1
|
Rana N, Grover P, Singh H. Recent Developments and Future Perspectives of Purine Derivatives as a Promising Scaffold in Drug Discovery. Curr Top Med Chem 2024; 24:541-579. [PMID: 38288806 DOI: 10.2174/0115680266290152240110074034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 05/31/2024]
Abstract
Numerous purine-containing compounds have undergone extensive investigation for their medical efficacy across various diseases. The swift progress in purine-based medicinal chemistry has brought to light the therapeutic capabilities of purine-derived compounds in addressing challenging medical conditions. Defined by a heterocyclic ring comprising a pyrimidine ring linked with an imidazole ring, purine exhibits a diverse array of therapeutic attributes. This review systematically addresses the multifaceted potential of purine derivatives in combating various diseases, including their roles as anticancer agents, antiviral compounds (anti-herpes, anti-HIV, and anti-influenzae), autoimmune and anti-inflammatory agents, antihyperuricemic and anti-gout solutions, antimicrobial agents, antitubercular compounds, anti-leishmanial agents, and anticonvulsants. Emphasis is placed on the remarkable progress made in developing purine-based compounds, elucidating their significant target sites. The article provides a comprehensive exploration of developments in both natural and synthetic purines, offering insights into their role in managing a diverse range of illnesses. Additionally, the discussion delves into the structure-activity relationships and biological activities of the most promising purine molecules. The intriguing capabilities revealed by these purine-based scaffolds unequivocally position them at the forefront of drug candidate development. As such, this review holds potential significance for researchers actively involved in synthesizing purine-based drug candidates, providing a roadmap for the continued advancement of this promising field.
Collapse
Affiliation(s)
- Neha Rana
- School of Pharmacy (SOP), Noida International University, Yamuna Expressway, Gautam Budh Nagar, 203201, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | - Hridayanand Singh
- Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar, 201204, Uttar Pradesh, India
| |
Collapse
|
2
|
Rodrigues AR, Rodrigues CR, Gomes SA, Marques SM, Naves LM, Pedrino GR, de Oliveira-Neto JR, de Carvalho FS, Cruz A, Lião LM, Menegatti R, Carlos da Cunha L. Preclinical pharmacokinetics of a promising antineoplastic prototype piperazine-containing compound (LQFM018) in rats by a new LC-MS/MS bioanalytical method. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1223:123710. [PMID: 37068313 DOI: 10.1016/j.jchromb.2023.123710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023]
Abstract
LQFM018 is a novel antineoplastic prototype, showing an expressive drug-triggered K562 leukemic cells death mechanism, through necroptotic signaling. Due to its promising effect, this study aimed to evaluate the pharmacokinetics of LQFM018 in rats, using a new validated bioanalytical LC-MS/MS-based method. Chromatographic column was an ACE® C18 (100 mm × 4.6 mm, 5 µm) eluted by a mobile phase composed of ammonium acetate 2 mM and formic acid 0.025%:methanol (50:50, v/v), under flow of 1.2 mL/min and injection volume of 3.0 µL. LQFM018 was extracted from rat plasma by a simple liquid-liquid method, using MTBE solvent. Rats were administered intraperitoneally at LQFM018 100 mg/kg dose and blood samples were collect at times of 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 h. Bioanalytical-LC-MS/MS-based method was rapid, high throughput and sensitive with a good linearity ranging from 10 (LLOQ) to 15000 ng/mL, besides precise and accurate, ranging of 0.8-7.3% and 96.8-107.6%, respectively. The prototype LQFM018 was rapid and well absorbed, and highly distributed, apparently due to its high lipid solubility. These features are primordial for an anticancer agent in the treatment of deep tumors, such as bone marrow neoplasms, in which the drug might permeate easily tissue barriers. Also, LQFM018 has demonstrated a high clearance, according to a low t1/2in rats, indicating a relative fast elimination phase related to a possible intense hepatic biotransformation. These information support further studies to establish new understands on pharmacokinetics of promising antineoplastic prototype LQFM018 from preclinical and clinical evaluations.
