1
|
Teitgen AE, Hock MT, McCabe KJ, Childers MC, Huber GA, Marzban B, Beard DA, McCammon JA, Regnier M, McCulloch AD. Multiscale modeling shows how 2'-deoxy-ATP rescues ventricular function in heart failure. Proc Natl Acad Sci U S A 2024; 121:e2322077121. [PMID: 39172779 PMCID: PMC11363293 DOI: 10.1073/pnas.2322077121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
2'-deoxy-ATP (dATP) improves cardiac function by increasing the rate of crossbridge cycling and Ca[Formula: see text] transient decay. However, the mechanisms of these effects and how therapeutic responses to dATP are achieved when dATP is only a small fraction of the total ATP pool remain poorly understood. Here, we used a multiscale computational modeling approach to analyze the mechanisms by which dATP improves ventricular function. We integrated atomistic simulations of prepowerstroke myosin and actomyosin association, filament-scale Markov state modeling of sarcomere mechanics, cell-scale analysis of myocyte Ca[Formula: see text] dynamics and contraction, organ-scale modeling of biventricular mechanoenergetics, and systems level modeling of circulatory dynamics. Molecular and Brownian dynamics simulations showed that dATP increases the actomyosin association rate by 1.9 fold. Markov state models predicted that dATP increases the pool of myosin heads available for crossbridge cycling, increasing steady-state force development at low dATP fractions by 1.3 fold due to mechanosensing and nearest-neighbor cooperativity. This was found to be the dominant mechanism by which small amounts of dATP can improve contractile function at myofilament to organ scales. Together with faster myocyte Ca[Formula: see text] handling, this led to improved ventricular contractility, especially in a failing heart model in which dATP increased ejection fraction by 16% and the energy efficiency of cardiac contraction by 1%. This work represents a complete multiscale model analysis of a small molecule myosin modulator from single molecule to organ system biophysics and elucidates how the molecular mechanisms of dATP may improve cardiovascular function in heart failure with reduced ejection fraction.
Collapse
Affiliation(s)
- Abigail E. Teitgen
- Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Marcus T. Hock
- Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Kimberly J. McCabe
- Department of Computational Physiology, Simula Research Laboratory, Oslo0164, Norway
| | | | - Gary A. Huber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Bahador Marzban
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - Daniel A. Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA98109
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA92093
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
2
|
Morck MM, Bhowmik D, Pathak D, Dawood A, Spudich J, Ruppel KM. Hypertrophic cardiomyopathy mutations in the pliant and light chain-binding regions of the lever arm of human β-cardiac myosin have divergent effects on myosin function. eLife 2022; 11:e76805. [PMID: 35767336 PMCID: PMC9242648 DOI: 10.7554/elife.76805] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/12/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in the lever arm of β-cardiac myosin are a frequent cause of hypertrophic cardiomyopathy, a disease characterized by hypercontractility and eventual hypertrophy of the left ventricle. Here, we studied five such mutations: three in the pliant region of the lever arm (D778V, L781P, and S782N) and two in the light chain-binding region (A797T and F834L). We investigated their effects on both motor function and myosin subfragment 2 (S2) tail-based autoinhibition. The pliant region mutations had varying effects on the motor function of a myosin construct lacking the S2 tail: overall, D778V increased power output, L781P reduced power output, and S782N had little effect on power output, while all three reduced the external force sensitivity of the actin detachment rate. With a myosin containing the motor domain and the proximal S2 tail, the pliant region mutations also attenuated autoinhibition in the presence of filamentous actin but had no impact in the absence of actin. By contrast, the light chain-binding region mutations had little effect on motor activity but produced marked reductions in autoinhibition in both the presence and absence of actin. Thus, mutations in the lever arm of β-cardiac myosin have divergent allosteric effects on myosin function, depending on whether they are in the pliant or light chain-binding regions.
Collapse
Affiliation(s)
- Makenna M Morck
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - Debanjan Bhowmik
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - Divya Pathak
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - Aminah Dawood
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - James Spudich
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - Kathleen M Ruppel
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
3
|
Shinobu A, Kobayashi C, Matsunaga Y, Sugita Y. Coarse-Grained Modeling of Multiple Pathways in Conformational Transitions of Multi-Domain Proteins. J Chem Inf Model 2021; 61:2427-2443. [PMID: 33956432 DOI: 10.1021/acs.jcim.1c00286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Large-scale conformational transitions in multi-domain proteins are often essential for their functions. To investigate the transitions, it is necessary to explore multiple potential pathways, which involve different intermediate structures. Here, we present a multi-basin (MB) coarse-grained (CG) structure-based Go̅ model for describing transitions in proteins with more than two moving domains. This model is an extension of our dual-basin Go̅ model in which system-dependent parameters are determined systematically using the multistate Bennett acceptance ratio method. In the MB Go̅ model for multi-domain proteins, we assume that intermediate structures may have partial inter-domain native contacts. This approach allows us to search multiple transition pathways that involve distinct intermediate structures using the CG molecular dynamics (MD) simulations. We apply this scheme to an enzyme, adenylate kinase (AdK), which has three major domains and can move along two different pathways. Using the optimized mixing parameters for each pathway, AdK shows frequent transitions between the Open, Closed, and the intermediate basins and samples a wide variety of conformations within each basin. The explored multiple transition pathways could be compared with experimental data and examined in more detail by atomistic MD simulations.
Collapse
Affiliation(s)
- Ai Shinobu
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Chigusa Kobayashi
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Matsunaga
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Yuji Sugita
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan.,Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
4
|
Ma W, Duno-Miranda S, Irving T, Craig R, Padrón R. Relaxed tarantula skeletal muscle has two ATP energy-saving mechanisms. J Gen Physiol 2021; 153:e202012780. [PMID: 33480967 PMCID: PMC7822627 DOI: 10.1085/jgp.202012780] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Myosin molecules in the relaxed thick filaments of striated muscle have a helical arrangement in which the heads of each molecule interact with each other, forming the interacting-heads motif (IHM). In relaxed mammalian skeletal muscle, this helical ordering occurs only at temperatures >20°C and is disrupted when temperature is decreased. Recent x-ray diffraction studies of live tarantula skeletal muscle have suggested that the two myosin heads of the IHM (blocked heads [BHs] and free heads [FHs]) have very different roles and dynamics during contraction. Here, we explore temperature-induced changes in the BHs and FHs in relaxed tarantula skeletal muscle. We find a change with decreasing temperature that is similar to that in mammals, while increasing temperature induces a different behavior in the heads. At 22.5°C, the BHs and FHs containing ADP.Pi are fully helically organized, but they become progressively disordered as temperature is lowered or raised. Our interpretation suggests that at low temperature, while the BHs remain ordered the FHs become disordered due to transition of the heads to a straight conformation containing Mg.ATP. Above 27.5°C, the nucleotide remains as ADP.Pi, but while BHs remain ordered, half of the FHs become progressively disordered, released semipermanently at a midway distance to the thin filaments while the remaining FHs are docked as swaying heads. We propose a thermosensing mechanism for tarantula skeletal muscle to explain these changes. Our results suggest that tarantula skeletal muscle thick filaments, in addition to having a superrelaxation-based ATP energy-saving mechanism in the range of 8.5-40°C, also exhibit energy saving at lower temperatures (<22.5°C), similar to the proposed refractory state in mammals.
Collapse
Affiliation(s)
- Weikang Ma
- Biophysics Collaborative Access Team, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Sebastian Duno-Miranda
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT
| | - Thomas Irving
- Biophysics Collaborative Access Team, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Raúl Padrón
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
5
|
Matusovsky OS, Kodera N, MacEachen C, Ando T, Cheng YS, Rassier DE. Millisecond Conformational Dynamics of Skeletal Myosin II Power Stroke Studied by High-Speed Atomic Force Microscopy. ACS NANO 2021; 15:2229-2239. [PMID: 33297671 DOI: 10.1021/acsnano.0c06820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Myosin-based molecular motors are responsible for a variety of functions in the cells. Myosin II is ultimately responsible for muscle contraction and can be affected by multiple mutations, that may lead to myopathies. Therefore, it is essential to understand the nanomechanical properties of myosin II. Due to the lack of technical capabilities to visualize rapid changes in nonprocessive molecular motors, there are several mechanistic details in the force-generating steps produced by myosin II that are poorly understood. In this study, high-speed atomic force microscopy was used to visualize the actin-myosin complex at high temporal and spatial resolutions, providing further details about the myosin mechanism of force generation. A two-step motion of the double-headed heavy meromyosin (HMM) lever arm, coupled to an 8.4 nm working stroke was observed in the presence of ATP. HMM heads attached to an actin filament worked independently, exhibiting different lever arm configurations in given time during experiments. A lever arm rotation was associated with several non-stereospecific long-lived and stereospecific short-lived (∼1 ms) HMM conformations. The presence of free Pi increased the short-lived stereospecific binding events in which the power stroke occurred, followed by release of Pi after the power stroke.
Collapse
Affiliation(s)
- Oleg S Matusovsky
- Department of Kinesiology and Physical Education, McGill University, Montreal H2W1S4, Canada
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Caitlin MacEachen
- Department of Kinesiology and Physical Education, McGill University, Montreal H2W1S4, Canada
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Yu-Shu Cheng
- Department of Kinesiology and Physical Education, McGill University, Montreal H2W1S4, Canada
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal H2W1S4, Canada
| |
Collapse
|
6
|
Gyimesi M, Horváth ÁI, Túrós D, Suthar SK, Pénzes M, Kurdi C, Canon L, Kikuti C, Ruppel KM, Trivedi DV, Spudich JA, Lőrincz I, Rauscher AÁ, Kovács M, Pál E, Komoly S, Houdusse A, Málnási-Csizmadia A. Single Residue Variation in Skeletal Muscle Myosin Enables Direct and Selective Drug Targeting for Spasticity and Muscle Stiffness. Cell 2020; 183:335-346.e13. [PMID: 33035452 DOI: 10.1016/j.cell.2020.08.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
Muscle spasticity after nervous system injuries and painful low back spasm affect more than 10% of global population. Current medications are of limited efficacy and cause neurological and cardiovascular side effects because they target upstream regulators of muscle contraction. Direct myosin inhibition could provide optimal muscle relaxation; however, targeting skeletal myosin is particularly challenging because of its similarity to the cardiac isoform. We identified a key residue difference between these myosin isoforms, located in the communication center of the functional regions, which allowed us to design a selective inhibitor, MPH-220. Mutagenic analysis and the atomic structure of MPH-220-bound skeletal muscle myosin confirmed the mechanism of specificity. Targeting skeletal muscle myosin by MPH-220 enabled muscle relaxation, in human and model systems, without cardiovascular side effects and improved spastic gait disorders after brain injury in a disease model. MPH-220 provides a potential nervous-system-independent option to treat spasticity and muscle stiffness.
