1
|
Abbouche L, Murphy V, Gao J, van Twest S, Sobinoff A, Auweiler K, Pickett H, Bythell-Douglas R, Deans A. Mechanism of structure-specific DNA binding by the FANCM branchpoint translocase. Nucleic Acids Res 2024; 52:11029-11044. [PMID: 39189453 PMCID: PMC11472164 DOI: 10.1093/nar/gkae727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
FANCM is a DNA repair protein that recognizes stalled replication forks, and recruits downstream repair factors. FANCM activity is also essential for the survival of cancer cells that utilize the Alternative Lengthening of Telomeres (ALT) mechanism. FANCM efficiently recognizes stalled replication forks in the genome or at telomeres through its strong affinity for branched DNA structures. In this study, we demonstrate that the N-terminal translocase domain drives this specific branched DNA recognition. The Hel2i subdomain within the translocase is crucial for effective substrate engagement and couples DNA binding to catalytic ATP-dependent branch migration. Removal of Hel2i or mutation of key DNA-binding residues within this domain diminished FANCM's affinity for junction DNA and abolished branch migration activity. Importantly, these mutant FANCM variants failed to rescue the cell cycle arrest, telomere-associated replication stress, or lethality of ALT-positive cancer cells depleted of endogenous FANCM. Our results reveal the Hel2i domain is key for FANCM to properly engage DNA substrates, and therefore plays an essential role in its tumour-suppressive functions by restraining the hyperactivation of the ALT pathway.
Collapse
Affiliation(s)
- Lara Abbouche
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Vincent J Murphy
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jixuan Gao
- Children's Medical Research Institute, Westmead, NSW, Australia
| | - Sylvie van Twest
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | | | - Karen M Auweiler
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- Julius-Maximilians-University of Würzburg, Germany
| | - Hilda A Pickett
- Children's Medical Research Institute, Westmead, NSW, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
2
|
Klarić ML, Marić T, Žunić L, Trgovec-Greif L, Rokić F, Fiolić A, Šorgić AM, Ježek D, Vugrek O, Jakovčević A, Barbalić M, Belužić R, Katušić Bojanac A. FANCM Gene Variants in a Male Diagnosed with Sertoli Cell-Only Syndrome and Diffuse Astrocytoma. Genes (Basel) 2024; 15:707. [PMID: 38927643 PMCID: PMC11202954 DOI: 10.3390/genes15060707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Azoospermia is a form of male infertility characterized by a complete lack of spermatozoa in the ejaculate. Sertoli cell-only syndrome (SCOS) is the most severe form of azoospermia, where no germ cells are found in the tubules. Recently, FANCM gene variants were reported as novel genetic causes of spermatogenic failure. At the same time, FANCM variants are known to be associated with cancer predisposition. We performed whole-exome sequencing on a male patient diagnosed with SCOS and a healthy father. Two compound heterozygous missense mutations in the FANCM gene were found in the patient, both being inherited from his parents. After the infertility assessment, the patient was diagnosed with diffuse astrocytoma. Immunohistochemical analyses in the testicular and tumor tissues of the patient and adequate controls showed, for the first time, not only the existence of a cytoplasmic and not nuclear pattern of FANCM in astrocytoma but also in non-mitotic neurons. In the testicular tissue of the SCOS patient, cytoplasmic anti-FANCM staining intensity appeared lower than in the control. Our case report raises a novel possibility that the infertile carriers of FANCM gene missense variants could also be prone to cancer development.
Collapse
Affiliation(s)
| | - Tihana Marić
- Department of Medical Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
- Center of Excellence for Reproductive and Regenerative medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.M.Š.); (D.J.)
| | - Lucija Žunić
- Genom Ltd., Ilica 190, 10000 Zagreb, Croatia; (M.L.K.); (L.Ž.); (A.F.); (M.B.)
| | - Lovro Trgovec-Greif
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.T.-G.); (F.R.); (O.V.)
| | - Filip Rokić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.T.-G.); (F.R.); (O.V.)
| | - Ana Fiolić
- Genom Ltd., Ilica 190, 10000 Zagreb, Croatia; (M.L.K.); (L.Ž.); (A.F.); (M.B.)
| | - Ana Merkler Šorgić
- Center of Excellence for Reproductive and Regenerative medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.M.Š.); (D.J.)
| | - Davor Ježek
- Center of Excellence for Reproductive and Regenerative medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.M.Š.); (D.J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Oliver Vugrek
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.T.-G.); (F.R.); (O.V.)
| | - Antonia Jakovčević
- Department of Pathology, University Hospital Center Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - Maja Barbalić
- Genom Ltd., Ilica 190, 10000 Zagreb, Croatia; (M.L.K.); (L.Ž.); (A.F.); (M.B.)
