1
|
Alves CPA, Prazeres DMF, Monteiro GA. Minicircle Biopharmaceuticals–An Overview of Purification Strategies. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2020.612594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Minicircles are non-viral delivery vectors with promising features for biopharmaceutical applications. These vectors are plasmid-derived circular DNA molecules that are obtained in vivo in Escherichia coli by the intramolecular recombination of a parental plasmid, which generates a minicircle containing the eukaryotic therapeutic cassette of interest and a miniplasmid containing the prokaryotic backbone. The production process results thus in a complex mixture, which hinders the isolation of minicircle molecules from other DNA molecules. Several strategies have been proposed over the years to meet the challenge of purifying and obtaining high quality minicircles in compliance with the regulatory guidelines for therapeutic use. In minicircle purification, the characteristics of the strain and parental plasmid used have a high impact and strongly affect the purification strategy that can be applied. This review summarizes the different methods developed so far, focusing not only on the purification method itself but also on its dependence on the upstream production strategy used.
Collapse
|
2
|
Nikopoulou C, Parekh S, Tessarz P. Ageing and sources of transcriptional heterogeneity. Biol Chem 2019; 400:867-878. [DOI: 10.1515/hsz-2018-0449] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Cellular heterogeneity is an important contributor to biological function and is employed by cells, tissues and organisms to adapt, compensate, respond, defend and/or regulate specific processes. Research over the last decades has revealed that transcriptional noise is a major driver for cell-to-cell variability. In this review we will discuss sources of transcriptional variability, in particular bursting of gene expression and how it could contribute to cellular states and fate decisions. We will highlight recent developments in single cell sequencing technologies that make it possible to address cellular heterogeneity in unprecedented detail. Finally, we will review recent literature, in which these new technologies are harnessed to address pressing questions in the field of ageing research, such as transcriptional noise and cellular heterogeneity in the course of ageing.
Collapse
Affiliation(s)
- Chrysa Nikopoulou
- Max Planck Research Group ‘Chromatin and Ageing’ , Max Planck Institute for Biology of Ageing , Joseph-Stelzmann-Str. 9b , D-50931 Cologne , Germany
| | - Swati Parekh
- Max Planck Research Group ‘Chromatin and Ageing’ , Max Planck Institute for Biology of Ageing , Joseph-Stelzmann-Str. 9b , D-50931 Cologne , Germany
| | - Peter Tessarz
- Max Planck Research Group ‘Chromatin and Ageing’ , Max Planck Institute for Biology of Ageing , Joseph-Stelzmann-Str. 9b , D-50931 Cologne , Germany
- Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) , University of Cologne , Joseph-Stelzmann-Str. 26 , D-50931 Cologne , Germany
| |
Collapse
|
3
|
Liao Q, Lüking M, Krüger DM, Deindl S, Elf J, Kasson PM, Lynn Kamerlin SC. Long Time-Scale Atomistic Simulations of the Structure and Dynamics of Transcription Factor-DNA Recognition. J Phys Chem B 2019; 123:3576-3590. [PMID: 30952192 DOI: 10.1021/acs.jpcb.8b12363] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent years have witnessed an explosion of interest in computational studies of DNA binding proteins, including both coarse-grained and atomistic simulations of transcription factor-DNA recognition, to understand how these transcription factors recognize their binding sites on the DNA with such exquisite specificity. The present study performs microsecond time scale all-atom simulations of the dimeric form of the lactose repressor (LacI), both in the absence of any DNA and in the presence of both specific and nonspecific complexes, considering three different DNA sequences. We examine, specifically, the conformational differences between specific and nonspecific protein-DNA interactions, as well as the behavior of the helix-turn-helix motif of LacI when interacting with the DNA. Our simulations suggest that stable LacI binding occurs primarily to bent A-form DNA, with a loss of LacI conformational entropy and optimization of correlated conformational equilibria across the protein. In addition, binding to the specific operator sequence involves a slightly larger number of stabilizing DNA-protein hydrogen bonds (in comparison to nonspecific complexes), which may account for the experimentally observed specificity for this operator. In doing so, our simulations provide a detailed atomistic description of potential structural drivers for LacI selectivity.
Collapse
Affiliation(s)
- Qinghua Liao
- Science for Life Laboratory, Department of Chemistry-BMC , Uppsala University , BMC Box 576, S-751 24 Uppsala , Sweden
| | - Malin Lüking
- Science for Life Laboratory, Department of Chemistry-BMC , Uppsala University , BMC Box 576, S-751 24 Uppsala , Sweden
| | - Dennis M Krüger
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 23 Uppsala , Sweden.,Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, Bioinformatics Unit , German Center for Neurodegenerative Diseases, Göttingen , von Siebold Strasse 3A , 37075 Göttingen , Germany
| | - Sebastian Deindl
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 23 Uppsala , Sweden
| | - Johan Elf
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 23 Uppsala , Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 23 Uppsala , Sweden
| | - Shina Caroline Lynn Kamerlin
- Science for Life Laboratory, Department of Chemistry-BMC , Uppsala University , BMC Box 576, S-751 24 Uppsala , Sweden
| |
Collapse
|
4
|
Sengupta R, Capp MW, Shkel IA, Record MT. The mechanism and high-free-energy transition state of lac repressor-lac operator interaction. Nucleic Acids Res 2017; 45:12671-12680. [PMID: 29036376 PMCID: PMC5727403 DOI: 10.1093/nar/gkx862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/22/2017] [Indexed: 01/06/2023] Open
Abstract
Significant, otherwise-unavailable information about mechanisms and transition states (TS) of protein folding and binding is obtained from solute effects on rate constants. Here we characterize TS for lac repressor(R)–lac operator(O) binding by analyzing effects of RO-stabilizing and RO-destabilizing solutes on association (ka) and dissociation (kd) rate constants. RO-destabilizing solutes (urea, KCl) reduce ka comparably (urea) or more than (KCl) they increase kd, demonstrating that they destabilize TS relative to reactants and RO, and that TS exhibits most of the Coulombic interactions between R and O. Strikingly, three solutes which stabilize RO by favoring burial/dehydration of amide oxygens and anionic phosphate oxygens all reduce kd without affecting ka significantly. The lack of stabilization of TS by these solutes indicates that O phosphates remain hydrated in TS and that TS preferentially buries aromatic carbons and amide nitrogens while leaving amide oxygens exposed. In our proposed mechanism, DNA-binding-domains (DBD) of R insert in major grooves of O pre-TS, forming most Coulombic interactions of RO and burying aromatic carbons. Nucleation of hinge helices creates TS, burying sidechain amide nitrogens. Post-TS, hinge helices assemble and the DBD-hinge helix-O-DNA module docks on core repressor, partially dehydrating phosphate oxygens and tightening all interfaces to form RO.