Collapse
Affiliation(s)
- Máté Gyimesi
- MTA-ELTE Motor Pharmacology Research Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary; Motorpharma, Ltd., Szilágyi Erzsébet fasor 27, 1026 Budapest, Hungary.
| | - Ádám I Horváth
- MTA-ELTE Motor Pharmacology Research Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| | - Demeter Túrós
- MTA-ELTE Motor Pharmacology Research Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| | - Sharad Kumar Suthar
- MTA-ELTE Motor Pharmacology Research Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary; Printnet, Ltd., Kisgömb utca 25-27, 1135 Budapest, Hungary
| | - Máté Pénzes
- MTA-ELTE Motor Pharmacology Research Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| | - Csilla Kurdi
- MTA-ELTE Motor Pharmacology Research Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| | - Louise Canon
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75005 Paris, France
| | - Carlos Kikuti
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75005 Paris, France
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Beckman Center B400, 279 W. Campus Drive, Stanford, CA 94305, USA
| | - Darshan V Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Beckman Center B400, 279 W. Campus Drive, Stanford, CA 94305, USA
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Beckman Center B400, 279 W. Campus Drive, Stanford, CA 94305, USA
| | - István Lőrincz
- Printnet, Ltd., Kisgömb utca 25-27, 1135 Budapest, Hungary
| | - Anna Á Rauscher
- MTA-ELTE Motor Pharmacology Research Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary; Motorpharma, Ltd., Szilágyi Erzsébet fasor 27, 1026 Budapest, Hungary
| | - Mihály Kovács
- MTA-ELTE Motor Pharmacology Research Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary; Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary and Brunszvik u. 2, 2462 Martonvásár, Hungary
| | - Endre Pál
- Department of Neurology, University of Pécs, Rét utca 2, 7623 Pécs, Hungary
| | - Sámuel Komoly
- Department of Neurology, University of Pécs, Rét utca 2, 7623 Pécs, Hungary
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75005 Paris, France
| | - András Málnási-Csizmadia
- MTA-ELTE Motor Pharmacology Research Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary; Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary and Brunszvik u. 2, 2462 Martonvásár, Hungary.
| |
Collapse
|
7
|
Guo Y, Kronert WA, Hsu KH, Huang A, Sarsoza F, Bell KM, Suggs JA, Swank DM, Bernstein SI. Drosophila myosin mutants model the disparate severity of type 1 and type 2B distal arthrogryposis and indicate an enhanced actin affinity mechanism. Skelet Muscle 2020; 10:24. [PMID: 32799913 PMCID: PMC7429702 DOI: 10.1186/s13395-020-00241-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/28/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Distal arthrogryposis (DA) is a group of autosomal dominant skeletal muscle diseases characterized by congenital contractures of distal limb joints. The most common cause of DA is a mutation of the embryonic myosin heavy chain gene, MYH3. Human phenotypes of DA are divided into the weakest form-DA1, a moderately severe form-DA2B (Sheldon-Hall Syndrome), and a severe DA disorder-DA2A (Freeman-Sheldon Syndrome). As models of DA1 and DA2B do not exist, their disease mechanisms are poorly understood. METHODS We produced the first models of myosin-based DA1 (F437I) and DA2B (A234T) using transgenic Drosophila melanogaster and performed an integrative analysis of the effects of the mutations. Assessments included lifespan, locomotion, ultrastructural analysis, muscle mechanics, ATPase activity, in vitro motility, and protein modeling. RESULTS We observed significant defects in DA1 and DA2B Drosophila flight and jump ability, as well as myofibril assembly and stability, with homozygotes displaying more severe phenotypes than heterozygotes. Notably, DA2B flies showed dramatically stronger phenotypic defects compared to DA1 flies, mirroring the human condition. Mechanical studies of indirect flight muscle fibers from DA1 heterozygotes revealed reduced power output along with increased stiffness and force production, compared to wild-type controls. Further, isolated DA1 myosin showed significantly reduced myosin ATPase activity and in vitro actin filament motility. These data in conjunction with our sinusoidal analysis of fibers suggest prolonged myosin binding to actin and a slowed step associated with Pi release and/or the power stroke. Our results are supported by molecular modeling studies, which indicate that the F437I and A234T mutations affect specific amino acid residue interactions within the myosin motor domain that may alter interaction with actin and nucleotide. CONCLUSIONS The allele-specific ultrastructural and locomotory defects in our Drosophila DA1 and DA2B models are concordant with the differential severity of the human diseases. Further, the mechanical and biochemical defects engendered by the DA1 mutation reveal that power production, fiber stiffness, and nucleotide handling are aberrant in F437I muscle and myosin. The defects observed in our DA1 and DA2B Drosophila models provide insight into DA phenotypes in humans, suggesting that contractures arise from prolonged actomyosin interactions.
Collapse
Affiliation(s)
- Yiming Guo
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, 92182-4614, USA
| | - William A Kronert
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Karen H Hsu
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Alice Huang
- Department of Biological Sciences & Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Floyd Sarsoza
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Kaylyn M Bell
- Department of Biological Sciences & Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jennifer A Suggs
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Douglas M Swank
- Department of Biological Sciences & Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, 92182-4614, USA.
| |
Collapse
|
8
|
Caldwell JT, Mermelstein DJ, Walker RC, Bernstein SI, Huxford T. X-ray Crystallographic and Molecular Dynamic Analyses of Drosophila melanogaster Embryonic Muscle Myosin Define Domains Responsible for Isoform-Specific Properties. J Mol Biol 2020; 432:427-447. [PMID: 31786266 PMCID: PMC6995774 DOI: 10.1016/j.jmb.2019.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 01/19/2023]
Abstract
Drosophila melanogaster is a powerful system for characterizing alternative myosin isoforms and modeling muscle diseases, but high-resolution structures of fruit fly contractile proteins have not been determined. Here we report the first x-ray crystal structure of an insect myosin: the D melanogaster skeletal muscle myosin II embryonic isoform (EMB). Using our system for recombinant expression of myosin heavy chain (MHC) proteins in whole transgenic flies, we prepared and crystallized stable proteolytic S1-like fragments containing the entire EMB motor domain bound to an essential light chain. We solved the x-ray crystal structure by molecular replacement and refined the resulting model against diffraction data to 2.2 Å resolution. The protein is captured in two slightly different renditions of the rigor-like conformation with a citrate of crystallization at the nucleotide binding site and exhibits structural features common to myosins of diverse classes from all kingdoms of life. All atom molecular dynamics simulations on EMB in its nucleotide-free state and a derivative homology model containing 61 amino acid substitutions unique to the indirect flight muscle isoform (IFI) suggest that differences in the identity of residues within the relay and the converter that are encoded for by MHC alternative exons 9 and 11, respectively, directly contribute to increased mobility of these regions in IFI relative to EMB. This suggests the possibility that alternative folding or conformational stability within these regions contribute to the observed functional differences in Drosophila EMB and IFI myosins.
Collapse
Affiliation(s)
- James T Caldwell
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA; Department of Biology and Molecular Biology Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA
| | - Daniel J Mermelstein
- San Diego Supercomputer Center and Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0505, USA
| | - Ross C Walker
- San Diego Supercomputer Center and Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0505, USA
| | - Sanford I Bernstein
- Department of Biology and Molecular Biology Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA.
| |
Collapse
|
9
|
Robert-Paganin J, Pylypenko O, Kikuti C, Sweeney HL, Houdusse A. Force Generation by Myosin Motors: A Structural Perspective. Chem Rev 2019; 120:5-35. [PMID: 31689091 DOI: 10.1021/acs.chemrev.9b00264] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Generating force and movement is essential for the functions of cells and organisms. A variety of molecular motors that can move on tracks within cells have evolved to serve this role. How these motors interact with their tracks and how that, in turn, leads to the generation of force and movement is key to understanding the cellular roles that these motor-track systems serve. This review is focused on the best understood of these systems, which is the molecular motor myosin that moves on tracks of filamentous (F-) actin. The review highlights both the progress and the limits of our current understanding of how force generation can be controlled by F-actin-myosin interactions. What has emerged are insights they may serve as a framework for understanding the design principles of a number of types of molecular motors and their interactions with their tracks.
Collapse
Affiliation(s)
- Julien Robert-Paganin
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| | - Olena Pylypenko
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| | - Carlos Kikuti
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| | - H Lee Sweeney
- Department of Pharmacology & Therapeutics and the Myology Institute , University of Florida College of Medicine , PO Box 100267, Gainesville , Florida 32610-0267 , United States
| | - Anne Houdusse
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| |
Collapse
|
10
|
Structural basis for power stroke vs. Brownian ratchet mechanisms of motor proteins. Proc Natl Acad Sci U S A 2019; 116:19777-19785. [PMID: 31506355 DOI: 10.1073/pnas.1818589116] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Two mechanisms have been proposed for the function of motor proteins: The power stroke and the Brownian ratchet. The former refers to generation of a large downhill free energy gradient over which the motor protein moves nearly irreversibly in making a step, whereas the latter refers to biasing or rectifying the diffusive motion of the motor. Both mechanisms require input of free energy, which generally involves the processing of an ATP (adenosine 5'-triphosphate) molecule. Recent advances in experiments that reveal the details of the stepping motion of motor proteins, together with computer simulations of atomistic structures, have provided greater insights into the mechanisms. Here, we compare the various models of the power stroke and the Brownian ratchet that have been proposed. The 2 mechanisms are not mutually exclusive, and various motor proteins employ them to different extents to perform their biological function. As examples, we discuss linear motor proteins Kinesin-1 and myosin-V, and the rotary motor F1-ATPase, all of which involve a power stroke as the essential element of their stepping mechanism.
Collapse
|
11
|
Smith AS, Pal K, Nowak RB, Demenko A, Zaninetti C, Da Costa L, Favier R, Pecci A, Fowler VM. MYH9-related disease mutations cause abnormal red blood cell morphology through increased myosin-actin binding at the membrane. Am J Hematol 2019; 94:667-677. [PMID: 30916803 PMCID: PMC6510596 DOI: 10.1002/ajh.25472] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 01/29/2023]
Abstract
MYH9-related disease (MYH9-RD) is a rare, autosomal dominant disorder caused by mutations in MYH9, the gene encoding the actin-activated motor protein non-muscle myosin IIA (NMIIA). MYH9-RD patients suffer from bleeding syndromes, progressive kidney disease, deafness, and/or cataracts, but the impact of MYH9 mutations on other NMIIA-expressing tissues remains unknown. In human red blood cells (RBCs), NMIIA assembles into bipolar filaments and binds to actin filaments (F-actin) in the spectrin-F-actin membrane skeleton to control RBC biconcave disk shape and deformability. Here, we tested the effects of MYH9 mutations in different NMIIA domains (motor, coiled-coil rod, or non-helical tail) on RBC NMIIA function. We found that MYH9-RD does not cause clinically significant anemia and that patient RBCs have normal osmotic deformability as well as normal membrane skeleton composition and micron-scale distribution. However, analysis of complete blood count data and peripheral blood smears revealed reduced hemoglobin content and elongated shapes, respectively, of MYH9-RD RBCs. Patients with mutations in the NMIIA motor domain had the highest numbers of elongated RBCs. Patients with mutations in the motor domain also had elevated association of NMIIA with F-actin at the RBC membrane. Our findings support a central role for motor domain activity in NMIIA regulation of RBC shape and define a new sub-clinical phenotype of MYH9-RD.
