1
|
Agarwal DS, Sakhuja R, Beteck RM, Legoabe LJ. Steroid-triazole conjugates: A brief overview of synthesis and their application as anticancer agents. Steroids 2023:109258. [PMID: 37330161 DOI: 10.1016/j.steroids.2023.109258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Steroids are biomolecules that play pivotal roles in various physiological and drug discovery processes. Abundant research has been fuelled towards steroid-heterocycles conjugates over the last few decades as potential therapeutic agents against various diseases especially as anticancer agents. In this context various steroid-triazole conjugates have been synthesized and studied for their anticancer potential against various cancer cell lines. A thorough search of the literatures revealed that a concise review pertaining the present topic is not compiled. Therefore, in thus review we summarize the synthesis, anticancer activity against various cancer cell lines and structure activity relationship (SAR) of various steroid-triazole conjugates. This review can lay down the path towards the development of various steroid-heterocycles conjugates with lesser side effects and profound efficacy.
Collapse
Affiliation(s)
- Devesh S Agarwal
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, India
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
2
|
Synthesis of Novel Ferrocene-Benzofuran Hybrids via Palladium- and Copper-Catalyzed Reactions. INORGANICS 2022. [DOI: 10.3390/inorganics10110205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The combination of the ferrocene skeleton with pharmacophores often leads to molecules with interesting biological properties. Five ferrocene-benzofuran hybrids of different structures were synthesized by transition metal catalyzed reactions. The efficiency of both homogeneous and heterogeneous catalytic methods was tested. The products were characterized using 1H, 13C NMR and FTIR spectroscopy, HRMS and cyclic voltammetry. The structure of one of the new compounds was also proved with X-ray crystallography. The new hybrids showed moderate cytotoxicity on MCF-7 and MDA-MB-231 cell lines. It is remarkable that the less curable MDA-MB-231 cell line was more sensitive to treatment with three ferrocene derivatives.
Collapse
|
3
|
Horváth A, Bolla K, Wachtler A, Maksó L, Papp M, Mahó S, Dubrovay Z, Kóti J, Skoda-Földes R. A Temperature-Controlled Switch between Fürst-Plattner Rule and Anti-Fürst-Plattner Rule Ring Opening of 2,3-Epoxy-steroids with Various Halide Sources in the Presence of Imidazolium Ionic Liquids. ACS OMEGA 2021; 6:26846-26856. [PMID: 34693106 PMCID: PMC8529608 DOI: 10.1021/acsomega.1c02470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The ring opening of 2α,3α- and 2β,3β-epoxy-5α-androstan-17-one with halide reagents (AlCl3, TMSCl, LiCl, and LiBr) was investigated using imidazolium ionic liquids in the dual role of solvent and catalyst. The application of the ionic liquid was shown to result in an increase in the amount of the unusual diequatorial halohydrins especially at temperatures above 100 °C. With a careful choice of reaction conditions, the latter derivatives could be produced with 43-96% selectivity depending on the nature of the halide ion. Moreover, the usual diaxial products could also be isolated in 70-85% yields by a proper change in the reaction conditions. The reusability of the ionic liquid was demonstrated in both types of reactions. The structures of the products were proved unequivocally by nuclear magnetic resonance (NMR) measurements including two-dimensional (2D) techniques as well as high-resolution mass spectrometry (HRMS). Based on quantum chemical calculations, the effect of the ionic liquid could be explained by the stabilization of the transition state leading to the diequatorial product.