Collapse
Affiliation(s)
- Rituparna Sengupta
- Program in Biophysics, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael W Capp
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Irina A Shkel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - M Thomas Record
- Program in Biophysics, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Fulcrand G, Chapagain P, Dunlap D, Leng F. Direct observation of a 91 bp LacI-mediated, negatively supercoiled DNA loop by atomic force microscope. FEBS Lett 2016; 590:613-8. [PMID: 26878689 DOI: 10.1002/1873-3468.12094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 01/08/2023]
Abstract
Escherichia coli lactose repressor (LacI), a tetrameric protein, is a paradigmatic transcriptional factor that controls the expression of lacZYA in the lac operon. It specifically binds to the O1, O2, and O3 operators of the lac promoter, forms DNA loops, and regulates transcription of the lac operon. In this article, utilizing combined techniques of DNA-nicking assay and AFM imaging, we directly observed a 91 bp LacI-mediated, negatively supercoiled DNA loop mimicking the DNA loop between the O1 and O3 operators in the lac promoter.
Collapse
Affiliation(s)
- Geraldine Fulcrand
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.,Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| | - Prem Chapagain
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.,Department of Physics, Florida International University, Miami, FL, USA
| | - David Dunlap
- Department of Physics, Emory University, Atlanta, GA, USA
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.,Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| |
Collapse
|
6
|
Fulcrand G, Dages S, Zhi X, Chapagain P, Gerstman BS, Dunlap D, Leng F. DNA supercoiling, a critical signal regulating the basal expression of the lac operon in Escherichia coli. Sci Rep 2016; 6:19243. [PMID: 26763930 PMCID: PMC4725879 DOI: 10.1038/srep19243] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli lac repressor (LacI) is a paradigmatic transcriptional factor that controls the expression of lacZYA in the lac operon. This tetrameric protein specifically binds to the O1, O2 and O3 operators of the lac operon and forms a DNA loop to repress transcription from the adjacent lac promoter. In this article, we demonstrate that upon binding to the O1 and O2 operators at their native positions LacI constrains three (−) supercoils within the 401-bp DNA loop of the lac promoter and forms a topological barrier. The stability of LacI-mediated DNA topological barriers is directly proportional to its DNA binding affinity. However, we find that DNA supercoiling modulates the basal expression from the lac operon in E. coli. Our results are consistent with the hypothesis that LacI functions as a topological barrier to constrain free, unconstrained (−) supercoils within the 401-bp DNA loop of the lac promoter. These constrained (−) supercoils enhance LacI’s DNA-binding affinity and thereby the repression of the promoter. Thus, LacI binding is superhelically modulated to control the expression of lacZYA in the lac operon under varying growth conditions.
Collapse
Affiliation(s)
- Geraldine Fulcrand
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199.,Department of Chemistry &Biochemistry, Florida International University, Miami, FL 33199
| | - Samantha Dages
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199.,Department of Chemistry &Biochemistry, Florida International University, Miami, FL 33199
| | - Xiaoduo Zhi
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199.,Department of Chemistry &Biochemistry, Florida International University, Miami, FL 33199
| | - Prem Chapagain
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199.,Department of Physics, Florida International University, Miami, FL 33199
| | - Bernard S Gerstman
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199.,Department of Physics, Florida International University, Miami, FL 33199
| | - David Dunlap
- Department of Physics, Emory University, Atlanta, GA 30322
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199.,Department of Chemistry &Biochemistry, Florida International University, Miami, FL 33199
| |
Collapse
|
7
|
Machado MR, Pantano S. Exploring LacI-DNA dynamics by multiscale simulations using the SIRAH force field. J Chem Theory Comput 2015; 11:5012-23. [PMID: 26574286 DOI: 10.1021/acs.jctc.5b00575] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The lac repressor protein (LacI) together with its target regulatory sequence are a common model for studying DNA looping and its implications on transcriptional control in bacteria. Owing to the molecular size of this system, standard all-atom (AA) simulations are prohibitive for achieving relevant biological time scales. As an alternative, multiscale models, which combine AA descriptions at particular regions with coarse-grained (CG) representations of the remaining components, were used to address this computational challenge while preserving the relevant details of the system. In this work, we implement a new multiscale approach based on the SIRAH force field to gain deeper insights into the dynamics of the LacI-DNA system. Our methodology allows for a dual resolution treatment of the solute and solvent, explicitly representing the protein, DNA, and solvent environment without compromising the AA region. Starting from the P1 loop configuration in an undertwisted conformation, we were able to observe the transition to the more stable overtwisted state. Additionally, a detailed characterization of the conformational space sampled by the DNA loop was done. In agreement with experimental and theoretical evidence, we observed the transient formation of kinks at the loop, which were stabilized by the presence of counterions at the minor groove. We also show that the loop's intrinsic flexibility can account for reported FRET measurements and bent conformations required to bind the CAP transcription factor.