Collapse
Affiliation(s)
- Andryne R Rodrigues
- Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Goiania, Goias, Brazil
| | - Caroline R Rodrigues
- Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Goiania, Goias, Brazil
| | - Sandro A Gomes
- Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Goiania, Goias, Brazil
| | - Stefanne M Marques
- Institute of Biological Sciences, Federal University of Goias, Goiania, Goias, Brazil
| | - Lara M Naves
- Institute of Biological Sciences, Federal University of Goias, Goiania, Goias, Brazil
| | - Gustavo R Pedrino
- Institute of Biological Sciences, Federal University of Goias, Goiania, Goias, Brazil
| | - Jerônimo R de Oliveira-Neto
- Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Goiania, Goias, Brazil
| | - Flávio S de Carvalho
- Medicinal Pharmaceutical Chemistry Laboratory, School of Pharmacy, Federal University of Goias, Goias, Brazil
| | - Alessandro Cruz
- Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Goiania, Goias, Brazil.
| | - Luciano M Lião
- Nuclear Magnetic Resonance Laboratory, Chemistry Institute, Federal University of Goias, Goiania, Goias, Brazil
| | - Ricardo Menegatti
- Medicinal Pharmaceutical Chemistry Laboratory, School of Pharmacy, Federal University of Goias, Goias, Brazil
| | - Luiz Carlos da Cunha
- Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Goiania, Goias, Brazil
| |
Collapse
|
3
|
Targeting cancer through recently developed purine clubbed heterocyclic scaffolds: An overview. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Novel 4-Azapregnene Derivatives as Potential Anticancer Agents: Synthesis, Antiproliferative Activity and Molecular Docking Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186126. [PMID: 36144856 PMCID: PMC9501232 DOI: 10.3390/molecules27186126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022]
Abstract
A series of novel 21E-arylidene-4-azapregn-5-ene steroids has been successfully designed, synthesized and structurally characterized, and their antiproliferative activity was evaluated in four different cell lines. Within this group, the 21E-(pyridin-3-yl)methylidene derivative exhibited significant cytotoxic activity in hormone-dependent cells LNCaP (IC50 = 10.20 µM) and T47-D cells (IC50 = 1.33 µM). In PC-3 androgen-independent cells, the steroid 21E-p-nitrophenylidene-4-azapregn-5-ene was the most potent of this series (IC50 = 3.29 µM). Considering these results, the 21E-(pyridin-3-yl)methylidene derivative was chosen for further biological studies on T47-D and LNCaP cells, and it was shown that this azasteroid seems to lead T47-D cells to apoptotic death. Finally, molecular docking studies were performed to explore the affinity of these 4-azapregnene derivatives to several steroid targets, namely 5α-reductase type 2, estrogen receptor α, androgen receptor and CYP17A1. In general, compounds presented higher affinity to 5α-reductase type 2 and estrogen receptor α.
Collapse
|
5
|
Al-Ghorbani M, Gouda MA, Baashen M, Ranganatha V. L. Pyrimidine-Piperazine Hybrids; Recent Synthesis and Biological Activities. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1998144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammed Al-Ghorbani
- Department of Chemistry, Faculty of Science and Arts, Ulla, Taibah University, Medina, Saudi Arabia
- Department of Chemistry, Faculty of Education, Thamar University, Thamar, Yemen
| | - Moustafa A. Gouda
- Department of Chemistry, Faculty of Science and Arts, Ulla, Taibah University, Medina, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohammed Baashen
- Department of Chemistry, Science and Humanities College, Shaqra University, Shaqraa, Saudi Arabia
| | - Lakshmi Ranganatha V.
