1
|
Kang YC, Wetterer RT, Karimov RR, Kojima M, Surke M, Martín-Torres I, Nicolai J, Elkin M, Hartwig JF. Substitution, Elimination, and Integration of Methyl Groups in Terpenes Initiated by C-H Bond Functionalization. ACS CENTRAL SCIENCE 2024; 10:2016-2027. [PMID: 39634226 PMCID: PMC11613304 DOI: 10.1021/acscentsci.4c01108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 12/07/2024]
Abstract
Methyl groups are ubiquitous in natural products and biologically active compounds, but methods for their selective transformation in such structures are limited. For example, terpenoids contain many methyl groups, due to their biosynthetic pathways, but few reactions of these groups in such structures have been reported. We demonstrate that the combination of methyl C-H silylation and oxidation proximal to native hydroxyl or carbonyl groups occurs in a range of terpenoids and show that the installed hydroxyl group serves as a toehold to enable substitution, elimination, or integration of the methyl carbon into the terpenoid skeleton by the cleavage of C-C bonds. In one case, substitution of the entire methyl group occurs by further oxidation and decarboxylative coupling. In a second, substitution of the methyl group with hydrogen occurs by photochemical hydrodecarboxylation or epimerization by retro-Claisen condensation. In a third, photocatalytic decarboxyolefination formally eliminates methane from the starting structure to generate a terminal olefin for further transformations. Finally, a Dowd-Beckwith-type rearrangement cleaves a nearby C-C bond and integrates the methyl group into a ring, forming derivatives with unusual and difficult-to-access expanded rings. This strategy to transform a methyl group into a synthon marks a distinct approach to restructuring the skeletons of complex architectures and adding functional groups relevant to medicinal chemistry.
Collapse
Affiliation(s)
- Yi Cheng Kang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richard T. Wetterer
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Rashad R. Karimov
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Masahiro Kojima
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Max Surke
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Jeremy Nicolai
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Masha Elkin
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F. Hartwig
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Kolas V, Bandonil JSA, Wali N, Hsia KC, Shie JJ, Chung BC. A synthetic pregnenolone analog promotes microtubule dynamics and neural development. Cell Biosci 2022; 12:190. [PMID: 36456994 PMCID: PMC9717551 DOI: 10.1186/s13578-022-00923-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Pregnenolone (P5) is a neurosteroid that promotes microtubule polymerization. It also reduces stress and negative symptoms of schizophrenia, promotes memory, as well as recovery from spinal cord injury. P5 is the first substance in the steroid-synthetic pathway; it can be further metabolized into other steroids. Therefore, it is difficult to differentiate the roles of P5 versus its metabolites in the brain. To alleviate this problem, we synthesized and screened a series of non-metabolizable P5 derivatives for their ability to polymerize microtubules similar to P5. RESULTS We identified compound #43 (3-beta-pregnenolone acetate), which increased microtubule polymerization. We showed that compound #43 modified microtubule dynamics in live cells, increased neurite outgrowth and changed growth cone morphology in mouse cerebellar granule neuronal culture. Furthermore, compound #43 promoted the formation of stable microtubule tracks in zebrafish developing cerebellar axons. CONCLUSIONS We have developed compound #43, a nonmetabolized P5 analog, that recapitulates P5 functions in vivo and can be a new therapeutic candidate for the treatment of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Viktoryia Kolas