Collapse
Affiliation(s)
- Matias R Machado
- Biomolecular Simulations Group, Institut Pasteur de Montevideo , Montevideo, Uruguay , 11400
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo , Montevideo, Uruguay , 11400
| |
Collapse
|
8
|
Chirikjian GS. Conformational Modeling of Continuum Structures in Robotics and Structural Biology: A Review. Adv Robot 2015; 29:817-829. [PMID: 27030786 PMCID: PMC4809027 DOI: 10.1080/01691864.2015.1052848] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hyper-redundant (or snakelike) manipulators have many more degrees of freedom than are required to position and orient an object in space. They have been employed in a variety of applications ranging from search-and-rescue to minimally invasive surgical procedures, and recently they even have been proposed as solutions to problems in maintaining civil infrastructure and the repair of satellites. The kinematic and dynamic properties of snakelike robots are captured naturally using a continuum backbone curve equipped with a naturally evolving set of reference frames, stiffness properties, and mass density. When the snakelike robot has a continuum architecture, the backbone curve corresponds with the physical device itself. Interestingly, these same modeling ideas can be used to describe conformational shapes of DNA molecules and filamentous protein structures in solution and in cells. This paper reviews several classes of snakelike robots: (1) hyper-redundant manipulators guided by backbone curves; (2) flexible steerable needles; and (3) concentric tube continuum robots. It is then shown how the same mathematical modeling methods used in these robotics contexts can be used to model molecules such as DNA. All of these problems are treated in the context of a common mathematical framework based on the differential geometry of curves, continuum mechanics, and variational calculus. Both coordinate-dependent Euler-Lagrange formulations and coordinate-free Euler-Poincaré approaches are reviewed.
Collapse
|
9
|
Michel D. Kinetic approaches to lactose operon induction and bimodality. J Theor Biol 2013; 325:62-75. [PMID: 23454080 DOI: 10.1016/j.jtbi.2013.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 11/25/2022]
Abstract
The quasi-equilibrium approximation is acceptable when molecular interactions are fast enough compared to circuit dynamics, but is no longer allowed when cellular activities are governed by rare events. A typical example is the lactose operon (lac), one of the most famous paradigms of transcription regulation, for which several theories still coexist to describe its behaviors. The lac system is generally analyzed by using equilibrium constants, contradicting single-event hypotheses long suggested by Novick and Weiner (1957). Enzyme induction as an all-or-none phenomenon. Proc. Natl. Acad. Sci. USA 43, 553-566) and recently refined in the study of (Choi et al., 2008. A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322, 442-446). In the present report, a lac repressor (LacI)-mediated DNA immunoprecipitation experiment reveals that the natural LacI-lac DNA complex built in vivo is extremely tight and long-lived compared to the time scale of lac expression dynamics, which could functionally disconnect the abortive expression bursts and forbid using the standard modes of lac bistability. As alternatives, purely kinetic mechanisms are examined for their capacity to restrict induction through: (i) widely scattered derepression related to the arrival time variance of a predominantly backward asymmetric random walk and (ii) an induction threshold arising in a single window of derepression without recourse to nonlinear multimeric binding and Hill functions. Considering the complete disengagement of the lac repressor from the lac promoter as the probabilistic consequence of a transient stepwise mechanism, is sufficient to explain the sigmoidal lac responses as functions of time and of inducer concentration. This sigmoidal shape can be misleadingly interpreted as a phenomenon of equilibrium cooperativity classically used to explain bistability, but which has been reported to be weak in this system.
Collapse
Affiliation(s)
- Denis Michel
- Universite de Rennes1-IRSET, Campus de Beaulieu Bat. 13, 35042 Rennes Cedex, France.
| |
Collapse
|
10
|
Czapla L, Grosner MA, Swigon D, Olson WK. Interplay of protein and DNA structure revealed in simulations of the lac operon. PLoS One 2013; 8:e56548. [PMID: 23457581 PMCID: PMC3572996 DOI: 10.1371/journal.pone.0056548] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information.
Collapse
Affiliation(s)
- Luke Czapla
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Michael A. Grosner
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - David Swigon
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Wilma K. Olson
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
11
|
Bond LM, Peters JP, Becker NA, Kahn JD, Maher LJ. Gene repression by minimal lac loops in vivo. Nucleic Acids Res 2010; 38:8072-82. [PMID: 21149272 PMCID: PMC3001091 DOI: 10.1093/nar/gkq755] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 01/25/2023] Open
Abstract
The inflexibility of double-stranded DNA with respect to bending and twisting is well established in vitro. Understanding apparent DNA physical properties in vivo is a greater challenge. Here, we exploit repression looping with components of the Escherichia coli lac operon to monitor DNA flexibility in living cells. We create a minimal system for testing the shortest possible DNA repression loops that contain an E. coli promoter, and compare the results to prior experiments. Our data reveal that loop-independent repression occurs for certain tight operator/promoter spacings. When only loop-dependent repression is considered, fits to a thermodynamic model show that DNA twisting limits looping in vivo, although the apparent DNA twist flexibility is 2- to 4-fold higher than in vitro. In contrast, length-dependent resistance to DNA bending is not observed in these experiments, even for the shortest loops constraining <0.4 persistence lengths of DNA. As observed previously for other looping configurations, loss of the nucleoid protein heat unstable (HU) markedly disables DNA looping in vivo. Length-independent DNA bending energy may reflect the activities of architectural proteins and the structure of the DNA topological domain. We suggest that the shortest loops are formed in apical loops rather than along the DNA plectonemic superhelix.