Collapse
Affiliation(s)
- Alyson S. Smith
- Department of Molecular Medicine, The Scripps Research
Institute, La Jolla, CA 92037
| | - Kasturi Pal
- Department of Molecular Medicine, The Scripps Research
Institute, La Jolla, CA 92037
| | - Roberta B. Nowak
- Department of Molecular Medicine, The Scripps Research
Institute, La Jolla, CA 92037
| | - Anastasiya Demenko
- Department of Molecular Medicine, The Scripps Research
Institute, La Jolla, CA 92037
| | - Carlo Zaninetti
- Department of Internal Medicine, IRCCS Policlinico San
Matteo Foundation and University of Pavia, Pavia, Italy
| | - Lydie Da Costa
- AP-HP, Service d’Hématologie Biologique,
Hôpital R. Debré, Paris F-75019, France; Université Paris 7,
Sorbonne Paris Cité, Paris F-75010, France; INSERM U1134, INTS, F-75015,
France; Laboratoire d’Excellence GR-Ex, France
| | - Remi Favier
- Assistance Publique-Hôpitaux de Paris, Armand
Trousseau Children Hospital, French Reference Center for platelet disorders, Paris,
75012, France
| | - Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San
Matteo Foundation and University of Pavia, Pavia, Italy
| | - Velia M. Fowler
- Department of Molecular Medicine, The Scripps Research
Institute, La Jolla, CA 92037
- Department of Biological Sciences, University of Delaware, Newark, DE 19711
| |
Collapse
|
12
|
The IKK-binding domain of NEMO is an irregular coiled coil with a dynamic binding interface. Sci Rep 2019; 9:2950. [PMID: 30814588 PMCID: PMC6393490 DOI: 10.1038/s41598-019-39588-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/25/2019] [Indexed: 11/29/2022] Open
Abstract
NEMO is an essential component in the activation of the canonical NF-κB pathway and exerts its function by recruiting the IκB kinases (IKK) to the IKK complex. Inhibition of the NEMO/IKKs interaction is an attractive therapeutic paradigm for diseases related to NF-κB mis-regulation, but a difficult endeavor because of the extensive protein-protein interface. Here we report the high-resolution structure of the unbound IKKβ-binding domain of NEMO that will greatly facilitate the design of NEMO/IKK inhibitors. The structures of unbound NEMO show a closed conformation that partially occludes the three binding hot-spots and suggest a facile transition to an open state that can accommodate ligand binding. By fusing coiled-coil adaptors to the IKKβ-binding domain of NEMO, we succeeded in creating a protein with improved solution behavior, IKKβ-binding affinity and crystallization compatibility, which will enable the structural characterization of new NEMO/inhibitor complexes.
Collapse
|
13
|
Gargey A, Ge J, Tkachev YV, Nesmelov YE. Electrostatic interactions in the force-generating region of the human cardiac myosin modulate ADP dissociation from actomyosin. Biochem Biophys Res Commun 2019; 509:978-982. [PMID: 30654937 DOI: 10.1016/j.bbrc.2019.01.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
Human cardiac myosin has two isoforms, alpha and beta, sharing significant sequence similarity, but different in kinetics: ADP release from actomyosin is an order of magnitude faster in the alpha myosin isoform. Apparently, small differences in the sequence are responsible for distinct local inter-residue interactions within alpha and beta isoforms, leading to such a dramatic difference in the rate of ADP release. Our analysis of structural kinetics of alpha and beta isoforms using molecular dynamics simulations revealed distinct dynamics of SH1:SH2 helix within the force-generation region of myosin head. The simulations showed that the residue R694 of the helix forms two permanent salt bridges in the beta isoform, which are not present in the alpha isoform. We hypothesized that the isoform-specific electrostatic interactions play a role in the difference of kinetic properties of myosin isoforms. We prepared R694N mutant in the beta isoform background to destabilize electrostatic interactions in the force-generating region of the myosin head. Our experimental data confirm faster ADP release from R694N actomyosin mutant, but is not as dramatic as the difference of kinetics of ADP release in the alpha and beta isoforms.
Collapse
Affiliation(s)
- Akhil Gargey
- Department of Physics and Optical Science, University of North Carolina Charlotte, Charlotte, NC, 28223, USA; Department of Biological Science, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Jinghua Ge
- Department of Physics and Optical Science, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Yaroslav V Tkachev
- Department of Physics and Optical Science, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Yuri E Nesmelov
- Department of Physics and Optical Science, University of North Carolina Charlotte, Charlotte, NC, 28223, USA; Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC, 28223, USA.
| |
Collapse
|
14
|
Kronert WA, Bell KM, Viswanathan MC, Melkani GC, Trujillo AS, Huang A, Melkani A, Cammarato A, Swank DM, Bernstein SI. Prolonged cross-bridge binding triggers muscle dysfunction in a Drosophila model of myosin-based hypertrophic cardiomyopathy. eLife 2018; 7:38064. [PMID: 30102150 PMCID: PMC6141233 DOI: 10.7554/elife.38064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023] Open
Abstract
K146N is a dominant mutation in human β-cardiac myosin heavy chain, which causes hypertrophic cardiomyopathy. We examined how Drosophila muscle responds to this mutation and integratively analyzed the biochemical, physiological and mechanical foundations of the disease. ATPase assays, actin motility, and indirect flight muscle mechanics suggest at least two rate constants of the cross-bridge cycle are altered by the mutation: increased myosin attachment to actin and decreased detachment, yielding prolonged binding. This increases isometric force generation, but also resistive force and work absorption during cyclical contractions, resulting in decreased work, power output, flight ability and degeneration of flight muscle sarcomere morphology. Consistent with prolonged cross-bridge binding serving as the mechanistic basis of the disease and with human phenotypes, 146N/+ hearts are hypercontractile with increased tension generation periods, decreased diastolic/systolic diameters and myofibrillar disarray. This suggests that screening mutated Drosophila hearts could rapidly identify hypertrophic cardiomyopathy alleles and treatments. Myosin is a motor protein that drives the contraction of muscles. Filaments made from myosin molecules slide between filaments of another protein called actin, tugging the edges of the muscle cell inwards. To achieve this, part of each motor protein – called the 'head' – grabs hold of actin and uses energy to pull on the filaments. Small genetic mutations in the gene for myosin can change the shape of the protein. This can change the way that it interacts with actin, altering the molecular machinery that makes muscles contract. In some cases, gene errors can cause the heart muscle wall to thicken, a condition called hypertrophic cardiomyopathy. Mapping the locations of known mutations revealed 'hot spots' on the myosin protein where these errors are likely to cause disease. These include the part of the molecule that swings the myosin heads, and the heads themselves. It only takes a change to a single letter in the DNA code to thicken the heart wall, but the impact of each possible change is not yet known. Kronert et al. have now genetically modified fruit flies to give them one of the mutations that causes thickening of the heart wall in humans. The mutation, known as K146N, does not appear in one of the well-known 'hot spots'. The experiments revealed that the mutation causes myosin to remain attached to actin for longer than normal. This increased the amount of force the myosin generated, but slowed down actin movement, causing muscle stiffness. This resulted in less power for every cycle of muscle movement, and caused the muscles to degenerate over time. As a result, the flies were less able to use their wings, and their hearts pumped less well. Hypertrophic cardiomyopathy can cause death in young adults, particularly competitive athletes. Yet studying the disease in humans is challenging. Recreating myosin mutations in fruit flies provides a way to study hypertrophic cardiomyopathy in the laboratory. In the future, extensions to this technique could allow researchers to examine the impact of other mutations. Models like this one could also allow early testing of new drugs or genetic treatments to repair faulty myosin molecules.
Collapse
Affiliation(s)
- William A Kronert
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, United States
| | - Kaylyn M Bell
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, New York, United States
| | - Meera C Viswanathan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, United States
| | - Girish C Melkani
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, United States
| | - Adriana S Trujillo
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, United States
| | - Alice Huang
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, New York, United States
| | - Anju Melkani
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, United States
| | - Anthony Cammarato
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, United States
| | - Douglas M Swank
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, New York, United States.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, New York, United States
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, United States
| |
Collapse
|
15
|
Sato T, Ohnuki J, Takano M. Long-range coupling between ATP-binding and lever-arm regions in myosin via dielectric allostery. J Chem Phys 2018; 147:215101. [PMID: 29221399 DOI: 10.1063/1.5004809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A protein molecule is a dielectric substance, so the binding of a ligand is expected to induce dielectric response in the protein molecule, considering that ligands are charged or polar in general. We previously reported that binding of adenosine triphosphate (ATP) to molecular motor myosin actually induces such a dielectric response in myosin due to the net negative charge of ATP. By this dielectric response, referred to as "dielectric allostery," spatially separated two regions in myosin, the ATP-binding region and the actin-binding region, are allosterically coupled. In this study, from the statistically stringent analyses of the extensive molecular dynamics simulation data obtained in the ATP-free and the ATP-bound states, we show that there exists the dielectric allostery that transmits the signal of ATP binding toward the distant lever-arm region. The ATP-binding-induced electrostatic potential change observed on the surface of the main domain induced a movement of the converter subdomain from which the lever arm extends. The dielectric response was found to be caused by an underlying large-scale concerted rearrangement of the electrostatic bond network, in which highly conserved charged/polar residues are involved. Our study suggests the importance of the dielectric property for molecular machines in exerting their function.