- grid.28665.3f0000 0001 2287 1366Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan ,grid.38348.340000 0004 0532 0580Institute of Molecular and Cellular Biology, National Tsing-Hua University, Hsinchu, Taiwan
| | | | - Niaz Wali
- grid.28665.3f0000 0001 2287 1366Institute of Chemistry, Academia Sinica, Taipei, Taiwan ,grid.19188.390000 0004 0546 0241Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617 Taiwan ,grid.28665.3f0000 0001 2287 1366Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, (TIGP-CBMB) Academia Sinica, Taipei, 11529 Taiwan
| | - Kuo-Chiang Hsia
- grid.28665.3f0000 0001 2287 1366Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jiun-Jie Shie
- grid.28665.3f0000 0001 2287 1366Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Bon-chu Chung
- grid.28665.3f0000 0001 2287 1366Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan ,grid.38348.340000 0004 0532 0580Institute of Molecular and Cellular Biology, National Tsing-Hua University, Hsinchu, Taiwan ,grid.254145.30000 0001 0083 6092Graduate Institute of Biomedical Sciences, Neuroscience and Brain Disease Center, China Medical University, Taichung, 404 Taiwan
| |
Collapse
|
3
|
Georges E, Sottas C, Li Y, Papadopoulos V. Direct and specific binding of cholesterol to the mitochondrial translocator protein (TSPO) using PhotoClick cholesterol analogue. J Biochem 2021; 170:239-243. [PMID: 33846725 DOI: 10.1093/jb/mvab031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/18/2021] [Indexed: 11/14/2022] Open
Abstract
The translocator protein (TSPO) is a five-helix transmembrane protein localized to the outer mitochondria membrane. Radioligand binding assays and chemical crosslinking showed TSPO to be a high affinity cholesterol-binding protein. In this report, we show that TSPO in mitochondrial fractions from MA-10 mouse tumour Leydig cells can interact directly and competitively with the clickable photoreactive cholesterol analogue. PhotoClick cholesterol showed saturable photoaffinity labelling of TSPO that could be specifically immunoprecipitated with anti-TSPO antibody, following the click reaction with the fluorescent-azide probe, tetramethylrhodamine (TAMRA)-azide. Moreover, excess cholesterol reduced the photolabelling of both total mitochondrial proteins and TSPO. Together, the results of this study demonstrated direct binding of PhotoClick cholesterol to TSPO and that this interaction occurs at physiologically relevant site(s).
Collapse
Affiliation(s)
- Elias Georges
- Institute of Parasitology, McGill University, Montreal, Quebec H9X1C0, Canada.,Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Chantal Sottas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuchang Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
4
|
Leydig cell aging: Molecular mechanisms and treatments. VITAMINS AND HORMONES 2021; 115:585-609. [PMID: 33706963 DOI: 10.1016/bs.vh.2020.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Late-onset hypogonadism, resulting from deficiency in serum testosterone (T), affects the health and quality of life of millions of aging men. T is synthesized by Leydig cells (LCs) in response to luteinizing hormone (LH). LH binds LC plasma membrane receptors, inducing the formation of a supramolecular complex of cytosolic and mitochondrial proteins, the Steroidogenic InteracTomE (SITE). SITE proteins are involved in targeting cholesterol to CYP11A1 in the mitochondria, the first enzyme of the steroidogenic cascade. Cholesterol translocation is the rate-determining step in T formation. With aging, LC defects occur that include changes in SITE, an increasingly oxidative intracellular environment, and reduced androgen formation and serum T levels. T replacement therapy (TRT) will restore T levels, but reported side effects make it desirable to develop additional strategies for increasing T. One approach is to target LC protein-protein interactions and thus increase T production by the hypofunctional Leydig cells themselves.