Collapse
Affiliation(s)
- Laura M. Bond
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - Justin P. Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - Nicole A. Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - Jason D. Kahn
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| |
Collapse
|
12
|
Looping charged elastic rods: applications to protein-induced DNA loop formation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:69-80. [PMID: 20963409 DOI: 10.1007/s00249-010-0628-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 10/18/2022]
|
13
|
Zhao X, Shen W, Ben P, Kong Y, Cao H, Cui Z. A loop-controlled rrnB P1 promoter for high-level expression of heterologous proteins in Escherichia coli. Biotechnol Lett 2010; 33:327-32. [PMID: 20931352 DOI: 10.1007/s10529-010-0426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 09/23/2010] [Indexed: 11/26/2022]
Abstract
An effective protein expression system was constructed in Escherichia coli utilizing the rRNA rrnB P1 promoter and the regulatory element of the lac operon (lacO). To regulate the transcriptional activity of the rrnB P1 promoter, we designed two lacO sites with an intervening loop structure; expression was verified by measuring the levels of the β-1,4-glucanase gene, cel5G. Basal expression from the looped promoter construct was reduced by 92% when compared to expression from the T7 promoter. We also found that the host cell type had a significant effect on the regulation of the rrnB P1 promoter: E. coli DH5α and DH10B had high expression levels, whereas the expression in BL21(DE3) was more stringent.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Key Laboratory of Microbiological Engineering of Agricultural Environment of MOA, College of Life Sciences, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, 210095 Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Chirikjian GS. Group theory and biomolecular conformation: I. Mathematical and computational models. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:323103. [PMID: 20827378 PMCID: PMC2935091 DOI: 10.1088/0953-8984/22/32/323103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Biological macromolecules, and the complexes that they form, can be described in a variety of ways ranging from quantum mechanical and atomic chemical models, to coarser grained models of secondary structure and domains, to continuum models. At each of these levels, group theory can be used to describe both geometric symmetries and conformational motion. In this survey, a detailed account is provided of how group theory has been applied across computational structural biology to analyze the conformational shape and motion of macromolecules and complexes.
Collapse
|
15
|
La Penna G, Perico A. Wrapped-around models for the lac operon complex. Biophys J 2010; 98:2964-73. [PMID: 20550909 PMCID: PMC2884243 DOI: 10.1016/j.bpj.2010.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 11/28/2022] Open
Abstract
The protein-DNA complex, involved in the lac operon of enteric bacteria, is paradigmatic in understanding the extent of DNA bending and plasticity due to interactions with protein assemblies acting as DNA regulators. For the lac operon, two classes of structures have been proposed: 1), with the protein tetramer lying away from the DNA loop (wrapped-away model); and 2), with the protein tetramer lying inside the DNA loop (wrapped-around model). A recently developed electrostatic analytical model shows that the size and net charge of the Lac protein tetramer allow the bending of DNA, which is consistent with another wrapped-around model from the literature. Coarse-grained models, designed based on this observation, are extensively investigated and show three kinds of wrapped-around arrangements of DNA and a lower propensity for wrapped-away configurations. Molecular dynamics simulations of an all-atom model, built on the basis of the most tightly collapsed coarse-grained model, show that most of the DNA double-helical architecture is maintained in the region between O3 and O1 DNA operators, that the DNA distortion is concentrated in the chain beyond the O1 operator, and that the protein tetramer can adapt the N-terminal domains to the DNA tension.
Collapse
Affiliation(s)
- Giovanni La Penna
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo-Metallici, Sesto Fiorentino, Florence, Italy.
| | | |
Collapse
|
16
|
Abstract
It has been more than 50 years since the elucidation of the structure of double-helical DNA. Despite active research and progress in DNA biology and biochemistry, much remains to be learned in the field of DNA biophysics. Predicting the sequence-dependent curvature and flexibility of DNA is difficult. Applicability of the conventional worm-like chain polymer model of DNA has been challenged. The fundamental forces responsible for the remarkable resistance of DNA to bending and twisting remain controversial. The apparent 'softening' of DNA measured in vivo in the presence of kinking proteins and superhelical strain is incompletely understood. New methods and insights are being applied to these problems. This review places current work on DNA biophysics in historical context and illustrates the ongoing interplay between theory and experiment in this exciting field.
Collapse
|
17
|
Abstract
Lactose repressor protein (LacI) controls transcription of the genes involved in lactose metabolism in bacteria. Essential to optimal LacI-mediated regulation is its ability to bind simultaneously to two operators, forming a loop on the intervening DNA. Recently, several lines of evidence (both theoretical and experimental) have suggested various possible loop structures associated with different DNA binding topologies and LacI tetramer structural conformations (adopted by flexing about the C-terminal tetramerization domain). We address, specifically, the role of protein opening in loop formation by employing the single-molecule tethered particle motion method on LacI protein mutants chemically cross-linked at different positions along the cleft between the two dimers. Measurements on the wild-type and uncross-linked LacI mutants led to the observation of two distinct levels of short tether length, associated with two different DNA looping structures. Restricting conformational flexibility of the protein by chemical cross-linking induces pronounced effects. Crosslinking the dimers at the level of the N-terminal DNA binding head (E36C) completely suppresses looping, whereas cross-linking near the C-terminal tetramerization domain (Q231C) results in changes of looping geometry detected by the measured tether length distributions. These observations lead to the conclusion that tetramer opening plays a definite role in at least a subset of LacI/DNA loop conformations.
Collapse
|
18
|
Lillian TD, Goyal S, Kahn JD, Meyhöfer E, Perkins NC. Computational analysis of looping of a large family of highly bent DNA by LacI. Biophys J 2008; 95:5832-42. [PMID: 18931251 PMCID: PMC2599832 DOI: 10.1529/biophysj.108.142471] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/05/2008] [Indexed: 11/18/2022] Open
Abstract
Sequence-dependent intrinsic curvature of DNA influences looping by regulatory proteins such as LacI and NtrC. Curvature can enhance stability and control shape, as observed in LacI loops formed with three designed sequences with operators bracketing an A-tract bend. We explore geometric, topological, and energetic effects of curvature with an analysis of a family of highly bent sequences, using the elastic rod model from previous work. A unifying straight-helical-straight representation uses two phasing parameters to describe sequences composed of two straight segments that flank a common helically supercoiled segment. We exercise the rod model over this two-dimensional space of phasing parameters to evaluate looping behaviors. This design space is found to comprise two subspaces that prefer parallel versus anti-parallel binding topologies. The energetic cost of looping varies from 4 to 12 kT. Molecules can be designed to yield distinct binding topologies as well as hyperstable or hypostable loops and potentially loops that can switch conformations. Loop switching could be a mechanism for control of gene expression. Model predictions for linking numbers and sizes of LacI-DNA loops can be tested using multiple experimental approaches, which coupled with theory could address whether proteins or DNA provide the observed flexibility of protein-DNA loops.