- Faculty of Science, University of Split, Rudjera Bošković 33, 21000 Split, Croatia
| | - Robert Belužić
- Laboratory for Metabolism and Aging, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Ana Katušić Bojanac
- Department of Medical Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
- Center of Excellence for Reproductive and Regenerative medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.M.Š.); (D.J.)
| |
Collapse
|
3
|
Tsutakawa SE, Bacolla A, Katsonis P, Bralić A, Hamdan SM, Lichtarge O, Tainer JA, Tsai CL. Decoding Cancer Variants of Unknown Significance for Helicase-Nuclease-RPA Complexes Orchestrating DNA Repair During Transcription and Replication. Front Mol Biosci 2021; 8:791792. [PMID: 34966786 PMCID: PMC8710748 DOI: 10.3389/fmolb.2021.791792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023] Open
Abstract
All tumors have DNA mutations, and a predictive understanding of those mutations could inform clinical treatments. However, 40% of the mutations are variants of unknown significance (VUS), with the challenge being to objectively predict whether a VUS is pathogenic and supports the tumor or whether it is benign. To objectively decode VUS, we mapped cancer sequence data and evolutionary trace (ET) scores onto crystallography and cryo-electron microscopy structures with variant impacts quantitated by evolutionary action (EA) measures. As tumors depend on helicases and nucleases to deal with transcription/replication stress, we targeted helicase–nuclease–RPA complexes: (1) XPB-XPD (within TFIIH), XPF-ERCC1, XPG, and RPA for transcription and nucleotide excision repair pathways and (2) BLM, EXO5, and RPA plus DNA2 for stalled replication fork restart. As validation, EA scoring predicts severe effects for most disease mutations, but disease mutants with low ET scores not only are likely destabilizing but also disrupt sophisticated allosteric mechanisms. For sites of disease mutations and VUS predicted to be severe, we found strong co-localization to ordered regions. Rare discrepancies highlighted the different survival requirements between disease and tumor mutations, as well as the value of examining proteins within complexes. In a genome-wide analysis of 33 cancer types, we found correlation between the number of mutations in each tumor and which pathways or functional processes in which the mutations occur, revealing different mutagenic routes to tumorigenesis. We also found upregulation of ancient genes including BLM, which supports a non-random and concerted cancer process: reversion to a unicellular, proliferation-uncontrolled, status by breaking multicellular constraints on cell division. Together, these genes and global analyses challenge the binary “driver” and “passenger” mutation paradigm, support a gradient impact as revealed by EA scoring from moderate to severe at a single gene level, and indicate reduced regulation as well as activity. The objective quantitative assessment of VUS scoring and gene overexpression in the context of functional interactions and pathways provides insights for biology, oncology, and precision medicine.
Collapse
Affiliation(s)
- Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States.,Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
4
|
Pérez-Arnaiz P, Dattani A, Smith V, Allers T. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Open Biol 2020; 10:200293. [PMID: 33259746 PMCID: PMC7776575 DOI: 10.1098/rsob.200293] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical techniques were then needed to study the third domain of life. Haloferax volcanii, a halophilic species belonging to the phylum Euryarchaeota, has provided many useful tools to study Archaea, including easy culturing methods, genetic manipulation and phenotypic screening. This review will focus on DNA replication and DNA repair pathways in H. volcanii, how this work has advanced our knowledge of archaeal cellular biology, and how it may deepen our understanding of bacterial and eukaryotic processes.