Collapse
Affiliation(s)
- Anita Horváth
- Chemical
Works of Gedeon Richter Plc., 1103 Budapest, Gyömrői
út 19-21, Hungary
| | - Kristóf Bolla
- Department
of Organic Chemistry, University of Pannonia, 8200 Veszprém, Egyetem u. 10, Hungary
| | - Alexandra Wachtler
- Department
of Organic Chemistry, University of Pannonia, 8200 Veszprém, Egyetem u. 10, Hungary
| | - Lilla Maksó
- Department
of Organic Chemistry, University of Pannonia, 8200 Veszprém, Egyetem u. 10, Hungary
| | - Máté Papp
- ELTE
Eötvös Loránd University, Institute of Chemistry, 1117 Budapest, Pázmány Péter sétány
1/A, Hungary
| | - Sándor Mahó
- Chemical
Works of Gedeon Richter Plc., 1103 Budapest, Gyömrői
út 19-21, Hungary
| | - Zsófia Dubrovay
- Chemical
Works of Gedeon Richter Plc., 1103 Budapest, Gyömrői
út 19-21, Hungary
| | - János Kóti
- Chemical
Works of Gedeon Richter Plc., 1103 Budapest, Gyömrői
út 19-21, Hungary
| | - Rita Skoda-Földes
- Department
of Organic Chemistry, University of Pannonia, 8200 Veszprém, Egyetem u. 10, Hungary
| |
Collapse
|
4
|
Herman BE, Gardi J, Julesz J, Tömböly C, Szánti-Pintér E, Fehér K, Skoda-Földes R, Szécsi M. Steroidal ferrocenes as potential enzyme inhibitors of the estrogen biosynthesis. Biol Futur 2021; 71:249-264. [PMID: 34554507 DOI: 10.1007/s42977-020-00023-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/04/2020] [Indexed: 01/13/2023]
Abstract
The potential inhibitory effect of diverse triazolyl-ferrocene steroids on key enzymes of the estrogen biosynthesis was investigated. Test compounds were synthesized via copper-catalyzed cycloaddition of steroidal azides and ferrocenyl-alkynes using our efficient methodology published previously. Inhibition of human aromatase, steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) activities was investigated with in vitro radiosubstrate incubations. Some of the test compounds were found to be potent inhibitors of the STS. A compound bearing ferrocenyl side chain on the C-2 displayed a reversible inhibition, whereas C-16 and C-17 derivatives displayed competitive irreversible binding mechanism toward the enzyme. 17α-Triazolyl-ferrocene derivatives of 17β-estradiol exerted outstanding inhibitory effect and experiments demonstrated a key role of the ferrocenyl moiety in the enhanced binding affinity. Submicromolar IC50 and Ki parameters enroll these compounds to the group of the most effective STS inhibitors published so far. STS inhibitory potential of the steroidal ferrocenes may lead to the development of novel compounds able to suppress in situ biosynthesis of 17β-estradiol in target tissues.
Collapse
Affiliation(s)
- Bianka Edina Herman
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary
| | - János Gardi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary
| | - János Julesz
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, P. O. Box 521, Szeged, 6726, Hungary
| | - Eszter Szánti-Pintér
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Egyetem utca 10, P. O. Box 158, Veszprém, 8200, Hungary
| | - Klaudia Fehér
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Egyetem utca 10, P. O. Box 158, Veszprém, 8200, Hungary
| | - Rita Skoda-Földes
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Egyetem utca 10, P. O. Box 158, Veszprém, 8200, Hungary.
| | - Mihály Szécsi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary.
| |
Collapse
|
5
|
Taheri Kal-Koshvandi A, Ahghari MR, Maleki A. Design and antibacterial activity assessment of “green” synthesized 1,4-disubstituted 1,2,3-triazoles via an Fe 3O 4/silicalite-1/PVA/Cu( i) nanocomposite catalyzed three component reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj01984d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of an Fe3O4/silicalite-1/PVA/Cu(i) bionanocomposite is presented, completely characterized and applied for the green synthesis of 1,4-disubstituted-1,2,3-triazoles.
Collapse
Affiliation(s)
- Afsaneh Taheri Kal-Koshvandi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| | - Mohammad Reza Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| |
Collapse
|
6
|
Mironov ME, Oleshko OS, Pokrovskii MA, Rybalova TV, Pechurov VK, Pokrovskii AG, Cheresis SV, Mishinov SV, Stupak VV, Shults EE. 6-(4'-Aryl-1',2',3'-triazolyl)-spirostan-3,5-diols and 6-(4'-Aryl-1',2',3'-triazolyl)-7-hydroxyspirosta-1,4-dien-3-ones: Synthesis and analysis of their cytotoxicity. Steroids 2019; 151:108460. [PMID: 31344410 DOI: 10.1016/j.steroids.2019.108460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/30/2022]
Abstract
In an endeavour to develop potent anti-tumor agents from diosgenin, a series of C-6 derived 1,2,3-triazolyl derivatives were designed and synthesized by employing Cu(I) catalyzed Huisgen 1,3-dipolar cycloaddition reaction of novel azides - (22R,25R)-6β-azidospirostan-3β,5α-diol and 6β-azido-7α-hydroxyspirosta-1,4-dien-3-one with aryl(hetaryl)alkynes. All the derivatives were evaluated for cytotoxic activity by MTT assay against eight different human cancer cell lines: T-cellular leucosis (CEM-13), human monocytes (U-937), breast (MDA-MB-231, BT-474), prostate (DU-145) and glioblastoma (U-87MG, SNB-19, T98G). The results of this study suggested that 6-(4'-aryl-1',2',3'-triazolyl)spirostan-3,5-diols 2, 3, 4, 5 and 6 possessed a promising cytotoxic potential. The corresponding 6-substituted 7-hydroxy-1,4-spirostadien-3-ones shown less cytotoxity on the human cancer cells. Compounds 2, 3, 4, and 5 which demonstrated high grown inhibition against glioma cancer cells U-87 and T98G, and also on the human-derived N118669 primary glioblastoma cell line (with GI50 values in the range of 5-9 μM), were not affected the growth of SNB-19 cells. The data revealed that phenyl, 4-methoxyphenyl, 4-fluorophenyl, 3,4,5-trimethoxyphenyl or 2-pyridinyl substituent in the triazole moiety at the C-6 position significantly improved the anti-tumor activity. The mentioned position at the spirostan core may be favourable for the synthesis of potent anticancer leads from diosgenin.