Collapse
|
5
|
Ochoa ME, Farfán N, Labra-Vázquez P, Soto-Castro D, Santillan R. Synthesis, characterization and in silico screening of potential biological activity of 17α-ethynyl-3β, 17β, 19-trihydroxyandrost-5-en acetylated derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Chung JY, Brown S, Chen H, Liu J, Papadopoulos V, Zirkin B. Effects of pharmacologically induced Leydig cell testosterone production on intratesticular testosterone and spermatogenesis†. Biol Reprod 2020; 102:489-498. [PMID: 31504200 PMCID: PMC7443349 DOI: 10.1093/biolre/ioz174] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/30/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022] Open
Abstract
The Leydig cells of the mammalian testis produce testosterone (T) in response to luteinizing hormone (LH). In rats and men with reduced serum T levels, T replacement therapy (TRT) will raise T levels, but typically with suppressive effects on sperm formation. The rate-determining step in T formation is the translocation of cholesterol to the inner mitochondrial membrane, mediated by protein-protein interactions of cytosolic and outer mitochondrial membrane proteins. Among the involved proteins is cholesterol-binding translocator protein (TSPO) (18 kDa TSPO). We hypothesized that in contrast to TRT, the administration of the TSPO agonist N,N-dihexyl-2-(4-fluorophenyl)indole-3-acetamide (FGIN-1-27), by stimulating the ability of the Leydig cells to produce T, would result in the elevation of serum T levels while maintaining intratesticular T concentration and therefore without suppression of spermatogenesis. Age-related reductions in both serum and intratesticular T levels were seen in old Brown Norway rats. Both exogenous T and FGIN-1-27 increased serum T levels. With exogenous T, serum LH and Leydig cell T formation were suppressed, and intratesticular T was reduced to below the concentration required to maintain spermatogenesis quantitatively. In contrast, FGIN-1-27 stimulated Leydig cell T formation, resulting in increased serum T without reductions in intratesticular T concentrations or in testicular sperm numbers. FGIN-1-27 also significantly increased serum and intratesticular T levels in rats made LH-deficient by treatment with the gonadotropin-releasing hormone antagonist cetrorelix. These results point to a possible approach to increasing serum T without negative effects on spermatogenesis, based upon stimulating T production by the Leydig cells themselves rather than administering T exogenously.
Collapse
Affiliation(s)
- Jin-Yong Chung
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sean Brown
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Haolin Chen
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - June Liu
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Barry Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
7
|
Kim T, Pae AN. Translocator protein (TSPO) ligands for the diagnosis or treatment of neurodegenerative diseases: a patent review (2010 – 2015; part 2). Expert Opin Ther Pat 2016; 26:1353-1366. [DOI: 10.1080/13543776.2016.1230605] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- TaeHun Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Biological Chemistry, Korea University of Science and Technology, Daejon, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Biological Chemistry, Korea University of Science and Technology, Daejon, Republic of Korea
| |
Collapse
|
8
|
Papadopoulos V, Aghazadeh Y, Fan J, Campioli E, Zirkin B, Midzak A. Translocator protein-mediated pharmacology of cholesterol transport and steroidogenesis. Mol Cell Endocrinol 2015; 408:90-8. [PMID: 25818881 PMCID: PMC4417383 DOI: 10.1016/j.mce.2015.03.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/17/2022]
Abstract
Steroidogenesis begins with cholesterol transfer into mitochondria through the transduceosome, a complex composed of cytosolic proteins that include steroidogenesis acute regulatory protein (STAR), 14-3-3 adaptor proteins, and the outer mitochondrial membrane proteins Translocator Protein (TSPO) and Voltage-Dependent Anion Channel (VDAC). TSPO is a drug- and cholesterol-binding protein found at particularly high levels in steroid synthesizing cells. Its aberrant expression has been linked to cancer, neurodegeneration, neuropsychiatric disorders and primary hypogonadism. Brain steroids serve as local regulators of neural development and excitability. Reduced levels of these steroids have been linked to depression, anxiety and neurodegeneration. Reduced serum testosterone is common among subfertile young men and aging men, and is associated with depression, metabolic syndrome and reduced sexual function. Although testosterone-replacement therapy is available, there are undesired side-effects. TSPO drug ligands have been proposed as therapeutic agents to regulate steroid levels in the brain and testis.