Collapse
Affiliation(s)
- Takato Sato
- Department of Pure and Applied Physics, Waseda University, Tokyo 169-8555, Japan
| | - Jun Ohnuki
- Department of Pure and Applied Physics, Waseda University, Tokyo 169-8555, Japan
| | - Mitsunori Takano
- Department of Pure and Applied Physics, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
16
|
Carugo O. Atomic displacement parameters in structural biology. Amino Acids 2018; 50:775-786. [DOI: 10.1007/s00726-018-2574-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/19/2018] [Indexed: 01/14/2023]
|
17
|
Banerjee C, Hu Z, Huang Z, Warrington JA, Taylor DW, Trybus KM, Lowey S, Taylor KA. The structure of the actin-smooth muscle myosin motor domain complex in the rigor state. J Struct Biol 2017; 200:325-333. [PMID: 29038012 DOI: 10.1016/j.jsb.2017.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 01/08/2023]
Abstract
Myosin-based motility utilizes catalysis of ATP to drive the relative sliding of F-actin and myosin. The earliest detailed model based on cryo-electron microscopy (cryoEM) and X-ray crystallography postulated that higher actin affinity and lever arm movement were coupled to closure of a feature of the myosin head dubbed the actin-binding cleft. Several studies since then using crystallography of myosin-V and cryoEM structures of F-actin bound myosin-I, -II and -V have provided details of this model. The smooth muscle myosin II interaction with F-actin may differ from those for striated and non-muscle myosin II due in part to different lengths of important surface loops. Here we report a ∼6 Å resolution reconstruction of F-actin decorated with the nucleotide-free recombinant smooth muscle myosin-II motor domain (MD) from images recorded using a direct electron detector. Resolution is highest for F-actin and the actin-myosin interface (3.5-4 Å) and lowest (∼6-7 Å) for those parts of the MD at the highest radius. Atomic models built into the F-actin density are quite comparable to those previously reported for rabbit muscle actin and show density from the bound ADP. The atomic model of the MD, is quite similar to a recently published structure of vertebrate non-muscle myosin II bound to F-actin and a crystal structure of nucleotide free myosin-V. Larger differences are observed when compared to the cryoEM structure of F-actin decorated with rabbit skeletal muscle myosin subfragment 1. The differences suggest less closure of the 50 kDa domain in the actin bound skeletal muscle myosin structure.
Collapse
Affiliation(s)
- Chaity Banerjee
- Department of Computer Science, Florida State University, Tallahassee, FL 32306-4530, United States
| | - Zhongjun Hu
- Institute of Molecular Biophysics, Kasha Laboratory, Florida State University, Tallahassee, FL 32306-4380, United States
| | - Zhong Huang
- Institute of Molecular Biophysics, Kasha Laboratory, Florida State University, Tallahassee, FL 32306-4380, United States
| | - J Anthony Warrington
- Institute of Molecular Biophysics, Kasha Laboratory, Florida State University, Tallahassee, FL 32306-4380, United States
| | - Dianne W Taylor
- Institute of Molecular Biophysics, Kasha Laboratory, Florida State University, Tallahassee, FL 32306-4380, United States
| | - Kathleen M Trybus
- Health Science Research Facility 130, 149 Beaumont Avenue, Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT 05405, United States
| | - Susan Lowey
- Health Science Research Facility 130, 149 Beaumont Avenue, Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT 05405, United States
| | - Kenneth A Taylor
- Institute of Molecular Biophysics, Kasha Laboratory, Florida State University, Tallahassee, FL 32306-4380, United States.
| |
Collapse
|
18
|
Planelles-Herrero VJ, Hartman JJ, Robert-Paganin J, Malik FI, Houdusse A. Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil. Nat Commun 2017; 8:190. [PMID: 28775348 PMCID: PMC5543065 DOI: 10.1038/s41467-017-00176-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/07/2017] [Indexed: 01/10/2023] Open
Abstract
Omecamtiv mecarbil is a selective, small-molecule activator of cardiac myosin that is being developed as a potential treatment for heart failure with reduced ejection fraction. Here we determine the crystal structure of cardiac myosin in the pre-powerstroke state, the most relevant state suggested by kinetic studies, both with (2.45 Å) and without (3.10 Å) omecamtiv mecarbil bound. Omecamtiv mecarbil does not change the motor mechanism nor does it influence myosin structure. Instead, omecamtiv mecarbil binds to an allosteric site that stabilizes the lever arm in a primed position resulting in accumulation of cardiac myosin in the primed state prior to onset of cardiac contraction, thus increasing the number of heads that can bind to the actin filament and undergo a powerstroke once the cardiac cycle starts. The mechanism of action of omecamtiv mecarbil also provides insights into uncovering how force is generated by molecular motors.Omecamtiv mecarbil (OM) is a cardiac myosin activator that is currently in clinical trials for heart failure treatment. Here, the authors give insights into its mode of action and present the crystal structure of OM bound to bovine cardiac myosin, which shows that OM stabilizes the pre-powerstroke state of myosin.
Collapse
Affiliation(s)
- Vicente J Planelles-Herrero
- Structural Motility, Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Sorbonne Universités, IFD, 4 Place Jussieu, 75252, Paris, cedex 05, France
| | - James J Hartman
- Research and Development, Cytokinetics, Inc., South San Francisco, CA, 94080, USA
| | - Julien Robert-Paganin
- Structural Motility, Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France
| | - Fady I Malik
- Research and Development, Cytokinetics, Inc., South San Francisco, CA, 94080, USA
| | - Anne Houdusse
- Structural Motility, Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France.
| |
Collapse
|
19
|
Fujii T, Namba K. Structure of actomyosin rigour complex at 5.2 Å resolution and insights into the ATPase cycle mechanism. Nat Commun 2017; 8:13969. [PMID: 28067235 PMCID: PMC5227740 DOI: 10.1038/ncomms13969] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/16/2016] [Indexed: 11/18/2022] Open
Abstract
Muscle contraction is driven by cyclic association and dissociation of myosin head of the thick filament with thin actin filament coupled with ATP binding and hydrolysis by myosin. However, because of the absence of actomyosin rigour structure at high resolution, it still remains unclear how the strong binding of myosin to actin filament triggers the release of hydrolysis products and how ATP binding causes their dissociation. Here we report the structure of mammalian skeletal muscle actomyosin rigour complex at 5.2 Å resolution by electron cryomicroscopy. Comparison with the structures of myosin in various states shows a distinctly large conformational change, providing insights into the ATPase-coupled reaction cycle of actomyosin. Based on our observations, we hypothesize that asymmetric binding along the actin filament could function as a Brownian ratchet by favouring directionally biased thermal motions of myosin and actin.
Collapse
Affiliation(s)
- Takashi Fujii
- Graduate School of Frontier Biosciences, Osaka University, and Riken Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, and Riken Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Sato T, Ohnuki J, Takano M. Dielectric Allostery of Protein: Response of Myosin to ATP Binding. J Phys Chem B 2016; 120:13047-13055. [PMID: 28030954 DOI: 10.1021/acs.jpcb.6b10003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein uses allostery to execute biological function. The physical mechanism underlying the allostery has long been studied, with the focus on the mechanical response by ligand binding. Here, we highlight the electrostatic response, presenting an idea of "dielectric allostery". We conducted molecular dynamics simulations of myosin, a motor protein with allostery, and analyzed the response to ATP binding which is a crucial step in force-generating function, forcing myosin to unbind from the actin filament. We found that the net negative charge of ATP causes a large-scale, anisotropic dielectric response in myosin, altering the electrostatic potential in the distant actin-binding region and accordingly retracting a positively charged actin-binding loop. A large-scale rearrangement of electrostatic bond network was found to occur upon ATP binding. Since proteins are dielectric and ligands are charged/polar in general, the dielectric allostery might underlie a wide spectrum of functions by proteins.
Collapse
Affiliation(s)
- Takato Sato
- Department of Pure and Applied Physics, Waseda University , Okubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Jun Ohnuki
- Department of Pure and Applied Physics, Waseda University , Okubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Mitsunori Takano
- Department of Pure and Applied Physics, Waseda University , Okubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| |
Collapse
|
21
|
Abstract
Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins.
Collapse
Affiliation(s)
- Jun Ohnuki
- Department of Pure and Applied Physics, Waseda University, Tokyo 169-8555, Japan
| | - Takato Sato
- Department of Pure and Applied Physics, Waseda University, Tokyo 169-8555, Japan
| | - Mitsunori Takano
- Department of Pure and Applied Physics, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
22
|
Zhang Y, Kawamichi H, Kohama K, Nakamura A. Calcium-mediated regulation of recombinant hybrids of full-length Physarum myosin heavy chain with Physarum/scallop myosin light chains. Acta Biochim Biophys Sin (Shanghai) 2016; 48:536-43. [PMID: 27125976 DOI: 10.1093/abbs/gmw031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/21/2016] [Indexed: 11/14/2022] Open
Abstract
Physarum myosin is a Ca(2+)-binding protein and its activity is inhibited by Ca(2+) In the present study, to clarify the light chains (LCs) from the different species (Physarum and scallop) and to determine the specific Ca(2+)-regulated effects, we constructed hybrid myosins with a Physarum myosin heavy chain (Ph·HC) and Physarum and/or scallop myosin LCs, and examined Ca(2+)-mediated regulation of ATPases and motor activities. In these experiments, it was found that Ca(2+) inhibited motilities and ATPase activities of Physarum hybrid myosin with scallop regulatory light chain (ScRLC) and Physarum essential light chain (PhELC) but could not inhibit those of the Physarum hybrid myosin mutant Ph·HC/ScRLC/PhELC-3A which lacks Ca(2+)-binding ability, indicating that PhELC plays a critical role in Ca(2+)-mediated regulation of Physarum myosin. Furthermore, the effects of Ca(2+) on ATPase activities of Physarum myosin constructs are in the following order: Ph·HC/PhRLC/PhELC > Ph·HC/ScRLC/PhELC > Ph·HC/PhRLC/ScELC > Ph·HC/ScRLC/ScELC, suggesting that the presence of PhRLC and PhELC leads to the greatest Ca(2+) sensitivity of Physarum myosin. Although we did not observe the motilities of Physarum hybrid myosin Ph·HC/PhRLC/ScELC and Ph·HC/ScRLC/ScELC, our results suggest that Ca(2+)-binding to the PhELC may alter the flexibility of the regulatory domain and induce a 'closed' state, which may consequently prevent full activity and force generation.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular Physiology and Medical Bioregulation, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Hozumi Kawamichi
- Department of Molecular Pharmacology and Oncology, Faculty of Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Kazuhiro Kohama
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Akio Nakamura
- Department of Molecular Pharmacology and Oncology, Faculty of Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
23
|
Myosin S2 origins track evolution of strong binding on actin by azimuthal rolling of motor domain. Biophys J 2016; 108:1495-1502. [PMID: 25809262 DOI: 10.1016/j.bpj.2014.12.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/29/2014] [Indexed: 11/21/2022] Open
Abstract
Myosin crystal structures have given rise to the swinging lever arm hypothesis, which predicts a large axial tilt of the lever arm domain during the actin-attached working stroke. Previous work imaging the working stroke in actively contracting, fast-frozen Lethocerus muscle confirmed the axial tilt; but strongly bound myosin heads also showed an unexpected azimuthal slew of the lever arm around the thin filament axis, which was not predicted from known crystal structures. We hypothesized that an azimuthal reorientation of the myosin motor domain on actin during the weak-binding to strong-binding transition could explain the lever arm slew provided that myosin's α-helical coiled-coil subfragment 2 (S2) domain emerged from the thick filament backbone at a particular location. However, previous studies did not adequately resolve the S2 domain. Here we used electron tomography of rigor muscle swollen by low ionic strength to pull S2 clear of the thick filament backbone, thereby revealing the azimuth of its point of origin. The results show that the azimuth of S2 origins of those rigor myosin heads, bound to the actin target zone of actively contracting muscle, originate from a restricted region of the thick filament. This requires an azimuthal reorientation of the motor domain on actin during the weak to strong transition.
