1
|
Pompilio A, Lupetti V, Puca V, Di Bonaventura G. Repurposing High-Throughput Screening Reveals Unconventional Drugs with Antimicrobial and Antibiofilm Potential Against Methicillin-Resistant Staphylococcus aureus from a Cystic Fibrosis Patient. Antibiotics (Basel) 2025; 14:402. [PMID: 40298549 PMCID: PMC12024424 DOI: 10.3390/antibiotics14040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Antibiotic therapy faces challenges from rising acquired and biofilm-related antibiotic resistance rates. High resistance levels to commonly used antibiotics have been observed in methicillin-resistant Staphylococcus aureus (MRSA) strains among cystic fibrosis (CF) patients, indicating an urgent need for new antibacterial agents. This study aimed to identify potential novel therapeutics with antibacterial and antibiofilm activities against an MRSA CF strain by screening, for the first time, the Drug Repurposing Compound Library (MedChem Express). Methods/Results: Among the 3386 compounds, a high-throughput screening-based spectrophotometric approach identified 2439 (72%), 654 (19.3%), and 426 (12.6%) drugs active against planktonic cells, biofilm formation, and preformed biofilm, respectively, although to different extents. The most active hits were 193 (5.7%), against planktonic cells, causing a 100% growth inhibition; 5 (0.14%), with excellent activity against biofilm formation (i.e., reduction ≥ 90%); and 4, showing high activity (i.e., 60% ≤ biofilm reduction < 90%) against preformed biofilms. The potential hits belonged to several primary research areas, with "cancer" being the most prevalent. After performing a literature review to identify other, already published biological properties that could be relevant to the CF lung environment (i.e., activity against other CF pathogens, and anti-inflammatory and anti-virulence potential), the most interesting hits were the following: 5-(N,N-Hexamethylene)-amiloride (diuretic), Toremifene (anticancer), Zafirlukast (antiasthmatic), Fenretide (anticancer), and Montelukast (antiasthmatic) against planktonic S. aureus cells; Hemin against biofilm formation; and Heparin, Clemastine (antihistaminic), and Bromfenac (nonsteroidal anti-inflammatory) against established biofilms. Conclusions: These findings warrant further in vitro and in vivo studies to confirm the potential of repurposing these compounds for managing lung infections caused by S. aureus in CF patients.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biomedical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (V.L.)
- Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Veronica Lupetti
- Department of Medical, Oral and Biomedical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (V.L.)
| | - Valentina Puca
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biomedical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (V.L.)
- Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
2
|
Resveratrol attenuates TLR-4 mediated inflammation and elicits therapeutic potential in models of sepsis. Sci Rep 2020; 10:18837. [PMID: 33139717 PMCID: PMC7608666 DOI: 10.1038/s41598-020-74578-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Sepsis is a potentially fatal condition triggered by systemic inflammatory response to infection. Due to the heightened immune reactivity and multi-organ pathology, treatment options are limited and several clinical trials have not produced the desired outcome, hence the interest in the discovery of novel therapeutic strategies. The polyphenol resveratrol (RSV) has shown promise against several pathological states, including acute and chronic inflammation. In this study, we evaluated its therapeutic potential in a murine model of sepsis and in patients undergoing transrectal ultrasound biopsy. RSV was able to inhibit lipopolysaccharide (LPS) stimulated inflammatory responses through blocking Phospholipase D (PLD) and its downstream signaling molecules SphK1, ERK1/2 and NF-κB. In addition, RSV treatment resulted in the downregulation of MyD88, an adaptor molecule in the TLR4 signaling pathway, and this effect at least in part, involved RSV-induced autophagy. Notably, RSV protected mice against polymicrobial septic shock induced upon cecal ligation and puncture, and inhibited pro-inflammatory cytokine production by human monocytes from transrectal ultrasound (TRUS) biopsy patients. Together, these findings demonstrate the immune regulatory activity of RSV and highlight its therapeutic potential in the management of sepsis.