Collapse
Affiliation(s)
- Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada; Departments of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | - Yasaman Aghazadeh
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jinjiang Fan
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Enrico Campioli
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Barry Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew Midzak
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Departments of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Midzak AS, Akula N, Rone MB, Papadopoulos V. Computational modeling and biological validation of novel non-steroidal ligands for the cholesterol recognition/interaction amino acid consensus (CRAC) motif of the mitochondrial translocator protein (TSPO). Pharmacol Res 2015; 99:393-403. [PMID: 25936508 DOI: 10.1016/j.phrs.2015.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 03/27/2015] [Accepted: 03/27/2015] [Indexed: 01/24/2023]
Abstract
Mitochondria play a critical role in the physiological homeostasis of the cell, contributing to numerous cellular processes, including bioenergetics, metabolism and cell life and death. Owing to their keystone role, mitochondria have gained much attention as pharmacological targets. The outer mitochondrial integral membrane translocator protein (TSPO) has attracted a significant degree of pharmacological interest owing to its ability to bind a number of classes of drugs with high affinity and specificity. In addition to its well-characterized drug binding site, TSPO possess an additional high-affinity ligand binding site, originally identified for its ability to bind the lipid cholesterol, which was named the cholesterol recognition/interaction amino acid consensus (CRAC) motif. Previous investigations from our laboratory identified additional ligands targeted to TSPO's CRAC motif which are able to potently inhibit mitochondrial cholesterol transport and steroid biosynthesis, processes for which TSPO has been well-characterized. However, all of these compounds possessed the steroidal backbone common to cholesterol and steroid hormones. In our efforts to expand our understanding of TSPO's CRAC motif, we performed studies aimed at identifying non-steroidal ligands for this motif. Molecular modeling and in silico screening of large chemical libraries identified a panel of compounds which were subsequently screened for bioactivity in a number of steroidogenic model systems. These efforts identified a family of non-steroidal CRAC ligands able to potently inhibit steroidogenesis, and at higher concentrations, promote apoptosis. In addition, the best candidate in this family was able to suppress testosterone synthesis when administered to rats, indicating that this novel family of non-steroidal CRAC ligands may serve as prototypes for the development of drugs useful for treatment of diseases of steroid overproduction, such as Cushing's syndrome and steroidogenic cell tumors in humans and animals.
Collapse
Affiliation(s)
- Andrew S Midzak
- The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Nagaraju Akula
- The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Malena B Rone
- The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada; Departments of Biochemistry and Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Aghazadeh Y, Zirkin BR, Papadopoulos V. Pharmacological regulation of the cholesterol transport machinery in steroidogenic cells of the testis. VITAMINS AND HORMONES 2015; 98:189-227. [PMID: 25817870 DOI: 10.1016/bs.vh.2014.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reduced serum testosterone (T), or hypogonadism, is estimated to affect about 5 million American men, including both aging and young men. Low serum T has been linked to mood changes, worsening cognition, fatigue, depression, decreased lean body mass and bone mineral density, increased visceral fat, metabolic syndrome, decreased libido, and sexual dysfunction. Administering exogenous T, known as T-replacement therapy (TRT), reverses many of the symptoms of low T levels. However, this treatment can result in luteinizing hormone suppression which, in turn, can lead to reduced sperm numbers and infertility, making TRT inappropriate for men who wish to father children. Additionally, TRT may result in supraphysiologic T levels, skin irritation, and T transfer to others upon contact; and there may be increased risk of prostate cancer and cardiovascular disease, particularly in aging men. Therefore, the development of alternate therapies for treating hypogonadism would be highly desirable. To do so requires greater understanding of the series of steps leading to T formation and how they are regulated, and the identification of key steps that are amenable to pharmacological modulation so as to induce T production. We review herein our current understanding of mechanisms underlying the pharmacological induction of T formation in hypogonadal testis.