Collapse
Affiliation(s)
- Todd D Lillian
- Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
19
|
Chirikjian GS. The Stochastic Elastica and Excluded-Volume Perturbations of DNA Conformational Ensembles. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS 2008; 43:1108-1120. [PMID: 20228889 PMCID: PMC2836814 DOI: 10.1016/j.ijnonlinmec.2008.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A coordinate-free Lie-group formulation for generating ensembles of DNA conformations in solution is presented. In this formulation, stochastic differential equations define sample paths on the Euclidean motion group. The ensemble of these paths exhibits the same behavior as solutions of the Fokker-Planck equation for the stochastically forced elastica. Longer chains for which the effects of excluded volume become important are handled by piecing together shorter chains and modeling their interactions. It is assumed that the final chain lengths of interest are long enough for excluded volume effects to become important, but not so long that the semi-flexible nature of the chain is lost. The effect of excluded volume is then taken into account by grouping short self-avoiding conformations into 'bundles' with common end constraints and computing average interaction effects between bundles. The accuracy of this approximation is shown to be good when using a numerically generated ensemble of self-avoiding sample paths as the baseline for comparison.
Collapse
Affiliation(s)
- Gregory S Chirikjian
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
20
|
Swigon D, Olson WK. Mesoscale modeling of multi-protein-DNA assemblies: the role of the catabolic activator protein in Lac-repressor-mediated looping. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS 2008; 43:1082-1093. [PMID: 23874000 PMCID: PMC3715064 DOI: 10.1016/j.ijnonlinmec.2008.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
DNA looping plays a key role in the regulation of the lac operon in Escherichia coli. The presence of a tightly bent loop (between sequentially distant sites of Lac repressor protein binding) purportedly hinders the binding of RNA polymerase and subsequent transcription of the genetic message. The unexpectedly favorable binding interaction of this protein-DNA assembly with the catabolic activator protein (CAP), a protein that also bends DNA and paradoxically facilitates the binding of RNA polymerase, stimulated extension of our base-pair level theory of DNA elasticity to the treatment of DNA loops formed in the presence of several proteins. Here we describe in detail a procedure to determine the structures and free energies of multi-protein-DNA assemblies and illustrate the predicted effects of CAP binding on the configurations of the wild-type 92-bp Lac repressor-mediated O3-O1 DNA loop. We show that the DNA loop adopts an antiparallel orientation in the most likely structure and that this loop accounts for the published experimental observation that, when CAP is bound to the loop, one of the arms of LacR binds to an alternative site that is displaced from the original site by 5 bp.
Collapse
Affiliation(s)
- David Swigon
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260
| | | |
Collapse
|
21
|
Wong OK, Guthold M, Erie DA, Gelles J. Interconvertible lac repressor-DNA loops revealed by single-molecule experiments. PLoS Biol 2008; 6:e232. [PMID: 18828671 PMCID: PMC2553838 DOI: 10.1371/journal.pbio.0060232] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Accepted: 08/13/2008] [Indexed: 11/18/2022] Open
Abstract
At many promoters, transcription is regulated by simultaneous binding of a protein to multiple sites on DNA, but the structures and dynamics of such transcription factor-mediated DNA loops are poorly understood. We directly examined in vitro loop formation mediated by Escherichia coli lactose repressor using single-molecule structural and kinetics methods. Small ( approximately 150 bp) loops form quickly and stably, even with out-of-phase operator spacings. Unexpectedly, repeated spontaneous transitions between two distinct loop structures were observed in individual protein-DNA complexes. The results imply a dynamic equilibrium between a novel loop structure with the repressor in its crystallographic "V" conformation and a second structure with a more extended linear repressor conformation that substantially lessens the DNA bending strain. The ability to switch between different loop structures may help to explain how robust transcription regulation is maintained even though the mechanical work required to form a loop may change substantially with metabolic conditions.
Collapse
Affiliation(s)
- Oi Kwan Wong
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, United States of America
| | - Martin Guthold
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Dorothy A Erie
- Department of Chemistry and Curriculum Applied and Materials Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
22
|
Normanno D, Vanzi F, Pavone FS. Single-molecule manipulation reveals supercoiling-dependent modulation of lac repressor-mediated DNA looping. Nucleic Acids Res 2008; 36:2505-13. [PMID: 18310101 PMCID: PMC2377426 DOI: 10.1093/nar/gkn071] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/07/2008] [Accepted: 02/05/2008] [Indexed: 11/12/2022] Open
Abstract
Gene expression regulation is a fundamental biological process which deploys specific sets of genomic information depending on physiological or environmental conditions. Several transcription factors (including lac repressor, LacI) are present in the cell at very low copy number and increase their local concentration by binding to multiple sites on DNA and looping the intervening sequence. In this work, we employ single-molecule manipulation to experimentally address the role of DNA supercoiling in the dynamics and stability of LacI-mediated DNA looping. We performed measurements over a range of degrees of supercoiling between -0.026 and +0.026, in the absence of axial stretching forces. A supercoiling-dependent modulation of the lifetimes of both the looped and unlooped states was observed. Our experiments also provide evidence for multiple structural conformations of the LacI-DNA complex, depending on torsional constraints. The supercoiling-dependent modulation demonstrated here adds an important element to the model of the lac operon. In fact, the complex network of proteins acting on the DNA in a living cell constantly modifies its topological and mechanical properties: our observations demonstrate the possibility of establishing a signaling pathway from factors affecting DNA supercoiling to transcription factors responsible for the regulation of specific sets of genes.