Collapse
|
24
|
Abstract
Molecular motors produce force when they interact with their cellular tracks. For myosin motors, the primary force-generating state has MgADP tightly bound, whereas myosin is strongly bound to actin. We have generated an 8-Å cryoEM reconstruction of this state for myosin V and used molecular dynamics flexed fitting for model building. We compare this state to the subsequent state on actin (Rigor). The ADP-bound structure reveals that the actin-binding cleft is closed, even though MgADP is tightly bound. This state is accomplished by a previously unseen conformation of the β-sheet underlying the nucleotide pocket. The transition from the force-generating ADP state to Rigor requires a 9.5° rotation of the myosin lever arm, coupled to a β-sheet rearrangement. Thus, the structure reveals the detailed rearrangements underlying myosin force generation as well as the basis of strain-dependent ADP release that is essential for processive myosins, such as myosin V.
Collapse
|
25
|
|
26
|
Kronert WA, Melkani GC, Melkani A, Bernstein SI. A Failure to Communicate: MYOSIN RESIDUES INVOLVED IN HYPERTROPHIC CARDIOMYOPATHY AFFECT INTER-DOMAIN INTERACTION. J Biol Chem 2015; 290:29270-80. [PMID: 26446785 PMCID: PMC4705933 DOI: 10.1074/jbc.m115.681874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/01/2015] [Indexed: 11/06/2022] Open
Abstract
Our molecular modeling studies suggest a charge-dependent interaction between residues Glu-497 in the relay domain and Arg-712 in the converter domain of human β-cardiac myosin. To test the significance of this putative interaction, we generated transgenic Drosophila expressing indirect flight muscle myosin with charge reversal mutations in the relay (E496R) or converter (R713E). Each mutation yielded dramatic reductions in myosin Ca-ATPase activity (~80%) as well as in basal (~67%) and actin-activated (~84%) Mg-ATPase activity. E496R myosin-induced in vitro actin-sliding velocity was reduced by 71% and R713E myosin permitted no actin motility. Indirect flight muscles of late pupae from each mutant displayed disrupted myofibril assembly, with adults having severely abnormal myofibrils and no flight ability. To understand the molecular basis of these defects, we constructed a putative compensatory mutant that expresses myosin with both E496R and R713E. Intriguingly, ATPase values were restored to ~73% of wild-type and actin-sliding velocity increased to 40%. The double mutation suppresses myofibril assembly defects in pupal indirect flight muscles and dramatically reduces myofibril disruption in young adults. Although sarcomere organization is not sustained in older flies and flight ability is not restored in homozygotes, young heterozygotes fly well. Our results indicate that this charge-dependent interaction between the myosin relay and converter domains is essential to the mechanochemical cycle and sarcomere assembly. Furthermore, the same inter-domain interaction is disrupted when modeling human β-cardiac myosin heavy chain cardiomyopathy mutations E497D or R712L, implying that abolishing this salt bridge is one cause of the human disease.
Collapse
Affiliation(s)
- William A Kronert
- From the Department of Biology, Molecular Biology Institute and Heart Institute San Diego State University, San Diego, California 92182-4614
| | - Girish C Melkani
- From the Department of Biology, Molecular Biology Institute and Heart Institute San Diego State University, San Diego, California 92182-4614
| | - Anju Melkani
- From the Department of Biology, Molecular Biology Institute and Heart Institute San Diego State University, San Diego, California 92182-4614
| | - Sanford I Bernstein
- From the Department of Biology, Molecular Biology Institute and Heart Institute San Diego State University, San Diego, California 92182-4614
| |
Collapse
|
27
|
Kampourakis T, Sun YB, Irving M. Orientation of the N- and C-terminal lobes of the myosin regulatory light chain in cardiac muscle. Biophys J 2015; 108:304-14. [PMID: 25606679 PMCID: PMC4302210 DOI: 10.1016/j.bpj.2014.11.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 02/02/2023] Open
Abstract
The orientations of the N- and C-terminal lobes of the cardiac isoform of the myosin regulatory light chain (cRLC) in the fully dephosphorylated state in ventricular trabeculae from rat heart were determined using polarized fluorescence from bifunctional sulforhodamine probes. cRLC mutants with one of eight pairs of surface-accessible cysteines were expressed, labeled with bifunctional sulforhodamine, and exchanged into demembranated trabeculae to replace some of the native cRLC. Polarized fluorescence data from the probes in each lobe were combined with RLC crystal structures to calculate the lobe orientation distribution with respect to the filament axis. The orientation distribution of the N-lobe had three distinct peaks (N1–N3) at similar angles in relaxation, isometric contraction, and rigor. The orientation distribution of the C-lobe had four peaks (C1–C4) in relaxation and isometric contraction, but only two of these (C2 and C4) remained in rigor. The N3 and C4 orientations are close to those of the corresponding RLC lobes in myosin head fragments bound to isolated actin filaments in the absence of ATP (in rigor), but also close to those of the pair of heads folded back against the filament surface in isolated thick filaments in the so-called J-motif conformation. The N1 and C1 orientations are close to those expected for actin-bound myosin heads with their light chain domains in a pre-powerstroke conformation. The N2 and C3 orientations have not been observed previously. The results show that the average change in orientation of the RLC region of the myosin heads on activation of cardiac muscle is small; the RLC regions of most heads remain in the same conformation as in relaxation. This suggests that the orientation of the dephosphorylated RLC region of myosin heads in cardiac muscle is primarily determined by an interaction with the thick filament surface.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom.
| |
Collapse
|
28
|
Winkelmann DA, Forgacs E, Miller MT, Stock AM. Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity. Nat Commun 2015; 6:7974. [PMID: 26246073 PMCID: PMC4918383 DOI: 10.1038/ncomms8974] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/01/2015] [Indexed: 11/09/2022] Open
Abstract
Omecamtiv Mecarbil (OM) is a small molecule allosteric effector of cardiac myosin that is in clinical trials for treatment of systolic heart failure. A detailed kinetic analysis of cardiac myosin has shown that the drug accelerates phosphate release by shifting the equilibrium of the hydrolysis step towards products, leading to a faster transition from weak to strong actin-bound states. The structure of the human β-cardiac motor domain (cMD) with OM bound reveals a single OM-binding site nestled in a narrow cleft separating two domains of the human cMD where it interacts with the key residues that couple lever arm movement to the nucleotide state. In addition, OM induces allosteric changes in three strands of the β-sheet that provides the communication link between the actin-binding interface and the nucleotide pocket. The OM-binding interactions and allosteric changes form the structural basis for the kinetic and mechanical tuning of cardiac myosin.
Collapse
Affiliation(s)
- Donald A Winkelmann
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Eva Forgacs
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | - Matthew T Miller
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
29
|
Sakai T, Jung HS, Sato O, Yamada MD, You DJ, Ikebe R, Ikebe M. Structure and Regulation of the Movement of Human Myosin VIIA. J Biol Chem 2015; 290:17587-98. [PMID: 26001786 DOI: 10.1074/jbc.m114.599365] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Indexed: 11/06/2022] Open
Abstract
Human myosin VIIA (HM7A) is responsible for human Usher syndrome type 1B, which causes hearing and visual loss in humans. Here we studied the regulation of HM7A. The actin-activated ATPase activity of full-length HM7A (HM7AFull) was lower than that of tail-truncated HM7A (HM7AΔTail). Deletion of the C-terminal 40 amino acids and mutation of the basic residues in this region (R2176A or K2179A) abolished the inhibition. Electron microscopy revealed that HM7AFull is a monomer in which the tail domain bends back toward the head-neck domain to form a compact structure. This compact structure is extended at high ionic strength or in the presence of Ca(2+). Although myosin VIIA has five isoleucine-glutamine (IQ) motifs, the neck length seems to be shorter than the expected length of five bound calmodulins. Supporting this observation, the IQ domain bound only three calmodulins in Ca(2+), and the first IQ motif failed to bind calmodulin in EGTA. These results suggest that the unique IQ domain of HM7A is important for the tail-neck interaction and, therefore, regulation. Cellular studies revealed that dimer formation of HM7A is critical for its translocation to filopodial tips and that the tail domain (HM7ATail) markedly reduced the filopodial tip localization of the HM7AΔTail dimer, suggesting that the tail-inhibition mechanism is operating in vivo. The translocation of the HM7AFull dimer was significantly less than that of the HM7AΔTail dimer, and R2176A/R2179A mutation rescued the filopodial tip translocation. These results suggest that HM7A can transport its cargo molecules, such as USH1 proteins, upon release of the tail-dependent inhibition.
Collapse
Affiliation(s)
- Tsuyoshi Sakai
- From the Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, the Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Hyun Suk Jung
- the Division of Electron Microscopic Research, Korea Basic Science Institute, 169-148 Gwahak-ro, Daejeon 305-333, Korea, and the Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do 200-701, Korea
| | - Osamu Sato
- From the Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, the Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Masafumi D Yamada
- From the Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Dong-Ju You
- the Division of Electron Microscopic Research, Korea Basic Science Institute, 169-148 Gwahak-ro, Daejeon 305-333, Korea, and
| | - Reiko Ikebe
- From the Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, the Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Mitsuo Ikebe
- From the Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, the Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708,
| |
Collapse
|
30
|
Abstract
Various human diseases can disrupt the balance between muscle contraction and relaxation. Sarcomeric modulators can be used to readjust this balance either indirectly by intervening in signalling pathways or directly through interaction with the muscle proteins that control contraction. Such agents represent a novel approach to treating any condition in which striated muscle function is compromised, including heart failure, cardiomyopathies, skeletal myopathies and a wide range of neuromuscular conditions. Here, we review agents that modulate the mechanical function of the sarcomere, focusing on emerging compounds that target myosin or the troponin complex.
Collapse
|
31
|
Poorly understood aspects of striated muscle contraction. BIOMED RESEARCH INTERNATIONAL 2015; 2015:245154. [PMID: 25961006 PMCID: PMC4415482 DOI: 10.1155/2015/245154] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/28/2014] [Indexed: 11/23/2022]
Abstract
Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP). Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs.