Collapse
Affiliation(s)
| | | | | | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
5
|
Basbous J, Constantinou A. A tumor suppressive DNA translocase named FANCM. Crit Rev Biochem Mol Biol 2019; 54:27-40. [DOI: 10.1080/10409238.2019.1568963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jihane Basbous
- Institute of Human Genetics (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Angelos Constantinou
- Institute of Human Genetics (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| |
Collapse
|
6
|
Sinha NK, Iwasa J, Shen PS, Bass BL. Dicer uses distinct modules for recognizing dsRNA termini. Science 2018; 359:329-334. [PMID: 29269422 PMCID: PMC6154394 DOI: 10.1126/science.aaq0921] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/11/2017] [Indexed: 12/19/2022]
Abstract
Invertebrates rely on Dicer to cleave viral double-stranded RNA (dsRNA), and Drosophila Dicer-2 distinguishes dsRNA substrates by their termini. Blunt termini promote processive cleavage, while 3' overhanging termini are cleaved distributively. To understand this discrimination, we used cryo-electron microscopy to solve structures of Drosophila Dicer-2 alone and in complex with blunt dsRNA. Whereas the Platform-PAZ domains have been considered the only Dicer domains that bind dsRNA termini, unexpectedly, we found that the helicase domain is required for binding blunt, but not 3' overhanging, termini. We further showed that blunt dsRNA is locally unwound and threaded through the helicase domain in an adenosine triphosphate-dependent manner. Our studies reveal a previously unrecognized mechanism for optimizing antiviral defense and set the stage for the discovery of helicase-dependent functions in other Dicers.
Collapse
Affiliation(s)
- Niladri K. Sinha
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Janet Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Peter S. Shen
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Brenda L. Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
7
|
Biochemical Activities and Genetic Functions of the Drosophila melanogaster Fancm Helicase in DNA Repair. Genetics 2016; 204:531-541. [PMID: 27466228 DOI: 10.1534/genetics.116.192534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022] Open
Abstract
Repair of DNA damage is essential to the preservation of genomic stability. During repair of double-strand breaks, several helicases function to promote accurate repair and prevent the formation of crossovers through homologous recombination. Among these helicases is the Fanconi anemia group M (FANCM) protein. FANCM is important in the response to various types of DNA damage and has been suggested to prevent mitotic crossovers during double-strand break repair. The helicase activity of FANCM is believed to be important in these functions, but no helicase activity has been detected in vitro We report here a genetic and biochemical study of Drosophila melanogaster Fancm. We show that purified Fancm is a 3' to 5' ATP-dependent helicase that can disassemble recombination intermediates, but only through limited lengths of duplex DNA. Using transgenic flies expressing full-length or truncated Fancm, each with either a wild-type or mutated helicase domain, we found that there are helicase-independent and C-terminal-independent functions in responding to DNA damage and in preventing mitotic crossovers.
Collapse
|
8
|
Identification of Novel Abiotic Stress Proteins in Triticum aestivum Through Functional Annotation of Hypothetical Proteins. Interdiscip Sci 2016; 10:205-220. [PMID: 27421996 DOI: 10.1007/s12539-016-0178-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/15/2016] [Accepted: 07/07/2016] [Indexed: 01/14/2023]
Abstract
Cereal grain bread wheat (T. aestivum) is an important source of food and belongs to Poaceae family. Hypothetical proteins (HPs), i.e., proteins with unknown functions, share a substantial portion of wheat proteomes and play important roles in growth and physiology of plant system. Several functional annotations studies utilizing the protein sequences for characterization of role of individual protein in physiology of plant systems were being reported in recent past. In this study, an integrated pipeline of software/servers has been used for the identification and functional annotation of 124 unique HPs of T. aestivum considering available data in NCBI till date. All HPs were broadly annotated, out of which functions of 77 HPs were successfully assigned with high confidence level. Precisely functional annotation of remaining 47 HPs is also characterized with low confidence. Several latest versions of protein family databases, pathways information, genomics context methods and in silico tools were utilized to identify and assign function for individual HPs. Annotation result of several HPs mainly belongs to cellular protein, metabolic enzymes, binding proteins, transmembrane proteins, transcription factors and photosystem regulator proteins. Subsequently, functional analysis has revealed the role of few HPs in abiotic stress, which were further verified by phylogenetic analysis. The functionally associated proteins with each of above-mentioned abiotic stress-related proteins were identified through protein-protein interaction network analysis. The outcome of this study may be helpful for formulating general set pipeline/protocols for a better understanding of the role of HPs in physiological development of various plant systems.