Collapse
Affiliation(s)
- Davide Normanno
- LENS, European Laboratory for Non-linear Spectroscopy, Università degli Studi di Firenze, Via N. Carrara 1, I-50019 Sesto Fiorentino (FI), Italy.
| | | | | |
Collapse
|
23
|
Goyal S, Lillian T, Blumberg S, Meiners JC, Meyhöfer E, Perkins NC. Intrinsic curvature of DNA influences LacR-mediated looping. Biophys J 2007; 93:4342-59. [PMID: 17766355 PMCID: PMC2098735 DOI: 10.1529/biophysj.107.112268] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein-mediated DNA looping is a common mechanism for regulating gene expression. Loops occur when a protein binds to two operators on the same DNA molecule. The probability of looping is controlled, in part, by the basepair sequence of inter-operator DNA, which influences its structural properties. One structural property is the intrinsic or stress-free curvature. In this article, we explore the influence of sequence-dependent intrinsic curvature by exercising a computational rod model for the inter-operator DNA as applied to looping of the LacR-DNA complex. Starting with known sequences for the inter-operator DNA, we first compute the intrinsic curvature of the helical axis as input to the rod model. The crystal structure of the LacR (with bound operators) then defines the requisite boundary conditions needed for the dynamic rod model that predicts the energetics and topology of the intervening DNA loop. A major contribution of this model is its ability to predict a broad range of published experimental data for highly bent (designed) sequences. The model successfully predicts the loop topologies known from fluorescence resonance energy transfer measurements, the linking number distribution known from cyclization assays with the LacR-DNA complex, the relative loop stability known from competition assays, and the relative loop size known from gel mobility assays. In addition, the computations reveal that highly curved sequences tend to lower the energetic cost of loop formation, widen the energy distribution among stable and meta-stable looped states, and substantially alter loop topology. The inclusion of sequence-dependent intrinsic curvature also leads to nonuniform twist and necessitates consideration of eight distinct binding topologies from the known crystal structure of the LacR-DNA complex.
Collapse
Affiliation(s)
- Sachin Goyal
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, USA
| | | | | | | | | | | |
Collapse
|
24
|
Saiz L, Vilar JM. Multilevel deconstruction of the In vivo behavior of looped DNA-protein complexes. PLoS One 2007; 2:e355. [PMID: 17406679 PMCID: PMC1831498 DOI: 10.1371/journal.pone.0000355] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 03/14/2007] [Indexed: 11/28/2022] Open
Abstract
Protein-DNA complexes with loops play a fundamental role in a wide variety of cellular processes, ranging from the regulation of DNA transcription to telomere maintenance. As ubiquitous as they are, their precise in vivo properties and their integration into the cellular function still remain largely unexplored. Here, we present a multilevel approach that efficiently connects in both directions molecular properties with cell physiology and use it to characterize the molecular properties of the looped DNA-lac repressor complex while functioning in vivo. The properties we uncover include the presence of two representative conformations of the complex, the stabilization of one conformation by DNA architectural proteins, and precise values of the underlying twisting elastic constants and bending free energies. Incorporation of all this molecular information into gene-regulation models reveals an unprecedented versatility of looped DNA-protein complexes at shaping the properties of gene expression.
Collapse
Affiliation(s)
- Leonor Saiz
- Integrative Biological Modeling Laboratory, Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Jose M.G. Vilar
- Integrative Biological Modeling Laboratory, Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Kuhlman T, Zhang Z, Saier MH, Hwa T. Combinatorial transcriptional control of the lactose operon of Escherichia coli. Proc Natl Acad Sci U S A 2007; 104:6043-8. [PMID: 17376875 PMCID: PMC1851613 DOI: 10.1073/pnas.0606717104] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Indexed: 11/18/2022] Open
Abstract
The goal of systems biology is to understand the behavior of the whole in terms of knowledge of the parts. This is hard to achieve in many cases due to the difficulty of characterizing the many constituents involved in a biological system and their complex web of interactions. The lac promoter of Escherichia coli offers the possibility of confronting "system-level" properties of transcriptional regulation with the known biochemistry of the molecular constituents and their mutual interactions. Such confrontations can reveal previously unknown constituents and interactions, as well as offer insight into how the components work together as a whole. Here we study the combinatorial control of the lac promoter by the regulators Lac repressor (LacR) and cAMP-receptor protein (CRP). A previous in vivo study [Setty Y, Mayo AE, Surette MG, Alon U (2003) Proc Natl Acad Sci USA 100:7702-7707] found gross disagreement between the observed promoter activities and the expected behavior based on the known molecular mechanisms. We repeated the study by identifying and removing several extraneous factors that significantly modulated the expression of the lac promoter. Through quantitative, systematic characterization of promoter activity for a number of key mutants and guided by the thermodynamic model of transcriptional regulation, we were able to account for the combinatorial control of the lac promoter quantitatively, in terms of a cooperative interaction between CRP and LacR-mediated DNA looping. Specifically, our analysis indicates that the sensitivity of the inducer response results from LacR-mediated DNA looping, which is significantly enhanced by CRP.
Collapse
Affiliation(s)
| | - Zhongge Zhang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0374
| | - Milton H. Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0374
| | - Terence Hwa
- *Center for Theoretical Biological Physics and
| |
Collapse
|
26
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 1038] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
27
|
Purohit PK, Nelson PC. Effect of supercoiling on formation of protein-mediated DNA loops. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:061907. [PMID: 17280096 DOI: 10.1103/physreve.74.061907] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Indexed: 05/13/2023]
Abstract
DNA loop formation is one of several mechanisms used by organisms to regulate genes. The free energy of forming a loop is an important factor in determining whether the associated gene is switched on or off. In this paper we use an elastic rod model of DNA to determine the free energy of forming short (50-100 basepair), protein mediated DNA loops. Superhelical stress in the DNA of living cells is a critical factor determining the energetics of loop formation, and we explicitly account for it in our calculations. The repressor protein itself is regarded as a rigid coupler; its geometry enters the problem through the boundary conditions it applies on the DNA. We show that a theory with these ingredients is sufficient to explain certain features observed in modulation of in vivo gene activity as a function of the distance between operator sites for the lac repressor. We also use our theory to make quantitative predictions for the dependence of looping on superhelical stress, which may be testable both in vivo and in single-molecule experiments such as the tethered particle assay and the magnetic bead assay.