- Department of Chemistry, The National Institute of Engineering, Mysore, Karnataka, India
| |
Collapse
|
6
|
Sheena Mary Y, Shyma Mary Y, Temiz-Arpaci O, Yadav R, Celik I. DFT, docking, MD simulation, and vibrational spectra with SERS analysis of a benzoxazole derivative: an anti-cancerous drug. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01659-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Zhang RH, Guo HY, Deng H, Li J, Quan ZS. Piperazine skeleton in the structural modification of natural products: a review. J Enzyme Inhib Med Chem 2021; 36:1165-1197. [PMID: 34080510 PMCID: PMC8183565 DOI: 10.1080/14756366.2021.1931861] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Piperazine moiety is a cyclic molecule containing two nitrogen atoms in positions 1 and 4, as well as four carbon atoms. Piperazine is one of the most sought heterocyclics for the development of new drug candidates with a wide range of applications. Over 100 molecules with a broad range of bioactivities, including antitumor, antibacterial, anti-inflammatory, antioxidant, and other activities, were reviewed. This article reviewed investigations regarding piperazine groups for the modification of natural product derivatives in the last decade, highlighting parameters that affect their biological activity.
Collapse
Affiliation(s)
- Run-Hui Zhang
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hong-Yan Guo
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hao Deng
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Jinzi Li
- Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
8
|
Jeyamogan S, Khan NA, Sagathevan K, Siddiqui R. Anticancer Properties of Asian Water Monitor Lizard (Varanus salvator), Python (Malayopython reticulatus) and Tortoise (Cuora kamaroma amboinensis). Anticancer Agents Med Chem 2021; 20:1558-1570. [PMID: 32364082 DOI: 10.2174/1871520620666200504103056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/26/2020] [Accepted: 02/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer contributes to significant morbidity and mortality despite advances in treatment and supportive care. There is a need for the identification of effective anticancer agents. Reptiles such as tortoise, python, and water monitor lizards are exposed to heavy metals, tolerate high levels of radiation, feed on rotten/germ-infested feed, thrive in unsanitary habitat and yet have prolonged lifespans. Such species are rarely reported to develop cancer, suggesting the presence of anticancer molecules/mechanisms. METHODS Here, we tested effects from sera of Asian water monitor lizard (Varanus salvator), python (Malayopython reticulatus) and tortoise (Cuora kamaroma amboinensis) against cancer cells. Sera were collected and cytotoxicity assays were performed using prostate cancer cells (PC3), Henrietta Lacks cervical adenocarcinoma cells (HeLa) and human breast adenocarcinoma cells (MCF7), as well as human keratinized skin cells (Hacat), by measuring lactate dehydrogenase release as an indicator for cell death. Growth inhibition assays were performed to determine the effects on cancer cell proliferation. Liquid chromatography mass spectrometry was performed for molecular identification. RESULTS The findings revealed that reptilian sera, but not bovine serum, abolished viability of Hela, PC3 and MCF7 cells. Samples were subjected to liquid chromatography mass spectrometry, which detected 57 molecules from V. salvator, 81 molecules from Malayopython reticulatus and 33 molecules from C. kamaroma amboinensis and putatively identified 9 molecules from V. salvator, 20 molecules from Malayopython reticulatus and 9 molecules from C. kamaroma amboinensis when matched against METLIN database. Based on peptide amino acid composition, binary profile, dipeptide composition and pseudo-amino acid composition, 123 potential Anticancer Peptides (ACPs) were identified from 883 peptides from V. salvator, 306 potential ACPs from 1074 peptides from Malayopython reticulatus and 235 potential ACPs from 885 peptides from C. kamaroma amboinensis. CONCLUSION To our knowledge, for the first time, we reported comprehensive analyses of selected reptiles' sera using liquid chromatography mass spectrometry, leading to the identification of potentially novel anticancer agents. We hope that the discovery of molecules from these animals will pave the way for the rational development of new anticancer agents.