Collapse
|
32
|
Katayama E. 3-D structural analysis of the crucial intermediate of skeletal muscle myosin and its role in revised actomyosin cross-bridge cycle. Biophysics (Nagoya-shi) 2014; 10:89-97. [PMID: 27493503 PMCID: PMC4629655 DOI: 10.2142/biophysics.10.89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/18/2014] [Indexed: 12/01/2022] Open
Abstract
Skeletal myosin S1 consists of two functional segments, a catalytic-domain and a lever-arm. Since the crystal structure of ADP/Vi-bound S1 exhibits a strong intramolecular flexure between two segments, inter-conversion between bent and extended forms; i.e. "tilting of the lever-arm" has been accepted as the established molecular mechanism of skeletal muscle contraction. We utilized quick-freeze deep-etch replica electron microscopy to directly visualize the structure of in vitro actin-sliding myosin, and found the existence of a novel oppositely-bent configuration, instead of the expected ADP/Vi-bound form. We also noticed that SH1-SH2 cross-linked myosin gives an aberrant appearance similar to the above structure. Since SH1-SH2-cross-linked myosin is a well-studied analogue of the transient intermediate of the actomyosin cross-bridge cycle, we devised a new image-processing procedure to define the relative view-angles between the catalytic-domain and the lever-arm from those averaged images, and built a 3-D model of the new conformer. The lever-arm in that model was bent oppositely to the ADP/Vi-bound form, in accordance with observed actin-sliding cross-bridge structure. Introducing this conformer as the crucial intermediate that transiently appears during sliding, we propose a revised scheme of the cross-bridge cycle. In the scenario, the novel conformer keeps actin-binding in two different modes until it forms a primed configuration. The final extension of the lever-arm back to the original rigor-state constitutes the "power-stroke". Various images observed during sliding could be easily interpreted by the new conformer. Even the enigmatic behavior of the cross-bridges reported as "loose chemo-mechanical coupling" might be adequately explained under some assumptions.
Collapse
Affiliation(s)
- Eisaku Katayama
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka-shi, Osaka 558-8585, Japan
| |
Collapse
|
33
|
|
34
|
Nie QM, Togashi A, Sasaki TN, Takano M, Sasai M, Terada TP. Coupling of lever arm swing and biased Brownian motion in actomyosin. PLoS Comput Biol 2014; 10:e1003552. [PMID: 24762409 PMCID: PMC3998885 DOI: 10.1371/journal.pcbi.1003552] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/20/2014] [Indexed: 11/18/2022] Open
Abstract
An important unresolved problem associated with actomyosin motors is the role of Brownian motion in the process of force generation. On the basis of structural observations of myosins and actins, the widely held lever-arm hypothesis has been proposed, in which proteins are assumed to show sequential structural changes among observed and hypothesized structures to exert mechanical force. An alternative hypothesis, the Brownian motion hypothesis, has been supported by single-molecule experiments and emphasizes more on the roles of fluctuating protein movement. In this study, we address the long-standing controversy between the lever-arm hypothesis and the Brownian motion hypothesis through in silico observations of an actomyosin system. We study a system composed of myosin II and actin filament by calculating free-energy landscapes of actin-myosin interactions using the molecular dynamics method and by simulating transitions among dynamically changing free-energy landscapes using the Monte Carlo method. The results obtained by this combined multi-scale calculation show that myosin with inorganic phosphate (Pi) and ADP weakly binds to actin and that after releasing Pi and ADP, myosin moves along the actin filament toward the strong-binding site by exhibiting the biased Brownian motion, a behavior consistent with the observed single-molecular behavior of myosin. Conformational flexibility of loops at the actin-interface of myosin and the N-terminus of actin subunit is necessary for the distinct bias in the Brownian motion. Both the 5.5–11 nm displacement due to the biased Brownian motion and the 3–5 nm displacement due to lever-arm swing contribute to the net displacement of myosin. The calculated results further suggest that the recovery stroke of the lever arm plays an important role in enhancing the displacement of myosin through multiple cycles of ATP hydrolysis, suggesting a unified movement mechanism for various members of the myosin family. Myosin II is a molecular motor that is fueled by ATP hydrolysis and generates mechanical force by interacting with actin filament. Comparison among various myosin structures obtained by X-ray and electron microscope analyses has led to the hypothesis that structural change of myosin in ATP hydrolysis cycle is the driving mechanism of force generation. However, single-molecule experiments have suggested an alternative mechanism in which myosin moves stochastically in a biased direction along actin filament. Computer simulation serves as a platform for assessing these hypotheses by revealing the prominent features of the dynamically changing landscape of actin-myosin interaction. The calculated results show that myosin binds to actin at different locations of actin filament in the weak- and strong-binding states and that the free energy has a global gradient from the weak-binding site to the strong-binding site. Myosin relaxing into the strong-binding state therefore necessarily shows the biased Brownian motion toward the strong-binding site. Lever-arm swing is induced during this relaxation process; therefore, lever-arm swing and the biased Brownian motion are coupled to contribute to the net displacement of myosin. This coupling should affect the dynamical behaviors of muscle and cardiac systems.
Collapse
Affiliation(s)
- Qing-Miao Nie
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
- Institute for Molecular Science, Okazaki, Japan
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Akio Togashi
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| | - Takeshi N. Sasaki
- Department of Human Informatics, Aichi Shukutoku University, Aichi, Japan
| | - Mitsunori Takano
- Department of Physics, Waseda University, Ohkubo, Shinjuku-ku, Tokyo, Japan
| | - Masaki Sasai
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
- * E-mail:
| | - Tomoki P. Terada
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
35
|
Kronert WA, Melkani GC, Melkani A, Bernstein SI. Mapping interactions between myosin relay and converter domains that power muscle function. J Biol Chem 2014; 289:12779-90. [PMID: 24627474 DOI: 10.1074/jbc.m114.550673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intramolecular communication within myosin is essential for its function as motor, but the specific amino acid residue interactions required are unexplored within muscle cells. Using Drosophila melanogaster skeletal muscle myosin, we performed a novel in vivo molecular suppression analysis to define the importance of three relay loop amino acid residues (Ile(508), Asn(509), and Asp(511)) in communicating with converter domain residue Arg(759). We found that the N509K relay mutation suppressed defects in myosin ATPase, in vitro motility, myofibril stability, and muscle function associated with the R759E converter mutation. Through molecular modeling, we define a mechanism for this interaction and suggest why the I508K and D511K relay mutations fail to suppress R759E. Interestingly, I508K disabled motor function and myofibril assembly, suggesting that productive relay-converter interaction is essential for both processes. We conclude that the putative relay-converter interaction mediated by myosin residues 509 and 759 is critical for the biochemical and biophysical function of skeletal muscle myosin and the normal ultrastructural and mechanical properties of muscle.
Collapse
Affiliation(s)
- William A Kronert
- From the Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, California 92182-4614
| | | | | | | |
Collapse
|
36
|
Pecci A, Klersy C, Gresele P, Lee KJD, De Rocco D, Bozzi V, Russo G, Heller PG, Loffredo G, Ballmaier M, Fabris F, Beggiato E, Kahr WHA, Pujol-Moix N, Platokouki H, Van Geet C, Noris P, Yerram P, Hermans C, Gerber B, Economou M, De Groot M, Zieger B, De Candia E, Fraticelli V, Kersseboom R, Piccoli GB, Zimmermann S, Fierro T, Glembotsky AC, Vianello F, Zaninetti C, Nicchia E, Güthner C, Baronci C, Seri M, Knight PJ, Balduini CL, Savoia A. MYH9-related disease: a novel prognostic model to predict the clinical evolution of the disease based on genotype-phenotype correlations. Hum Mutat 2013; 35:236-47. [PMID: 24186861 DOI: 10.1002/humu.22476] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/18/2013] [Indexed: 01/05/2023]
Abstract
MYH9-related disease (MYH9-RD) is a rare autosomal-dominant disorder caused by mutations in the gene for nonmuscle myosin heavy chain IIA (NMMHC-IIA). MYH9-RD is characterized by a considerable variability in clinical evolution: patients present at birth with only thrombocytopenia, but some of them subsequently develop sensorineural deafness, cataract, and/or nephropathy often leading to end-stage renal disease (ESRD). We searched for genotype-phenotype correlations in the largest series of consecutive MYH9-RD patients collected so far (255 cases from 121 families). Association of genotypes with noncongenital features was assessed by a generalized linear regression model. The analysis defined disease evolution associated to seven different MYH9 genotypes that are responsible for 85% of MYH9-RD cases. Mutations hitting residue R702 demonstrated a complete penetrance for early-onset ESRD and deafness. The p.D1424H substitution associated with high risk of developing all the noncongenital manifestations of disease. Mutations hitting a distinct hydrophobic seam in the NMMHC-IIA head domain or substitutions at R1165 associated with high risk of deafness but low risk of nephropathy or cataract. Patients with p.E1841K, p.D1424N, and C-terminal deletions had low risk of noncongenital defects. These findings are essential to patients' clinical management and genetic counseling and are discussed in view of molecular pathogenesis of MYH9-RD.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Flexibility within the heads of muscle myosin-2 molecules. J Mol Biol 2013; 426:894-907. [PMID: 24333017 PMCID: PMC3919154 DOI: 10.1016/j.jmb.2013.11.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/25/2013] [Accepted: 11/29/2013] [Indexed: 11/26/2022]
Abstract
We show that negative-stain electron microscopy and image processing of nucleotide-free (apo) striated muscle myosin-2 subfragment-1 (S1), possessing one light chain or both light chains, is capable of resolving significant amounts of structural detail. The overall appearance of the motor and the lever is similar in rabbit, scallop and chicken S1. Projection matching of class averages of the different S1 types to projection views of two different crystal structures of apo S1 shows that all types most commonly closely resemble the appearance of the scallop S1 structure rather than the methylated chicken S1 structure. Methylation of chicken S1 has no effect on the structure of the molecule at this resolution: it too resembles the scallop S1 crystal structure. The lever is found to vary in its angle of attachment to the motor domain, with a hinge point located in the so-called pliant region between the converter and the essential light chain. The chicken S1 crystal structure lies near one end of the range of flexion observed. The Gaussian spread of angles of flexion suggests that flexibility is driven thermally, from which a torsional spring constant of ~ 23 pN·nm/rad2 is estimated on average for all S1 types, similar to myosin-5. This translates to apparent cantilever-type stiffness at the tip of the lever of 0.37 pN/nm. Because this stiffness is lower than recent estimates from myosin-2 heads attached to actin, we suggest that binding to actin leads to an allosteric stiffening of the motor–lever junction. Elasticity of muscle crossbridges is important, but its structural basis is obscure. Muscle myosin heads from rabbit, scallop and chicken share a common structure. The lever domain hinges about its connection with the motor domain. The stiffness of the motor–lever hinge is lower than estimates for crossbridges. Flexibility within the myosin head can be the basis of crossbridge stiffness.