Collapse
Affiliation(s)
- Maxim E Mironov
- Laboratory of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russian Federation; Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russian Federation
| | - Olga S Oleshko
- Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russian Federation
| | - Mikhail A Pokrovskii
- Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russian Federation
| | - Tatyana V Rybalova
- Laboratory of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russian Federation; Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russian Federation
| | - Vladislav K Pechurov
- Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russian Federation
| | - Andrey G Pokrovskii
- Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russian Federation
| | - Sergey V Cheresis
- Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russian Federation
| | - Sergey V Mishinov
- First Department of Neurosurgery, Ya. L. Tsivian Novosibirsk Research Institute of Traumatology and Orthopaedics, Frunze Str. 17, 630091 Novosibirsk, Russian Federation
| | - Vyacheslav V Stupak
- First Department of Neurosurgery, Ya. L. Tsivian Novosibirsk Research Institute of Traumatology and Orthopaedics, Frunze Str. 17, 630091 Novosibirsk, Russian Federation
| | - Elvira E Shults
- Laboratory of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russian Federation; Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russian Federation.
| |
Collapse
|
7
|
Finke AO, Mironov ME, Skorova AB, Shults EE. Copper-catalyzed 1,3-dipolar cycloaddition reaction of spirosolanederived azide for the preparation of modified solasodine alkaloid. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2284-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Fehér K, Nagy E, Szabó P, Juzsakova T, Srankó D, Gömöry Á, Kollár L, Skoda-Földes R. Heterogeneous azide-alkyne cycloaddition in the presence of a copper catalyst supported on an ionic liquid polymer/silica hybrid material. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Klaudia Fehér
- Department of Organic Chemistry; University of Pannonia, Institute of Chemistry; Egyetem u. 10 (PO Box 158) H-8200 Veszprém Hungary
| | - Enikő Nagy
- Department of Organic Chemistry; University of Pannonia, Institute of Chemistry; Egyetem u. 10 (PO Box 158) H-8200 Veszprém Hungary
| | - Péter Szabó
- Department of Analytical Chemistry; University of Pannonia, Institute of Chemistry; Egyetem u. 10 (PO Box 158) H-8200 Veszprém Hungary
| | - Tatjána Juzsakova
- University of Pannonia, Institute of Environmental Engineering; Egyetem u. 10 (PO Box 158) H-8200 Veszprém Hungary
| | - Dávid Srankó
- Department of Surface Chemistry and Catalysis; Hungarian Academy of Sciences, Centre for Energy Research; PO Box 49, H-1525 Budapest 114 Hungary
| | - Ágnes Gömöry
- Research Centre for Natural Sciences; Hungarian Academy of Sciences; Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - László Kollár
- Department of Inorganic Chemistry and MTA-PTE Research Group for Selective Chemical Syntheses; University of Pécs; Ifjúság u. 6 (PO Box 266) H-7624 Pécs Hungary
| | - Rita Skoda-Földes
- Department of Organic Chemistry; University of Pannonia, Institute of Chemistry; Egyetem u. 10 (PO Box 158) H-8200 Veszprém Hungary
| |
Collapse
|
9
|
Vyas VK, Bhanage BM. Kinetic Resolution Driven Diastereo- and Enantioselective Synthesis of cis-β-Heteroaryl Amino Cycloalkanols by Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation. Org Lett 2016; 18:6436-6439. [DOI: 10.1021/acs.orglett.6b03334] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vijyesh K. Vyas
- Department of Chemistry, Institute of Chemical Technology, Mumbai 400019, India
| | | |
Collapse
|
10
|
Kacprzak K, Skiera I, Piasecka M, Paryzek Z. Alkaloids and Isoprenoids Modification by Copper(I)-Catalyzed Huisgen 1,3-Dipolar Cycloaddition (Click Chemistry): Toward New Functions and Molecular Architectures. Chem Rev 2016; 116:5689-743. [DOI: 10.1021/acs.chemrev.5b00302] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Karol Kacprzak
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Iwona Skiera
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Monika Piasecka
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Zdzisław Paryzek
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| |
Collapse
|
11
|
Li PY, He WD, Chen SQ, Lu XX, Li JM, Li HJ. Formation of long sub-chain hyperbranched poly(methyl methacrylate) based on inhibited self-cyclization of seesaw macromonomers. Polym Chem 2016. [DOI: 10.1039/c6py00583g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Well-defined hyperbranched PMMA almost without self-cyclization was obtained through a click reaction, facilitated by a high concentration, good solvent and disubstituted chain ends.