Collapse
Affiliation(s)
- Shareni Jeyamogan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Naveed A Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Kuppusamy Sagathevan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Elattar KM, El‐Mekabaty A. Heterocyclic steroids: Synthetic routes and biological characteristics of steroidal fused bicyclic pyrimidines. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Khaled M. Elattar
- Chemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| | - Ahmed El‐Mekabaty
- Chemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| |
Collapse
|
10
|
Xu C, Zhou W, Dong G, Qiao H, Peng J, Jia P, Li Y, Liu H, Sun K, Zhao W. Novel [1,2,3]triazolo[4,5-d]pyrimidine derivatives containing hydrazone fragment as potent and selective anticancer agents. Bioorg Chem 2020; 105:104424. [PMID: 33161253 DOI: 10.1016/j.bioorg.2020.104424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/18/2020] [Accepted: 10/20/2020] [Indexed: 01/22/2023]
Abstract
In this paper, based on molecular hybridization, a series of [1,2,3]triazolo[4,5-d]pyrimidine derivatives containing hydrazine was synthesized and their antiproliferative activities against 5 cancer cell lines (MGC-803, PC3, PC9, EC9706 and SMMC-7721) were evaluated. We found that most of them exhibited obvious growth inhibition effects on these tested cancer cells, especially compound 34 on PC3 cells (IC50 = 26.25 ± 0.28 nM). Meanwhile, compound 34 displayed best selectivity on PC3, compared with the other cancer cell lines, as well as excellent selectivity towards normal cell lines (Het-1A, L02 and GES-1). Further investigations demonstrated that 34 could significantly inhibit PC3 cells' colony formation, increase cellular ROS content, suppress EGFR expression and induce apoptosis. Our findings indicate that 34 may serve as a novel lead compound for the discovery of more triazolopyrimidine derivatives with improved anticancer potency and selectivity.
Collapse
Affiliation(s)
- Chenhao Xu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Wenjuan Zhou
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Department of Pathology, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo 0379, Norway
| | - Guanjun Dong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hui Qiao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Jiadi Peng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Pengfei Jia
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yuhao Li
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Kai Sun
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
11
|
Brito V, Santos AO, Almeida P, Silvestre S. Novel 4-azaandrostenes as prostate cancer cell growth inhibitors: Synthesis, antiproliferative effects, and molecular docking studies. CR CHIM 2019. [DOI: 10.1016/j.crci.2018.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Chen S, Wu H, Li AJ, Pei J, Zhao L. Synthesis and biological evaluation of hydrazone and pyrazoline derivatives derived from androstenedione. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3539-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Zhao TQ, Zhao YD, Liu XY, Wang B, Li ZH, He ZX, Zhang XH, Liang JJ, Ma LY, Liu HM. Discovery of 6-chloro-2-(propylthio)-8,9-dihydro-7H-purines containing a carboxamide moiety as potential selective anti-lung cancer agents. Eur J Med Chem 2018; 151:327-338. [PMID: 29635165 DOI: 10.1016/j.ejmech.2018.03.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 11/18/2022]
Abstract
A new series of 6-chloro-2-(propylthio)-8,9-dihydro-7H-purine-8-caboxamide derivatives were designed, synthesized, and further evaluated for their antiproliferative activities on four human cancer cell lines (A549, MGC803, PC-3 and TE-1). The structure-activity relationships (SARs) studies were conducted through the variation in the two regions, which including position 8 and 9, of purine core. One of the compounds, 8, containing a terminal piperazine appendage with a carboxamide moiety at position 8 and phenyl group at position 9 of 6-chloro-8,9-dihydro-7H-purine core, showed the most potent antiproliferative activity and good selectivity between cancer and normal cells (IC50 values of 2.80 μM against A549 and 303.03 μM against GES-1, respectively). In addition, compound 8 could inhibit the colony formation and migration of A549 cells in a concentration-dependent manner, as well as induce the apoptosis possibly through the intrinsic pathway.