Collapse
|
3
|
Nowak K, Jabłońska E, Ratajczak-Wrona W. Neutrophils life under estrogenic and xenoestrogenic control. J Steroid Biochem Mol Biol 2019; 186:203-211. [PMID: 30381249 DOI: 10.1016/j.jsbmb.2018.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022]
Abstract
Over 100 years ago, scientists had identified cells that represent the most abundant population of peripheral blood leukocytes; they called this population neutrophils. Day by day, the knowledge specific to neutrophils is augmented with new and often surprising aspects and facts about neutrophils' life or death. Estrogens (estrone, estriol, and estradiol) are relevant for the regulation of immune responses that are related with neutrophils. An understanding of the molecular mechanism of the action of endogenous hormones allows us to predict the effects of the substances that commonly occur in an environment with estrogen-like properties (xenoestrogens (e.g., bisphenol A, DDT, tributyltin, polychlorinated biphenyls, nonylphenol and octylphenol)). Therefore, we summarize current literature on the impact of estrogens and xenoestrogens, on each aspect of neutrophil life, as well as describe its mechanism of actions in neutrophils.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Poland
| | | |
Collapse
|
4
|
Scott SA, Mathews TP, Ivanova PT, Lindsley CW, Brown HA. Chemical modulation of glycerolipid signaling and metabolic pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1060-84. [PMID: 24440821 DOI: 10.1016/j.bbalip.2014.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 01/04/2023]
Abstract
Thirty years ago, glycerolipids captured the attention of biochemical researchers as novel cellular signaling entities. We now recognize that these biomolecules occupy signaling nodes critical to a number of physiological and pathological processes. Thus, glycerolipid-metabolizing enzymes present attractive targets for new therapies. A number of fields-ranging from neuroscience and cancer to diabetes and obesity-have elucidated the signaling properties of glycerolipids. The biochemical literature teems with newly emerging small molecule inhibitors capable of manipulating glycerolipid metabolism and signaling. This ever-expanding pool of chemical modulators appears daunting to those interested in exploiting glycerolipid-signaling pathways in their model system of choice. This review distills the current body of literature surrounding glycerolipid metabolism into a more approachable format, facilitating the application of small molecule inhibitors to novel systems. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Sarah A Scott
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thomas P Mathews
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Pavlina T Ivanova
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - H Alex Brown
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
5
|
Selvy PE, Lavieri RR, Lindsley CW, Brown HA. Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev 2011; 111:6064-119. [PMID: 21936578 PMCID: PMC3233269 DOI: 10.1021/cr200296t] [Citation(s) in RCA: 282] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paige E Selvy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37064, USA
| | | | | | | |
Collapse
|
6
|
Lavieri RR, Scott SA, Selvy PE, Kim K, Jadhav S, Morrison RD, Daniels JS, Brown HA, Lindsley CW. Design, synthesis, and biological evaluation of halogenated N-(2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: discovery of an isoform-selective small molecule phospholipase D2 inhibitor. J Med Chem 2010; 53:6706-19. [PMID: 20735042 PMCID: PMC3179181 DOI: 10.1021/jm100814g] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phospholipase D (PLD) catalyzes the conversion of phosphatidylcholine to the lipid second messenger phosphatidic acid. Two mammalian isoforms of PLD have been identified, PLD1 and PLD2, which share 53% sequence identity and are subject to different regulatory mechanisms. Inhibition of PLD enzymatic activity leads to increased cancer cell apoptosis, decreased cancer cell invasion, and decreased metastasis of cancer cells; therefore, the development of isoform-specific, PLD inhibitors is a novel approach for the treatment of cancer. Previously, we developed potent dual PLD1/PLD2, PLD1-specific (>1700-fold selective), and moderately PLD2-preferring (>10-fold preferring) inhibitors. Here, we describe a matrix library strategy that afforded the most potent (PLD2 IC(50) = 20 nM) and selective (75-fold selective versus PLD1) PLD2 inhibitor to date, N-(2-(1-(3-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)-2-naphthamide (22a), with an acceptable DMPK profile. Thus, these new isoform-selective PLD inhibitors will enable researchers to dissect the signaling roles and therapeutic potential of individual PLD isoforms to an unprecedented degree.
Collapse
Affiliation(s)
- Robert R. Lavieri
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | - Sarah A. Scott
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | - Paige E. Selvy
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | - Satyawan Jadhav
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | - Ryan D. Morrison
- Vanderbilt Program in Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | - J. Scott Daniels
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
- Vanderbilt Program in Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | - H. Alex Brown
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
- Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
- Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
- Vanderbilt Program in Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| |
Collapse
|
7
|
Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part I: Impact of alternative halogenated privileged structures for PLD1 specificity. Bioorg Med Chem Lett 2009; 19:1916-20. [PMID: 19268584 DOI: 10.1016/j.bmcl.2009.02.057] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 11/21/2022]
Abstract
This Letter describes the synthesis and structure-activity-relationships (SAR) of isoform-selective PLD inhibitors. By virtue of the installation of alternative halogenated piperidinyl benzimidazolone privileged structures, in combination with a key (S)-methyl group, novel PLD inhibitors with low nM potency and unprecedented levels of PLD1 isoform selectivity (approximately 1700-fold) over PLD2 were developed.
Collapse
|
8
|
Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness. Nat Chem Biol 2009; 5:108-17. [PMID: 19136975 DOI: 10.1038/nchembio.140] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 12/15/2008] [Indexed: 12/29/2022]
Abstract
Phospholipase D (PLD) is an essential enzyme responsible for the production of the lipid second messenger phosphatidic acid. Phosphatidic acid participates in both G protein-coupled receptor and receptor tyrosine kinase signal transduction networks. The lack of potent and isoform-selective inhibitors has limited progress in defining the cellular roles of PLD. We used a diversity-oriented synthetic approach and developed a library of PLD inhibitors with considerable pharmacological characterization. Here we report the rigorous evaluation of that library, which contains highly potent inhibitors, including the first isoform-selective PLD inhibitors. Specific members of this series inhibit isoforms with >100-fold selectivity both in vitro and in cells. A subset of inhibitors was shown to block invasiveness in metastatic breast cancer models. These findings demonstrate the power of diversity-oriented synthesis combined with biochemical assays and mass spectrometric lipid profiling of cellular responses to develop the first isoform-selective PLD inhibitors--a new class of antimetastatic agents.
Collapse
|