Collapse
|
9
|
Dummer AM, Su Z, Cherney R, Choi K, Denu J, Zhao X, Fox CA. Binding of the Fkh1 Forkhead Associated Domain to a Phosphopeptide within the Mph1 DNA Helicase Regulates Mating-Type Switching in Budding Yeast. PLoS Genet 2016; 12:e1006094. [PMID: 27257873 PMCID: PMC4892509 DOI: 10.1371/journal.pgen.1006094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/10/2016] [Indexed: 12/18/2022] Open
Abstract
The Saccharomyces cerevisiae Fkh1 protein has roles in cell-cycle regulated transcription as well as a transcription-independent role in recombination donor preference during mating-type switching. The conserved FHA domain of Fkh1 regulates donor preference by juxtaposing two distant regions on chromosome III to promote their recombination. A model posits that this Fkh1-mediated long-range chromosomal juxtaposition requires an interaction between the FHA domain and a partner protein(s), but to date no relevant partner has been described. In this study, we used structural modeling, 2-hybrid assays, and mutational analyses to show that the predicted phosphothreonine-binding FHA domain of Fkh1 interacted with multiple partner proteins. The Fkh1 FHA domain was important for its role in cell-cycle regulation, but no single interaction partner could account for this role. In contrast, Fkh1’s interaction with the Mph1 DNA repair helicase regulated donor preference during mating-type switching. Using 2-hybrid assays, co-immunoprecipitation, and fluorescence anisotropy, we mapped a discrete peptide within the regulatory Mph1 C-terminus required for this interaction and identified two threonines that were particularly important. In vitro binding experiments indicated that at least one of these threonines had to be phosphorylated for efficient Fkh1 binding. Substitution of these two threonines with alanines (mph1-2TA) specifically abolished the Fkh1-Mph1 interaction in vivo and altered donor preference during mating-type switching to the same degree as mph1Δ. Notably, the mph1-2TA allele maintained other functions of Mph1 in genome stability. Deletion of a second Fkh1-interacting protein encoded by YMR144W also resulted in a change in Fkh1-FHA-dependent donor preference. We have named this gene FDO1 for Forkhead one interacting protein involved in donor preference. We conclude that a phosphothreonine-mediated protein-protein interface between Fkh1-FHA and Mph1 contributes to a specific long-range chromosomal interaction required for mating-type switching, but that Fkh1-FHA must also interact with several other proteins to achieve full functionality in this process. Specific chromosomal interactions between distal regions of the genome allow for DNA transactions necessary for normal cell function, but the protein-protein interfaces that regulate such interactions remain largely unknown. The budding yeast Fkh1 protein uses its evolutionarily conserved phosphothreonine-binding FHA domain to regulate a long-range DNA transaction called mating-type switching that allows yeast cells to switch their sexual phenotype. In this study, another conserved nuclear protein, the Mph1 DNA repair helicase, was shown to interact directly with the FHA domain of Fkh1 to regulate mating-type switching. The Fkh1-Mph1 interaction required two phosphorylated threonines on Mph1 that were dispensable for many other Mph1-protein interactions and other Mph1 chromosomal functions. Thus a discrete protein-protein interface between two multifunctional chromosomal proteins helps define a long-range chromosomal interaction important for controlling cell behavior.
Collapse
Affiliation(s)
- Antoinette M. Dummer
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zhangli Su
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rachel Cherney
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Koyi Choi
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - John Denu
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ahmad S, Hur S. Helicases in Antiviral Immunity: Dual Properties as Sensors and Effectors. Trends Biochem Sci 2016; 40:576-585. [PMID: 26410598 DOI: 10.1016/j.tibs.2015.08.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 01/01/2023]
Abstract
Many helicases have a unique ability to couple cognate RNA binding to ATP hydrolysis, which can induce a large conformational change that affects its interaction with RNA, position along RNA, or oligomeric state. A growing number of these helicases contribute to the innate immune system, either as sensors that detect foreign nucleic acids and/or as effectors that directly participate in the clearance of such foreign species. In this review, we discuss a few examples, including retinoic acid-inducible gene-I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and Dicer, focusing on their dual functions as both sensors and effectors. We will also discuss the closely related, but less understood, helicases, laboratory of genetics and physiology 2 (LGP2) and Dicer-related helicase-1 and -3 (DRH-1 and -3).
Collapse
Affiliation(s)
- Sadeem Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
Rohleder F, Huang J, Xue Y, Kuper J, Round A, Seidman M, Wang W, Kisker C. FANCM interacts with PCNA to promote replication traverse of DNA interstrand crosslinks. Nucleic Acids Res 2016; 44:3219-32. [PMID: 26825464 PMCID: PMC4838364 DOI: 10.1093/nar/gkw037] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/12/2016] [Indexed: 12/27/2022] Open
Abstract
FANCM is a highly conserved DNA remodeling enzyme that promotes the activation of the Fanconi anemia DNA repair pathway and facilitates replication traverse of DNA interstrand crosslinks. However, how FANCM interacts with the replication machinery to promote traverse remains unclear. Here, we show that FANCM and its archaeal homolog Hef from Thermoplasma acidophilum interact with proliferating cell nuclear antigen (PCNA), an essential co-factor for DNA polymerases in both replication and repair. The interaction is mediated through a conserved PIP-box; and in human FANCM, it is strongly stimulated by replication stress. A FANCM variant carrying a mutation in the PIP-box is defective in promoting replication traverse of interstrand crosslinks and is also inefficient in promoting FANCD2 monoubiquitination, a key step of the Fanconi anemia pathway. Our data reveal a conserved interaction mode between FANCM and PCNA during replication stress, and suggest that this interaction is essential for FANCM to aid replication machines to traverse DNA interstrand crosslinks prior to post-replication repair.