Collapse
Affiliation(s)
- Tao-Qian Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yuan-Di Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xin-Yang Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Bo Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhong-Hua Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhang-Xu He
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jian-Jia Liang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
14
|
Costa FB, Cortez AP, de Ávila RI, de Carvalho FS, Andrade WM, da Cruz AF, Reis KB, Menegatti R, Lião LM, Romeiro LAS, Noël F, Fraga CAM, Barreiro EJ, Sanz G, Rodrigues MF, Vaz BG, Valadares MC. The novel piperazine-containing compound LQFM018: Necroptosis cell death mechanisms, dopamine D 4 receptor binding and toxicological assessment. Biomed Pharmacother 2018; 102:481-493. [PMID: 29579709 DOI: 10.1016/j.biopha.2018.02.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 01/12/2023] Open
Abstract
Piperazine is a promising scaffold for drug development due to its broad spectrum of biological activities. Based on this, the new piperazine-containing compound LQFM018 (2) [ethyl 4-((1-(4-chlorophenyl)-1H-pyrazol-4-yl)methyl)piperazine-1-carboxylate] was synthetized and some biological activities investigated. In this work, we described its ability to bind aminergic receptors, antiproliferative effects as well as the LQFM018 (2)-triggered cell death mechanisms, in K562 leukemic cells, by flow cytometric analyses. Furthermore, acute oral systemic toxicity and potential myelotoxicity assessments of LQFM018 (2) were carried out. LQFM018 (2) was originally obtained by molecular simplification from LASSBio579 (1), an analogue compound of clozapine, with 33% of global yield. Binding profile assay to aminergic receptors showed that LQFM018 (2) has affinity for the dopamine D4 receptor (Ki = 0.26 μM). Moreover, it showed cytotoxicity in K562 cells, in a concentration and time-dependent manner; IC50 values obtained were 399, 242 and 119 μM for trypan blue assay and 427, 259 and 50 μM for MTT method at 24, 48 or 72 h, respectively. This compound (427 μM) also promoted increase in LDH release and cell cycle arrest in G2/M phase. Furthermore, it triggered necrotic morphologies in K562 cells associated with intense cell membrane rupture as confirmed by Annexin V/propidium iodide double-staining. LQFM018 (2) also triggered mitochondrial disturb through loss of ΔΨm associated with increase of ROS production. No significant accumulation of cytosolic cytochrome c was verified in treated cells. Furthermore, it was verified an increase of expression of TNF-R1 and mRNA levels of CYLD with no involviment in caspase-3 and -8 activation and NF-κB in K562 cells. LQFM018 (2) showed in vitro myelotoxicity potential, but it was orally well tolerated and classified as UN GHS category 5 (LD50 > 2000-5000 mg/Kg). Thus, LQFM018 (2) seems to have a non-selective action considering hematopoietic cells. In conclusion, it is suggested LQFM018 (2) promotes cell death in K562 cells via necroptotic signaling, probably with involvement of dopamine D4 receptor. These findings open new perspectives in cancer therapy by use of necroptosis inducing agents as a strategy of reverse cancer cell chemoresistance.