Collapse
Affiliation(s)
- P K Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
28
|
Gao M, Sotomayor M, Villa E, Lee EH, Schulten K. Molecular mechanisms of cellular mechanics. Phys Chem Chem Phys 2006; 8:3692-706. [PMID: 16896432 DOI: 10.1039/b606019f] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mechanical forces play an essential role in cellular processes as input, output, and signals. Various protein complexes in the cell are designed to handle, transform and use such forces. For instance, proteins of muscle and the extracellular matrix can withstand considerable stretching forces, hearing-related and mechanosensory proteins can transform weak mechanical stimuli into electrical signals, and regulatory proteins are suited to forcing DNA into loops to control gene expression. Here we review the structure-function relationship of four protein complexes with well defined and representative mechanical functions. The first example is titin, a protein that confers passive elasticity on muscle. The second system is the elastic extracellular matrix protein, fibronectin, and its cellular receptor integrin. The third protein system is the transduction apparatus in hearing and other mechanical senses, likely containing cadherin and ankyrin repeats. The last system is the lac repressor protein, which regulates gene expression by looping DNA. This review focuses on atomic level descriptions of the physical mechanisms underlying the various mechanical functions of the stated proteins.
Collapse
Affiliation(s)
- Mu Gao
- Beckman Institute, Department of Physics, Center for Biophysics and Computational Biology, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
29
|
Adcock SA, McCammon JA. Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev 2006; 106:1589-615. [PMID: 16683746 PMCID: PMC2547409 DOI: 10.1021/cr040426m] [Citation(s) in RCA: 798] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Stewart A. Adcock
- NSF Center for Theoretical Biological Physics, Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0365
| | - J. Andrew McCammon
- NSF Center for Theoretical Biological Physics, Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0365
| |
Collapse
|
30
|
Blumberg S, Pennington MW, Meiners JC. Do femtonewton forces affect genetic function? A review. J Biol Phys 2006; 32:73-95. [PMID: 19669453 DOI: 10.1007/s10867-005-9002-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 12/21/2005] [Indexed: 11/29/2022] Open
Abstract
Protein-Mediated DNA looping is intricately related to gene expression. Therefore any mechanical constraint that disrupts loop formation can play a significant role in gene regulation. Polymer physics models predict that less than a piconewton of force may be sufficient to prevent the formation of DNA loops. Thus, it appears that tension can act as a molecular switch that controls the much larger forces associated with the processive motion of RNA polymerase. Since RNAP can exert forces over 20 pN before it stalls, a 'substrate tension switch' could offer a force advantage of two orders of magnitude. Evidence for such a mechanism is seen in recent in vitro micromanipulation experiments. In this article we provide new perspective on existing theory and experimental data on DNA looping in vitro and in vivo. We elaborate on the connection between tension and a variety of other intracellular mechanical constraints including sequence specific curvature and supercoiling. In the process, we emphasize that the richness and versatility of DNA mechanics opens up a whole new paradigm of gene regulation to explore.
Collapse
Affiliation(s)
- Seth Blumberg
- Department of Physics and Biophysics Research Division, Randall Laboratory, University of Michigan, Ann Arbor, MI 48109-1120, USA.
| | | | | |
Collapse
|
31
|
Balaeff A, Mahadevan L, Schulten K. Modeling DNA loops using the theory of elasticity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:031919. [PMID: 16605570 DOI: 10.1103/physreve.73.031919] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Indexed: 05/08/2023]
Abstract
An elastic rod model of a protein-bound DNA loop is adapted for application in multi-scale simulations of protein-DNA complexes. The classical Kirchhoff system of equations which describes the equilibrium structure of the elastic loop is modified to account for the intrinsic twist and curvature, anisotropic bending properties, and electrostatic charge of DNA. The effects of bending anisotropy and electrostatics are studied for the DNA loop clamped by the lac repressor protein. For two possible lengths of the loop, several topologically different conformations are predicted and extensively analyzed over the broad range of model parameters describing DNA bending and electrostatic properties. The scope and applications of the model in already accomplished and in future multi-scale studies of protein-DNA complexes are discussed.
Collapse
Affiliation(s)
- Alexander Balaeff
- Beckman Institute, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
32
|
Kim JS, Chirikjian GS. Conformational Analysis of Stiff Chiral Polymers with End-Constraints. MOLECULAR SIMULATION 2006; 32:1139-1154. [PMID: 20198114 PMCID: PMC2829781 DOI: 10.1080/08927020601024137] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We present a Lie-group-theoretic method for the kinematic and dynamic analysis of chiral semi-flexible polymers with end constraints. The first is to determine the minimum energy conformations of semi-flexible polymers with end constraints, and the second is to perform normal mode analysis based on the determined minimum energy conformations. In this paper, we use concepts from the theory of Lie groups and principles of variational calculus to model such polymers as inextensible or extensible chiral elastic rods with coupling between twisting and bending stiffnesses, and/or between twisting and extension stiffnesses. This method is general enough to include any stiffness and chirality parameters in the context of elastic filament models with the quadratic elastic potential energy function. As an application of this formulation, the analysis of DNA conformations is discussed. We demonstrate our method with examples of DNA conformations in which topological properties such as writhe, twist, and linking number are calculated from the results of the proposed method. Given these minimum energy conformations, we describe how to perform the normal mode analysis. The results presented here build both on recent experimental work in which DNA mechanical properties have been measured, and theoretical work in which the mechanics of non-chiral elastic rods has been studied.