Collapse
Affiliation(s)
- Florian Rohleder
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Jing Huang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institute of Health, Baltimore, Maryland, MD 21224, USA
| | - Yutong Xue
- Laboratory of Genetics, National Institute on Aging, National Institute of Health, Baltimore, Maryland, MD 21224, USA
| | - Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Adam Round
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, 38042 Grenoble, France Faculty of Natural sciences, Keele University, Staffordshire ST5 5BG, UK
| | - Michael Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institute of Health, Baltimore, Maryland, MD 21224, USA
| | - Weidong Wang
- Laboratory of Genetics, National Institute on Aging, National Institute of Health, Baltimore, Maryland, MD 21224, USA
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, D-97080 Würzburg, Germany
| |
Collapse
|
12
|
Zhao Q, Saro D, Sachpatzidis A, Singh TR, Schlingman D, Zheng XF, Mack A, Tsai MS, Mochrie S, Regan L, Meetei AR, Sung P, Xiong Y. The MHF complex senses branched DNA by binding a pair of crossover DNA duplexes. Nat Commun 2015; 5:2987. [PMID: 24390579 DOI: 10.1038/ncomms3987] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 11/21/2013] [Indexed: 01/07/2023] Open
Abstract
The conserved MHF1-MHF2 (MHF) complex functions in the activation of the Fanconi anaemia pathway of the DNA damage response, in regulating homologous recombination, and in DNA replication fork maintenance. MHF facilitates the processing of multiple types of branched DNAs by the DNA translocase FANCM. Here we report the crystal structure of a human MHF-DNA complex that reveals the DNA-binding mode of MHF. The structure suggests that MHF prefers branched DNA over double-stranded DNA because it engages two duplex arms. Biochemical analyses verify that MHF preferentially engages DNA forks or various four-way junctions independent of the junction-site structure. Furthermore, genetic experiments provide evidence that the observed DNA-binding interface of MHF is important for cellular resistance to DNA damage. These results offer insights into how the MHF complex recognizes branched DNA and stimulates FANCM activity at such a structure to promote genome maintenance.
Collapse
Affiliation(s)
- Qi Zhao
- 1] Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2]
| | - Dorina Saro
- 1] Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2]
| | - Aristidis Sachpatzidis
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Thiyam Ramsing Singh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | - Daniel Schlingman
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xiao-Feng Zheng
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Andrew Mack
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Miaw-Sheue Tsai
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Simon Mochrie
- 1] Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA [2] Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Lynne Regan
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Amom Ruhikanta Meetei
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
13
|
Achar YJ, Balogh D, Neculai D, Juhasz S, Morocz M, Gali H, Dhe-Paganon S, Venclovas Č, Haracska L. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling. Nucleic Acids Res 2015; 43:10277-91. [PMID: 26350214 PMCID: PMC4666394 DOI: 10.1093/nar/gkv896] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/27/2015] [Indexed: 12/13/2022] Open
Abstract
Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteins retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. In more general terms, we suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.