Collapse
|
38
|
Preller M, Holmes KC. The myosin start-of-power stroke state and how actin binding drives the power stroke. Cytoskeleton (Hoboken) 2013; 70:651-60. [PMID: 23852739 DOI: 10.1002/cm.21125] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 11/05/2022]
Abstract
We propose that on binding to actin at the start of the power stroke the myosin cross-bridge takes on the rigor configuration at the actin interface. Starting from the prepower stroke state, this can be achieved by a small movement (16° rotation) of the lower 50K domain without twisting the central β-sheet or opening switch-1 or switch-2. The movement of the lower 50K domain puts a strain on the W-helix. This strain tries to twist the β-sheet, which could drive the power stroke. This would provide a coupling between actin binding and the execution of the power stroke. During the power stroke the β-sheet twists, moving the P-loop away from switch-2, which opens the nucleotide binding pocket and separates ADP from Pi . The power stroke is different from the recovery stroke because the upper and lower 50K domains are tethered in the rigor configuration.
Collapse
Affiliation(s)
- Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany; Centre for Structural Systems Biology (CSSB), German Electron Synchrotron (DESY), Hamburg, Germany
| | | |
Collapse
|
39
|
Structural basis of the relaxed state of a Ca2+-regulated myosin filament and its evolutionary implications. Proc Natl Acad Sci U S A 2013; 110:8561-6. [PMID: 23650385 DOI: 10.1073/pnas.1218462110] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin filaments of muscle are regulated either by phosphorylation of their regulatory light chains or Ca(2+) binding to the essential light chains, contributing to on-off switching or modulation of contraction. Phosphorylation-regulated filaments in the relaxed state are characterized by an asymmetric interaction between the two myosin heads, inhibiting their actin binding or ATPase activity. Here, we have tested whether a similar interaction switches off activity in myosin filaments regulated by Ca(2+) binding. Cryo-electron microscopy and single-particle image reconstruction of Ca(2+)-regulated (scallop) filaments reveals a helical array of myosin head-pair motifs above the filament surface. Docking of atomic models of scallop myosin head domains into the motifs reveals that the heads interact in a similar way to those in phosphorylation-regulated filaments. The results imply that the two major evolutionary branches of myosin regulation--involving phosphorylation or Ca(2+) binding--share a common structural mechanism for switching off thick-filament activity in relaxed muscle. We suggest that the Ca(2+)-binding mechanism evolved from the more ancient phosphorylation-based system to enable rapid response of myosin-regulated muscles to activation. Although the motifs are similar in both systems, the scallop structure is more tilted and higher above the filament backbone, leading to different intermolecular interactions. The reconstruction reveals how the myosin tail emerges from the motif, connecting the heads to the filament backbone, and shows that the backbone is built from supramolecular assemblies of myosin tails. The reconstruction provides a native structural context for understanding past biochemical and biophysical studies of this model Ca(2+)-regulated myosin.
Collapse
|
40
|
Novel configuration of a myosin II transient intermediate analogue revealed by quick-freeze deep-etch replica electron microscopy. Biochem J 2013; 450:23-35. [PMID: 23211187 DOI: 10.1042/bj20120412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present paper, we described our attempt to characterize the rough three-dimensional features of the structural analogue of the key intermediate of myosin's cross-bridge cycle. Using quick-freeze deep-etch replica electron microscopy, we observed that actin-attached myosin during in vitro sliding was bent superficially as postulated by the conventional hypothesis, but in the opposite direction of the putative pre-power-stroke configuration, as for ADP·Vi (inorganic vanadate)-bound myosin. We searched for the conformational species with a similar appearance and found that SH1-SH2 (thiols 1 and 2)-cross-linked myosin is a good candidate. To characterize such small asymmetric structures, we employed a new pattern-recognition procedure that accommodates the metal-replicated samples. In this method, the best-matched views of the target microscopic images were selected from a comprehensive set of images simulated from known atomic co-ordinates of relevant proteins. Together with effective morphological filtering, we could define the conformational species and the view angles of the catalytic domain and the lever arm cropped from averaged images of disulfide-cross-linked myosin. Whereas the catalytic domain of the new conformer closely resembled the pPDM (N,N'-p-phenylenedimaleimide)-treated, but SH2 Lys705-cross-linked, structure (PDB code 1L2O), a minor product of the same cross-linking reaction, the lever arm projected differently. Using separately determined view angles of the catalytic domain and the lever arm, we built a model of disulfide-cross-linked myosin. Further combination with the 'displacement-mapping' procedure enabled us to reconstruct the global three-dimensional envelope of the unusual structure whose lever arm orientation is compatible with our reports on the actin-sliding cross-bridge structure. Assuming this conformer as the structural analogue of the transient intermediate during actin sliding, the power stroke of the lever arm might accompany the reversal of the disorganized SH1 helix.
Collapse
|
41
|
O'Neall-Hennessey E, Reshetnikova L, Senthil Kumar VS, Robinson H, Szent-Györgyi AG, Cohen C. Purification, crystallization and preliminary X-ray crystallographic analysis of squid heavy meromyosin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:248-52. [PMID: 23519797 DOI: 10.1107/s1744309112049925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/05/2012] [Indexed: 11/10/2022]
Abstract
All muscle-based movement is dependent upon carefully choreographed interactions between the two major muscle components, myosin and actin. Regulation of vertebrate smooth and molluscan muscle contraction is myosin based (both are in the myosin II class), and requires the double-headed form of myosin. Removal of Ca2+ from these muscles promotes a relatively compact conformation of the myosin dimer, which inhibits its interaction with actin. Although atomic structures of single myosin heads are available, the structure of any double-headed portion of myosin, including the ∼375 kDa heavy meromyosin (HMM), has only been visualized at low (∼20 Å) resolution by electron microscopy. Here, the growth of three-dimensional crystals of HMM with near-atomic resolution (up to ∼5 Å) and their X-ray diffraction are reported for the first time. These crystals were grown in off-state conditions, that is in the absence of Ca2+ and the presence of nucleotide analogs, using HMM from the funnel retractor muscle of squid. In addition to the crystallization conditions, the techniques used to isolate and purify this HMM are also described. Efforts at phasing and improving the resolution of the data in order to determine the structure are ongoing.
Collapse
Affiliation(s)
- Elizabeth O'Neall-Hennessey
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | | | | | | | | | | |
Collapse
|
42
|
Guzik-Lendrum S, Heissler SM, Billington N, Takagi Y, Yang Y, Knight PJ, Homsher E, Sellers JR. Mammalian myosin-18A, a highly divergent myosin. J Biol Chem 2013; 288:9532-48. [PMID: 23382379 DOI: 10.1074/jbc.m112.441238] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Mus musculus myosin-18A gene is expressed as two alternatively spliced isoforms, α and β, with reported roles in Golgi localization, in maintenance of cytoskeleton, and as receptors for immunological surfactant proteins. Both myosin-18A isoforms feature a myosin motor domain, a single predicted IQ motif, and a long coiled-coil reminiscent of myosin-2. The myosin-18Aα isoform, additionally, has an N-terminal PDZ domain. Recombinant heavy meromyosin- and subfragment-1 (S1)-like constructs for both myosin-18Aα and -18β species were purified from the baculovirus/Sf9 cell expression system. These constructs bound both essential and regulatory light chains, indicating an additional noncanonical light chain binding site in the neck. Myosin-18Aα-S1 and -18Aβ-S1 molecules bound actin weakly with Kd values of 4.9 and 54 μm, respectively. The actin binding data could be modeled by assuming an equilibrium between two myosin conformations, a competent and an incompetent form to bind actin. Actin binding was unchanged by presence of nucleotide. Both myosin-18A isoforms bound N-methylanthraniloyl-nucleotides, but the rate of ATP hydrolysis was very slow (<0.002 s(-1)) and not significantly enhanced by actin. Phosphorylation of the regulatory light chain had no effect on ATP hydrolysis, and neither did the addition of tropomyosin or of GOLPH3, a myosin-18A binding partner. Electron microscopy of myosin-18A-S1 showed that the lever is strongly angled with respect to the long axis of the motor domain, suggesting a pre-power stroke conformation regardless of the presence of ATP. These data lead us to conclude that myosin-18A does not operate as a traditional molecular motor in cells.
Collapse
Affiliation(s)
- Stephanie Guzik-Lendrum
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, MD 20892-8015, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang Y, Kawamichi H, Tanaka H, Yoshiyama S, Kohama K, Nakamura A. Calcium-dependent regulation of the motor activity of recombinant full-length Physarum myosin. J Biochem 2012; 152:185-90. [PMID: 22648562 DOI: 10.1093/jb/mvs062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We successfully synthesized full-length and the mutant Physarum myosin and heavy meromyosin (HMM) constructs associated with Physarum regulatory light chain and essential light chain (PhELC) using Physarum myosin heavy chain in Sf-9 cells, and examined their Ca(2+)-mediated regulation. Ca(2+) inhibited the motility and ATPase activities of Physarum myosin and HMM. The Ca(2+) effect is also reversible at the in vitro motility of Physarum myosin. We demonstrated that full-length myosin increases the Ca(2+) inhibition more effectively than HMM. Furthermore, Ca(2+) did not affect the motility and ATPase activities of the mutant Physarum myosin with PhELC that lost Ca(2+)-binding ability. Therefore, we conclude that PhELC plays a critical role in Ca(2+)-dependent regulation of Physarum myosin.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Ni S, Hong F, Haldeman BD, Baker JE, Facemyer KC, Cremo CR. Modification of interface between regulatory and essential light chains hampers phosphorylation-dependent activation of smooth muscle myosin. J Biol Chem 2012; 287:22068-79. [PMID: 22549781 DOI: 10.1074/jbc.m112.343491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the regulatory importance of interactions between regulatory light chain (RLC), essential light chain (ELC), and adjacent heavy chain (HC) in the regulatory domain of smooth muscle heavy meromyosin. After mutating the HC, RLC, and/or ELC to disrupt their predicted interactions (using scallop myosin coordinates), we measured basal ATPase, V(max), and K(ATPase) of actin-activated ATPase, actin-sliding velocities, rigor binding to actin, and kinetics of ATP binding and ADP release. If unphosphorylated, all mutants were similar to wild type showing turned-off behaviors. In contrast, if phosphorylated, mutation of RLC residues smM129Q and smG130C in the F-G helix linker, which interact with the ELC (Ca(2+) binding in scallop), was sufficient to abolish motility and diminish ATPase activity, without altering other parameters. ELC mutations within this interacting ELC loop (smR20M and smK25A) were normal, but smM129Q/G130C-R20M or -K25A showed a partially recovered phenotype suggesting that interaction between the RLC and ELC is important. A molecular dynamics study suggested that breaking the RLC/ELC interface leads to increased flexibility at the interface and ELC-binding site of the HC. We hypothesize that this leads to hampered activation by allowing a pre-existing equilibrium between activated and inhibited structural distributions (Vileno, B., Chamoun, J., Liang, H., Brewer, P., Haldeman, B. D., Facemyer, K. C., Salzameda, B., Song, L., Li, H. C., Cremo, C. R., and Fajer, P. G. (2011) Broad disorder and the allosteric mechanism of myosin II regulation by phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 108, 8218-8223) to be biased strongly toward the inhibited distribution even when the RLC is phosphorylated. We propose that an important structural function of RLC phosphorylation is to promote or assist in the maintenance of an intact RLC/ELC interface. If the RLC/ELC interface is broken, the off-state structures are no longer destabilized by phosphorylation.