Collapse
Affiliation(s)
- Jin Seob Kim
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Gregory S. Chirikjian
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
33
|
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem 2005; 26:1781-802. [PMID: 16222654 PMCID: PMC2486339 DOI: 10.1002/jcc.20289] [Citation(s) in RCA: 12700] [Impact Index Per Article: 635.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This article, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Finally, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, for example, the Tcl scripting language. The article also provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu.
Collapse
Affiliation(s)
- James C Phillips
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Semsey S, Virnik K, Adhya S. A gamut of loops: meandering DNA. Trends Biochem Sci 2005; 30:334-41. [PMID: 15950878 DOI: 10.1016/j.tibs.2005.04.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 03/29/2005] [Accepted: 04/22/2005] [Indexed: 11/18/2022]
Abstract
Nucleoprotein complexes comprising short DNA loops (150 base pairs or less) are involved in a wide variety of DNA transactions (e.g. transcription regulation, replication and recombination) in both prokaryotes and eukaryotes, and also can be useful in designing nanostructures. In these higher-order nucleoprotein complexes, proteins bound to spatially separated sites on a DNA interact with each other by looping out the relatively stiff intervening DNA. Recent technological developments have enabled determination of DNA trajectories in a few DNA-loop-containing regulatory complexes. Results show that, in a given system, a specific DNA trajectory is preferred over others.
Collapse
Affiliation(s)
- Szabolcs Semsey
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | | | | |
Collapse
|
35
|
Villa E, Balaeff A, Schulten K. Structural dynamics of the lac repressor-DNA complex revealed by a multiscale simulation. Proc Natl Acad Sci U S A 2005; 102:6783-8. [PMID: 15863616 PMCID: PMC1100768 DOI: 10.1073/pnas.0409387102] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Indexed: 11/18/2022] Open
Abstract
A multiscale simulation of a complex between the lac repressor protein (LacI) and a 107-bp-long DNA segment is reported. The complex between the repressor and two operator DNA segments is described by all-atom molecular dynamics; the size of the simulated system comprises either 226,000 or 314,000 atoms. The DNA loop connecting the operators is modeled as a continuous elastic ribbon, described mathematically by the nonlinear Kirchhoff differential equations with boundary conditions obtained from the coordinates of the terminal base pairs of each operator. The forces stemming from the looped DNA are included in the molecular dynamics simulations; the loop structure and the forces are continuously recomputed because the protein motions during the simulations shift the operators and the presumed termini of the loop. The simulations reveal the structural dynamics of the LacI-DNA complex in unprecedented detail. The multiple domains of LacI exhibit remarkable structural stability during the simulation, moving much like rigid bodies. LacI is shown to absorb the strain from the looped DNA mainly through its mobile DNA-binding head groups. Even with large fluctuating forces applied, the head groups tilt strongly and keep their grip on the operator DNA, while the remainder of the protein retains its V-shaped structure. A simulated opening of the cleft of LacI by 500-pN forces revealed the interactions responsible for locking LacI in the V-conformation.
Collapse
Affiliation(s)
- Elizabeth Villa
- Theoretical and Computational Biophysics Group, Beckman Institute, University of Illinois, 405 North Mathews Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
36
|
Blumberg S, Tkachenko AV, Meiners JC. Disruption of protein-mediated DNA looping by tension in the substrate DNA. Biophys J 2005; 88:1692-701. [PMID: 15653717 PMCID: PMC1305226 DOI: 10.1529/biophysj.104.054486] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein-mediated DNA looping is important in a variety of biological processes, including gene regulation and genetic transformation. Although the biochemistry of loop formation is well established, the mechanics of loop closure in a constrained cellular environment has received less attention. Recent single molecule measurements show that mechanical constraints have a significant impact on DNA looping and motivate the need for a more comprehensive characterization of the effects of tension. By modeling DNA as a wormlike chain, we calculate how continuous stretching of the substrate DNA affects the loop formation probability. We find that when the loop size is >100 bp, a tension of 500 fN can increase the time required for loop closure by two orders of magnitude. This force is small compared to the piconewton forces that are associated with RNA polymerases and other molecular motors, indicating that intracellular mechanical forces might affect transcriptional regulation. In contrast to existing theory, we find that for loops <200 bp, the effect of tension is partly dependent on the relative orientation of the DNA-binding domains in the linker protein. Our results provide perspective on recent DNA looping experiments and suggestions for future micromechanical studies.
Collapse
Affiliation(s)
- Seth Blumberg
- Department of Physics, Randall Laboratory, University of Michigan, Ann Arbor, Michigan 48109-1120, USA
| | | | | |
Collapse
|
37
|
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem 2005. [DOI: 10.1002/jcc.20289 http://www.ks.uiuc.edu/research/namd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Balaeff A, Koudella CR, Mahadevan L, Schulten K. Modelling DNA loops using continuum and statistical mechanics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2004; 362:1355-1371. [PMID: 15306455 DOI: 10.1098/rsta.2004.1384] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The classical Kirchhoff elastic-rod model applied to DNA is extended to account for sequence-dependent intrinsic twist and curvature, anisotropic bending rigidity, electrostatic force interactions, and overdamped Brownian motion in a solvent. The zero-temperature equilibrium rod model is then applied to study the structural basis of the function of the lac repressor protein in the lac operon of Escherichia coli. The structure of a DNA loop induced by the clamping of two distant DNA operator sites by lac repressor is investigated and the optimal geometries for the loop of length 76 bp are predicted. Further, the mimicked binding of catabolite gene activator protein (CAP) inside the loop provides solutions that might explain the experimentally observed synergy in DNA binding between the two proteins. Finally, a combined Monte Carlo and Brownian dynamics solver for a worm-like chain model is described and a preliminary analysis of DNA loop-formation kinetics is presented.
Collapse
Affiliation(s)
- A Balaeff
- Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
39
|
|