Collapse
Affiliation(s)
- Peng-Yun Li
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Wei-Dong He
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Sheng-Qi Chen
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Xiao-Xia Lu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Jia-Min Li
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Hui-Juan Li
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
12
|
Szánti-Pintér E, Wouters J, Gömöry Á, Sághy É, Szőke É, Helyes Z, Kollár L, Skoda-Földes R. Synthesis of novel 13α-18-norandrostane-ferrocene conjugates via homogeneous catalytic methods and their investigation on TRPV1 receptor activation. Steroids 2015; 104:284-93. [PMID: 26519768 DOI: 10.1016/j.steroids.2015.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/09/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022]
Abstract
13α-Steroid-ferrocene derivatives were synthesized via two reaction pathways starting from an unnatural 16-keto-18-nor-13α-steroid. The unnatural steroid was converted to ferrocene derivatives via copper-catalyzed azide-alkyne cycloaddition or palladium-catalyzed aminocarbonylation. 16-Azido- and 16-N-(prop-2-ynyl)-carboxamido-steroids were synthesized as starting materials for azide-alkyne cycloaddition with the appropriate ferrocene derivatives. Based on our earlier work, aminocarbonylation of 16-iodo-16-ene and 16-iodo-15-ene derivatives was studied with ferrocenylmethylamine. The new products were obtained in moderate to good yields and were characterized by (1)H and (13)C NMR, IR and MS. The solid state structure of the starting material 13α-18-norandrostan-16-one and two carboxamide products were determined by X-ray crystallography. Evidences were provided that the N-propargyl-carboxamide compound as well as its ferrocenylmethyltriazole derivative are able to decrease the activation of TRPV1 receptor on TRG neurons.
Collapse
Affiliation(s)
- Eszter Szánti-Pintér
- University of Pannonia, Institute of Chemistry, Department of Organic Chemistry, Egyetem u. 10 (P.O. Box 158), H-8200 Veszprém, Hungary
| | - Johan Wouters
- University of Namur, Department of Chemistry, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Ágnes Gömöry
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Éva Sághy
- Department of Pharmacology and Pharmacotherapy, Szentágothai Research Center, MTA-PTE Chronic Pain Research Group, University of Pécs, Ifjúság u. 6 (P.O. Box 266), H-7624 Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Szentágothai Research Center, MTA-PTE Chronic Pain Research Group, University of Pécs, Ifjúság u. 6 (P.O. Box 266), H-7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Szentágothai Research Center, MTA-PTE Chronic Pain Research Group, University of Pécs, Ifjúság u. 6 (P.O. Box 266), H-7624 Pécs, Hungary
| | - László Kollár
- University of Pécs, Department of Inorganic Chemistry and MTA-PTE Research Group for Selective Chemical Syntheses, Ifjúság u. 6 (P.O. Box 266), H-7624 Pécs, Hungary
| | - Rita Skoda-Földes
- University of Pannonia, Institute of Chemistry, Department of Organic Chemistry, Egyetem u. 10 (P.O. Box 158), H-8200 Veszprém, Hungary.
| |
Collapse
|
13
|
Kotovshchikov YN, Latyshev GV, Lukashev NV, Beletskaya IP. Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane andd-homoandrostane. Tandem “click” reaction/Cu-catalyzedd-homo rearrangement. Org Biomol Chem 2014; 12:3707-20. [DOI: 10.1039/c4ob00404c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Affiliation(s)
- Franck Le Bideau
- Institut de Chimie de Strasbourg (UMR 7177), CNRS-Université de Strasbourg , Strasbourg 67000, France
| | | |
Collapse
|
15
|
Szánti-Pintér E, Csók Z, Kollár L, Vékey K, Skoda-Földes R. Synthesis of ferrocene-labelled steroid derivatives via homogeneous catalytic methods. J Organomet Chem 2012. [DOI: 10.1016/j.jorganchem.2012.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|