Collapse
Affiliation(s)
- Shaowei Ni
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | | | | | |
Collapse
|
45
|
Wang Y, Melkani GC, Suggs JA, Melkani A, Kronert WA, Cammarato A, Bernstein SI. Expression of the inclusion body myopathy 3 mutation in Drosophila depresses myosin function and stability and recapitulates muscle inclusions and weakness. Mol Biol Cell 2012; 23:2057-65. [PMID: 22496423 PMCID: PMC3364171 DOI: 10.1091/mbc.e12-02-0120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A Drosophila model of myosin-based inclusion body myopathy type 3 is presented. Muscle function, ATPase activity, and actin sliding velocity were dramatically reduced. The mutant myosin is prone to aggregate, likely accounting for the observed cytoplasmic inclusions and disorganized muscle filaments reminiscent of the human disease. Hereditary myosin myopathies are characterized by variable clinical features. Inclusion body myopathy 3 (IBM-3) is an autosomal dominant disease associated with a missense mutation (E706K) in the myosin heavy chain IIa gene. Adult patients experience progressive muscle weakness. Biopsies reveal dystrophic changes, rimmed vacuoles with cytoplasmic inclusions, and focal disorganization of myofilaments. We constructed a transgene encoding E706K myosin and expressed it in Drosophila (E701K) indirect flight and jump muscles to establish a novel homozygous organism with homogeneous populations of fast IBM-3 myosin and muscle fibers. Flight and jump abilities were severely reduced in homozygotes. ATPase and actin sliding velocity of the mutant myosin were depressed >80% compared with wild-type myosin. Light scattering experiments and electron microscopy revealed that mutant myosin heads bear a dramatic propensity to collapse and aggregate. Thus E706K (E701K) myosin appears far more labile than wild-type myosin. Furthermore, mutant fly fibers exhibit ultrastructural hallmarks seen in patients, including cytoplasmic inclusions containing aberrant proteinaceous structures and disorganized muscle filaments. Our Drosophila model reveals the unambiguous consequences of the IBM-3 lesion on fast muscle myosin and fibers. The abnormalities observed in myosin function and muscle ultrastructure likely contribute to muscle weakness observed in our flies and patients.
Collapse
Affiliation(s)
- Yang Wang
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Three distinct actin-attached structural states of myosin in muscle fibers. Biophys J 2012; 102:1088-96. [PMID: 22404931 DOI: 10.1016/j.bpj.2011.11.4027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 11/09/2011] [Accepted: 11/14/2011] [Indexed: 11/21/2022] Open
Abstract
We have used thiol cross-linking and electron paramagnetic resonance (EPR) to resolve structural transitions of myosin's light chain domain (LCD) and catalytic domain (CD) that are associated with force generation. Spin labels were incorporated into the LCD of muscle fibers by exchanging spin-labeled regulatory light chain for endogenous regulatory light chain, with full retention of function. To trap myosin in a structural state analogous to the elusive posthydrolysis ternary complex A.M'.D.P, we used pPDM to cross-link SH1 (Cys(707)) to SH2 (Cys(697)) on the CD. LCD orientation and dynamics were measured in three biochemical states: relaxation (A.M.T), SH1-SH2 cross-linked (A.M'.D.P analog), and rigor (A.M.D). EPR showed that the LCD of cross-linked fibers has an orientational distribution intermediate between relaxation and rigor, and saturation transfer EPR revealed slow rotational dynamics indistinguishable from that of rigor. Similar results were obtained for the CD using a bifunctional spin label to cross-link SH1-SH2, but the CD was more disordered than the LCD. We conclude that SH1-SH2 cross-linking traps a state in which both the CD and LCD are intermediate between relaxation (highly disordered and microsecond dynamics) and rigor (highly ordered and rigid), supporting the hypothesis that the cross-linked state is an A.M'D.P analog on the force generation pathway.
Collapse
|
47
|
Caldwell JT, Melkani GC, Huxford T, Bernstein SI. Transgenic expression and purification of myosin isoforms using the Drosophila melanogaster indirect flight muscle system. Methods 2012; 56:25-32. [PMID: 22178692 PMCID: PMC3308726 DOI: 10.1016/j.ymeth.2011.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/24/2011] [Accepted: 12/02/2011] [Indexed: 10/14/2022] Open
Abstract
Biophysical and structural studies on muscle myosin rely upon milligram quantities of extremely pure material. However, many biologically interesting myosin isoforms are expressed at levels that are too low for direct purification from primary tissues. Efforts aimed at recombinant expression of functional striated muscle myosin isoforms in bacterial or insect cell culture have largely met with failure, although high level expression in muscle cell culture has recently been achieved at significant expense. We report a novel method for the use of strains of the fruit fly Drosophila melanogaster genetically engineered to produce histidine-tagged recombinant muscle myosin isoforms. This method takes advantage of the single muscle myosin heavy chain gene within the Drosophila genome, the high level of expression of accessible myosin in the thoracic indirect flight muscles, the ability to knock out endogenous expression of myosin in this tissue and the relatively low cost of fruit fly colony production and maintenance. We illustrate this method by expressing and purifying a recombinant histidine-tagged variant of embryonic body wall skeletal muscle myosin II from an engineered fly strain. The recombinant protein shows the expected ATPase activity and is of sufficient purity and homogeneity for crystallization. This system may prove useful for the expression and isolation of mutant myosins associated with skeletal muscle diseases and cardiomyopathies for their biochemical and structural characterization.
Collapse
Affiliation(s)
- James T. Caldwell
- Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030
| | - Girish C. Melkani
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614
| | - Tom Huxford
- Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030
| | - Sanford I. Bernstein
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614
| |
Collapse
|
48
|
Ramanath S, Wang Q, Bernstein SI, Swank DM. Disrupting the myosin converter-relay interface impairs Drosophila indirect flight muscle performance. Biophys J 2011; 101:1114-22. [PMID: 21889448 DOI: 10.1016/j.bpj.2011.07.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 07/18/2011] [Accepted: 07/19/2011] [Indexed: 11/28/2022] Open
Abstract
Structural interactions between the myosin converter and relay domains have been proposed to be critical for the myosin power stroke and muscle power generation. We tested this hypothesis by mutating converter residue 759, which interacts with relay residues I508, N509, and D511, to glutamate (R759E) and determined the effect on Drosophila indirect flight muscle mechanical performance. Work loop analysis of mutant R759E indirect flight muscle fibers revealed a 58% and 31% reduction in maximum power generation (P(WL)) and the frequency at which maximum power (f(WL)) is generated, respectively, compared to control fibers at 15 °C. Small amplitude sinusoidal analysis revealed a 30%, 36%, and 32% reduction in mutant elastic modulus, viscous modulus, and mechanical rate constant 2πb, respectively. From these results, we infer that the mutation reduces rates of transitions through work-producing cross-bridge states and/or force generation during strongly bound states. The reductions in muscle power output, stiffness, and kinetics were physiologically relevant, as mutant wing beat frequency and flight index decreased about 10% and 45% compared to control flies at both 15 °C and 25 °C. Thus, interactions between the relay loop and converter domain are critical for lever-arm and catalytic domain coordination, high muscle power generation, and optimal Drosophila flight performance.
Collapse
Affiliation(s)
- Seemanti Ramanath
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | | | | |
Collapse
|
49
|
Bray JK, Weiss DR, Levitt M. Optimized torsion-angle normal modes reproduce conformational changes more accurately than cartesian modes. Biophys J 2011; 101:2966-9. [PMID: 22208195 DOI: 10.1016/j.bpj.2011.10.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/28/2011] [Accepted: 10/31/2011] [Indexed: 11/17/2022] Open
Abstract
We present what to our knowledge is a new method of optimized torsion-angle normal-mode analysis, in which the normal modes move along curved paths in Cartesian space. We show that optimized torsion-angle normal modes reproduce protein conformational changes more accurately than Cartesian normal modes. We also show that orthogonalizing the displacement vectors from torsion-angle normal-mode analysis and projecting them as straight lines in Cartesian space does not lead to better performance than Cartesian normal modes. Clearly, protein motion is more naturally described by curved paths in Cartesian space.
Collapse
Affiliation(s)
- Jenelle K Bray
- Department of Structural Biology, Stanford Medical School, Stanford, California, USA.
| | | | | |
Collapse
|
50
|
Decarreau JA, James NG, Chrin LR, Berger CL. Switch I closure simultaneously promotes strong binding to actin and ADP in smooth muscle myosin. J Biol Chem 2011; 286:22300-7. [PMID: 21536675 DOI: 10.1074/jbc.m111.219014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The motor protein myosin uses energy derived from ATP hydrolysis to produce force and motion. Important conserved components (P-loop, switch I, and switch II) help propagate small conformational changes at the active site into large scale conformational changes in distal regions of the protein. Structural and biochemical studies have indicated that switch I may be directly responsible for the reciprocal opening and closing of the actin and nucleotide-binding pockets during the ATPase cycle, thereby aiding in the coordination of these important substrate-binding sites. Smooth muscle myosin has displayed the ability to simultaneously bind tightly to both actin and ADP, although it is unclear how both substrate-binding clefts could be closed if they are rigidly coupled to switch I. Here we use single tryptophan mutants of smooth muscle myosin to determine how conformational changes in switch I are correlated with structural changes in the nucleotide and actin-binding clefts in the presence of actin and ADP. Our results suggest that a closed switch I conformation in the strongly bound actomyosin-ADP complex is responsible for maintaining tight nucleotide binding despite an open nucleotide-binding pocket. This unique state is likely to be crucial for prolonged tension maintenance in smooth muscle.
Collapse
Affiliation(s)
- Justin A Decarreau
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|