Collapse
Affiliation(s)
- Yasaman Aghazadeh
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Gál Z, Hegedüs C, Szakács G, Váradi A, Sarkadi B, Özvegy-Laczka C. Mutations of the central tyrosines of putative cholesterol recognition amino acid consensus (CRAC) sequences modify folding, activity, and sterol-sensing of the human ABCG2 multidrug transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:477-87. [DOI: 10.1016/j.bbamem.2014.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/30/2014] [Accepted: 11/06/2014] [Indexed: 02/07/2023]
|
12
|
Midzak A, Papadopoulos V. Binding domain-driven intracellular trafficking of sterols for synthesis of steroid hormones, bile acids and oxysterols. Traffic 2014; 15:895-914. [PMID: 24890942 DOI: 10.1111/tra.12177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/16/2022]
Abstract
Steroid hormones, bioactive oxysterols and bile acids are all derived from the biological metabolism of lipid cholesterol. The enzymatic pathways generating these compounds have been an area of intense research for almost a century, as cholesterol and its metabolites have substantial impacts on human health. Owing to its high degree of hydrophobicity and the chemical properties that it confers to biological membranes, the distribution of cholesterol in cells is tightly controlled, with subcellular organelles exhibiting highly divergent levels of cholesterol. The manners in which cells maintain such sterol distributions are of great interest in the study of steroid and bile acid synthesis, as limiting cholesterol substrate to the enzymatic pathways is the principal mechanism by which production of steroids and bile acids is regulated. The mechanisms by which cholesterol moves within cells, however, remain poorly understood. In this review, we examine the subcellular machinery involved in cholesterol metabolism to steroid hormones and bile acid, relating it to both lipid- and protein-based mechanisms facilitating intracellular and intraorganellar cholesterol movement and delivery to these pathways. In particular, we examine evidence for the involvement of specific protein domains involved in cholesterol binding, which impact cholesterol movement and metabolism in steroidogenesis and bile acid synthesis. A better understanding of the physical mechanisms by which these protein- and lipid-based systems function is of fundamental importance to understanding physiological homeostasis and its perturbation.
Collapse
Affiliation(s)
- Andrew Midzak
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
13
|
Chung JY, Chen H, Midzak A, Burnett AL, Papadopoulos V, Zirkin BR. Drug ligand-induced activation of translocator protein (TSPO) stimulates steroid production by aged brown Norway rat Leydig cells. Endocrinology 2013; 154:2156-65. [PMID: 23525219 PMCID: PMC3740486 DOI: 10.1210/en.2012-2226] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Translocator protein (TSPO; 18 kDA) is a high-affinity cholesterol-binding protein that is integrally involved in cholesterol transfer from intracellular stores into mitochondria, the rate-determining step in steroid formation. Previous studies have shown that TSPO drug ligands are able to activate steroid production by MA-10 mouse Leydig tumor cells and by mitochondria isolated from steroidogenic cells. We hypothesized herein that the direct, pharmacological activation of TSPO might induce aged Leydig cells, which are characterized by reduced T production, to produce significantly higher levels of T both in vitro and in vivo. To test this, we first examined the in vitro effects of the TSPO selective and structurally distinct drug ligands N,N-dihexyl-2-(4-fluorophenyl)indole-3-acetamide (FGIN-1-27) and benzodiazepine 4'-chlorodiazepam (Ro5-4864) on steroidogenesis by Leydig cells isolated from aged (21-24 months old) and young adult (3-6 months old) Brown Norway rats. The ligands stimulated Leydig cell T production significantly, and equivalently, in cells of both ages, an effect that was significantly inhibited by the specific TSPO inhibitor 5-androsten-3,17,19-triol (19-Atriol). Additionally, we examined the in vivo effects of administering FGIN-1-27 to young and aged rats. In both cases, serum T levels increased significantly, consistent with the in vitro results. Indeed, serum T levels in aged rats administered FGIN-1-27 were equivalent to T levels in the serum of control young rats. Taken together, these results indicate that although there are reduced amounts of TSPO in aged Leydig cells, its direct activation is able to increase T production. We suggest that this approach might serve as a therapeutic means to increase steroid levels in vivo in cases of primary hypogonadism.
Collapse
Affiliation(s)
- J Y Chung
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|