Collapse
Affiliation(s)
- Fabiana Bettanin Costa
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Alane P Cortez
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Renato Ivan de Ávila
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Flávio S de Carvalho
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Wanessa M Andrade
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Andrezza F da Cruz
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Karinna B Reis
- Laboratório de Química Farmacêutica Medicinal (LQFM), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Ricardo Menegatti
- Laboratório de Química Farmacêutica Medicinal (LQFM), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Luciano M Lião
- Laboratório de Ressonância Magnética Nuclear, Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Luiz Antônio S Romeiro
- Universidade Católica de Brasília, Brasília, DF, Brazil; Universidade de Brasília, Brasília, DF, Brazil
| | - François Noël
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos Alberto M Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eliezer J Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Germán Sanz
- Laboratório de Cromatografia e Espectrometria de Massas (LaCEM), Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marcella F Rodrigues
- Laboratório de Cromatografia e Espectrometria de Massas (LaCEM), Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Boniek G Vaz
- Laboratório de Cromatografia e Espectrometria de Massas (LaCEM), Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marize Campos Valadares
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
15
|
Anandan M, Gurumallesh Prabu H. Dodonaea viscosa Leaf Extract Assisted Synthesis of Gold Nanoparticles: Characterization and Cytotoxicity Against A549 NSCLC Cancer Cells. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0799-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Tantawy MA, Nafie MS, Elmegeed GA, Ali IA. Auspicious role of the steroidal heterocyclic derivatives as a platform for anti-cancer drugs. Bioorg Chem 2017; 73:128-146. [DOI: 10.1016/j.bioorg.2017.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/10/2017] [Accepted: 06/17/2017] [Indexed: 01/20/2023]
|
17
|
|
18
|
Abstract
Estrogen receptors (ERs) are a group of compounds named for their importance in both menstrual and estrous reproductive cycles. They are involved in the regulation of various processes ranging from tissue growth maintenance to reproduction. Their action is mediated through ER nuclear receptors. Two subtypes of the estrogen receptor, ERα and ERβ, exist and exhibit distinct cellular and tissue distribution patterns. In humans, both receptor subtypes are expressed in many cells and tissues, and they control key physiological functions in various organ systems. Estrogens attract great attention due to their wide applications in female reproductive functions and treatment of some estrogen-dependent cancers and osteoporosis. This paper provides a general review of ER ligands published in international journals patented between 2013 and 2015. The broad physiological profile of estrogens has attracted the attention of many researchers to develop new estrogen ligands as therapeutic molecules for various clinical purposes. After the discovery of the ERβ receptor, subtype-selective ligands could be used to elicit beneficial estrogen-like activities and reduce adverse side effects, based on the different distributions and relative levels of the two ER subtypes in different estrogen target tissues. Therefore, recent literature has focused on selective estrogen ligands as highly promising agents for the treatment of some types of cancer, as well as for cardiovascular, inflammatory, and neurodegenerative diseases. Estrogen receptors are nuclear transcription factors that are involved in the regulation of many complex physiological functions in humans. Selective estrogen ligands are highly promising targets for treatment of some types of cancer, as well as for cardiovascular, inflammatory and neurodegenerative diseases. Extensive structure-activity relationship studies of ER ligands based on small molecules indicate that many different structural scaffolds may provide high-affinity compounds, provided that some basic structural requirements are present.
Collapse
|
19
|
Atapour-Mashhad H, Soukhtanloo M, Massoudi A, Shiri A, Parizadeh SM, Bakavoli M. Synthesis and Antiproliferative Evaluation of New Pyrimido[1,6- a]Thieno[2,3- d]Pyrimidine Derivatives. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hoda Atapour-Mashhad
- Chemistry Department; Payame Noor University (PNU); 19395-4697 Tehran I. R. Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | | | - Ali Shiri
- Department of Chemistry, Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| | - Seyed Mohamadreza Parizadeh
- Department of Clinical Biochemistry, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mehdi Bakavoli
- Department of Chemistry, Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|
20
|
Vaikundamoorthy R, Sundaramoorthy R, Krishnamoorthy V, Vilwanathan R, Rajendran R. Marine steroid derived from Acropora formosa enhances mitochondrial-mediated apoptosis in non-small cell lung cancer cells. Tumour Biol 2016; 37:10517-31. [DOI: 10.1007/s13277-016-4947-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/29/2016] [Indexed: 01/16/2023] Open
|
21
|
Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur J Med Chem 2015; 102:487-529. [PMID: 26310894 DOI: 10.1016/j.ejmech.2015.07.026] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022]
Abstract
Piperazine is one of the most sought heterocyclics for the development of new drug candidates. This ring can be traced in a number of well established, commercially available drugs. Wide array of pharmacological activities exhibited by piperazine derivatives have made them indispensable anchors for the development of novel therapeutic agents. The review herein highlights the therapeutic significance of piperazine derivatives. Various therapeutically active piperazine derivatives developed by several chemists are reported here.
Collapse
|