgen receptors modulates transcriptional events in the nucleus, which in turn regulate proliferation, migration, and invasion. Important mediators of cross talk between cytoplasmic and nuclear steroid receptor signaling are the proline-, glutamic acid-, and leucine-rich protein-1 and paxillin proteins, both of which modulate membrane and nuclear receptor pool signaling to promote a variety of cell biological functions.
Collapse
Affiliation(s)
- Stephen R Hammes
- Department of Medicine, University of Rochester, Rochester, New York 14642, USA.
| | | |
Collapse
|
6
|
Pedram A, Razandi M, Deschenes RJ, Levin ER. DHHC-7 and -21 are palmitoylacyltransferases for sex steroid receptors. Mol Biol Cell 2011; 23:188-99. [PMID: 22031296 PMCID: PMC3248897 DOI: 10.1091/mbc.e11-07-0638] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extranuclear sex steroid receptors require palmitoylation to traffic to the plasma membrane, where they activate signal transduction cascades. We identify DHHC-7 and -21 palmitoylacyltransferases as conserved enzymes for the three classes of sex steroid receptors. Classical estrogen, progesterone, and androgen receptors (ERs, PRs, and ARs) localize outside the nucleus at the plasma membrane of target cells. From the membrane, the receptors signal to activate kinase cascades that are essential for the modulation of transcription and nongenomic functions in many target cells. ER, PR, and AR trafficking to the membrane requires receptor palmitoylation by palmitoylacyltransferase (PAT) protein(s). However, the identity of the steroid receptor PAT(s) is unknown. We identified the DHHC-7 and -21 proteins as conserved PATs for the sex steroid receptors. From DHHC-7 and -21 knockdown studies, the PATs are required for endogenous ER, PR, and AR palmitoylation, membrane trafficking, and rapid signal transduction in cancer cells. Thus the DHHC-7 and -21 proteins are novel targets to selectively inhibit membrane sex steroid receptor localization and function.
Collapse
Affiliation(s)
- Ali Pedram
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA 92717, USA
| | | | | | | |
Collapse
|
7
|
Deng J, Carbajal L, Evaul K, Rasar M, Jamnongjit M, Hammes SR. Nongenomic steroid-triggered oocyte maturation: of mice and frogs. Steroids 2009; 74:595-601. [PMID: 19071151 PMCID: PMC2702721 DOI: 10.1016/j.steroids.2008.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/13/2008] [Accepted: 11/14/2008] [Indexed: 11/18/2022]
Abstract
Luteinizing hormone (LH) mediates many important processes in ovarian follicles, including cumulus cell expansion, changes in gap junction expression and activity, sterol and steroid production, and the release of paracrine signaling molecules. All of these functions work together to trigger oocyte maturation (meiotic progression) and subsequent ovulation. Many laboratories are interested in better understanding both the extra-oocyte follicular processes that trigger oocyte maturation, as well as the intra-oocyte molecules and signals that regulate meiosis. Multiple model systems have been used to study LH-effects in the ovary, including fish, frogs, mice, rats, pigs, and primates. Here we provide a brief summary of oocyte maturation, focusing primarily on steroid-triggered meiotic progression in frogs and mice. Furthermore, we present new studies that implicate classical steroid receptors rather than alternative non-classical membrane steroid receptors as the primary regulators of steroid-mediated oocyte maturation in both of these model systems.
Collapse
Affiliation(s)
- James Deng
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Liliana Carbajal
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kristen Evaul
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melissa Rasar
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michelle Jamnongjit
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stephen R Hammes
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
8
|
Deng J, Lang S, Wylie C, Hammes SR. The Xenopus laevis isoform of G protein-coupled receptor 3 (GPR3) is a constitutively active cell surface receptor that participates in maintaining meiotic arrest in X. laevis oocytes. Mol Endocrinol 2008; 22:1853-65. [PMID: 18511495 DOI: 10.1210/me.2008-0124] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oocytes are held in meiotic arrest in prophase I until ovulation, when gonadotropins trigger a subpopulation of oocytes to resume meiosis in a process termed "maturation." Meiotic arrest is maintained through a mechanism whereby constitutive cAMP production exceeds phosphodiesterase-mediated degradation, leading to elevated intracellular cAMP. Studies have implicated a constitutively activated Galpha(s)-coupled receptor, G protein-coupled receptor 3 (GPR3), as one of the molecules responsible for maintaining meiotic arrest in mouse oocytes. Here we characterized the signaling and functional properties of GPR3 using the more amenable model system of Xenopus laevis oocytes. We cloned the X. laevis isoform of GPR3 (XGPR3) from oocytes and showed that overexpressed XGPR3 elevated intraoocyte cAMP, in large part via Gbetagamma signaling. Overexpressed XGPR3 suppressed steroid-triggered kinase activation and maturation of isolated oocytes, as well as gonadotropin-induced maturation of follicle-enclosed oocytes. In contrast, depletion of XGPR3 using antisense oligodeoxynucleotides reduced intracellular cAMP levels and enhanced steroid- and gonadotropin-mediated oocyte maturation. Interestingly, collagenase treatment of Xenopus oocytes cleaved and inactivated cell surface XGPR3, which enhanced steroid-triggered oocyte maturation and activation of MAPK. In addition, human chorionic gonadotropin-treatment of follicle-enclosed oocytes triggered metalloproteinase-mediated cleavage of XGPR3 at the oocyte cell surface. Together, these results suggest that GPR3 moderates the oocyte response to maturation-promoting signals, and that gonadotropin-mediated activation of metalloproteinases may play a partial role in sensitizing oocytes for maturation by inactivating constitutive GPR3 signaling.
Collapse
Affiliation(s)
- James Deng
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
9
|
Translational control by cytoplasmic polyadenylation in Xenopus oocytes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:217-29. [PMID: 18316045 PMCID: PMC2323027 DOI: 10.1016/j.bbagrm.2008.02.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 01/30/2008] [Accepted: 02/04/2008] [Indexed: 12/21/2022]
Abstract
Elongation of the poly(A) tails of specific mRNAs in the cytoplasm is a crucial regulatory step in oogenesis and early development of many animal species. The best studied example is the regulation of translation by cytoplasmic polyadenylation elements (CPEs) in the 3′ untranslated region of mRNAs involved in Xenopus oocyte maturation. In this review we discuss the mechanism of translational control by the CPE binding protein (CPEB) in Xenopus oocytes as follows:The cytoplasmic polyadenylation machinery such as CPEB, the subunits of cleavage and polyadenylation specificity factor (CPSF), symplekin, Gld-2 and poly(A) polymerase (PAP). The signal transduction that leads to the activation of CPE-mediated polyadenylation during oocyte maturation, including the potential roles of kinases such as MAPK, Aurora A, CamKII, cdk1/Ringo and cdk1/cyclin B. The role of deadenylation and translational repression, including the potential involvement of PARN, CCR4/NOT, maskin, pumilio, Xp54 (Ddx6, Rck), other P-body components and isoforms of the cap binding initiation factor eIF4E.
Finally we discuss some of the remaining questions regarding the mechanisms of translational regulation by cytoplasmic polyadenylation and give our view on where our knowledge is likely to be expanded in the near future.
Collapse
|