Collapse
Affiliation(s)
- Yathish Jagadheesh Achar
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Temesvari krt. 62, H-6726, Hungary
| | - David Balogh
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Temesvari krt. 62, H-6726, Hungary
| | - Dante Neculai
- Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Szilvia Juhasz
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Temesvari krt. 62, H-6726, Hungary
| | - Monika Morocz
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Temesvari krt. 62, H-6726, Hungary
| | - Himabindu Gali
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Temesvari krt. 62, H-6726, Hungary
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue - LC-3310, Boston, MA 02215, USA
| | - Česlovas Venclovas
- Institute of Biotechnology, Vilnius University, Graičiūno 8, Vilnius LT-02241, Lithuania
| | - Lajos Haracska
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Temesvari krt. 62, H-6726, Hungary
| |
Collapse
|
14
|
Abstract
Understanding how frequently spontaneous replication arrests occur and how archaea deal with these arrests are very interesting and challenging research topics. Here we will described how genetic and imaging studies have revealed the central role of the archaeal helicase/nuclease Hef belonging to the XPF/MUS81/FANCM family of endonucleases in repair of arrested replication forks. Special focus will be on description of a recently developed combination of genetic and imaging tools to study the dynamic localization of a functional Hef::GFP (Green Fluorescent Protein) fusion protein in the living cells of halophilic archaea Haloferax volcanii. As Archaea provide an excellent and unique model for understanding how DNA replication is regulated to allow replication of a circular DNA molecule either from single or multiple replication origins, we will also summarize recent studies that have revealed peculiar features regarding DNA replication, particularly in halophilic archaea. We strongly believe that fundamental knowledge of our on-going studies will shed light on the evolutionary history of the DNA replication machinery and will help to establish general rules concerning replication restart and the key role of recombination proteins not only in bacteria, yeast and higher eukaryotes but also in archaea.
Collapse
|
15
|
Sinha NK, Trettin KD, Aruscavage PJ, Bass BL. Drosophila dicer-2 cleavage is mediated by helicase- and dsRNA termini-dependent states that are modulated by Loquacious-PD. Mol Cell 2015; 58:406-17. [PMID: 25891075 DOI: 10.1016/j.molcel.2015.03.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/04/2015] [Accepted: 03/09/2015] [Indexed: 12/22/2022]
Abstract
In previous studies we observed that the helicase domain of Drosophila Dicer-2 (dmDcr-2) governs substrate recognition and cleavage efficiency, and that dsRNA termini are key to this discrimination. We now provide a mechanistic basis for these observations. We show that discrimination of termini occurs during initial binding. Without ATP, dmDcr-2 binds 3' overhanging, but not blunt, termini. By contrast, with ATP, dmDcr-2 binds both types of termini, with highest-affinity binding observed with blunt dsRNA. In the presence of ATP, binding, cleavage, and ATP hydrolysis are optimal with BLT termini compared to 3'ovr termini. Limited proteolysis experiments suggest the optimal reactivity of BLT dsRNA is mediated by a conformational change that is dependent on ATP and the helicase domain. We find that dmDcr-2's partner protein, Loquacious-PD, alters termini dependence, enabling dmDcr-2 to cleave substrates normally refractory to cleavage, such as dsRNA with blocked, structured, or frayed ends.
Collapse
Affiliation(s)
- Niladri K Sinha
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle D Trettin
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - P Joseph Aruscavage
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
16
|
Ishino S, Yamagami T, Kitamura M, Kodera N, Mori T, Sugiyama S, Ando T, Goda N, Tenno T, Hiroaki H, Ishino Y. Multiple interactions of the intrinsically disordered region between the helicase and nuclease domains of the archaeal Hef protein. J Biol Chem 2014; 289:21627-39. [PMID: 24947516 DOI: 10.1074/jbc.m114.554998] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hef is an archaeal protein that probably functions mainly in stalled replication fork repair. The presence of an unstructured region was predicted between the two distinct domains of the Hef protein. We analyzed the interdomain region of Thermococcus kodakarensis Hef and demonstrated its disordered structure by CD, NMR, and high speed atomic force microscopy (AFM). To investigate the functions of this intrinsically disordered region (IDR), we screened for proteins interacting with the IDR of Hef by a yeast two-hybrid method, and 10 candidate proteins were obtained. We found that PCNA1 and a RecJ-like protein specifically bind to the IDR in vitro. These results suggested that the Hef protein interacts with several different proteins that work together in the pathways downstream from stalled replication fork repair by converting the IDR structure depending on the partner protein.
Collapse
Affiliation(s)
- Sonoko Ishino
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka 812-8581
| | - Takeshi Yamagami
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka 812-8581
| | - Makoto Kitamura
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka 812-8581
| | - Noriyuki Kodera
- the Bio-AFM Frontier Research Center and Department of Physics, College of Science and Engineering, Kanazawa University, Kanazawa 920-1192, and
| | - Tetsuya Mori
- the Bio-AFM Frontier Research Center and Department of Physics, College of Science and Engineering, Kanazawa University, Kanazawa 920-1192, and
| | - Shyogo Sugiyama
- the Bio-AFM Frontier Research Center and Department of Physics, College of Science and Engineering, Kanazawa University, Kanazawa 920-1192, and
| | - Toshio Ando
- the Bio-AFM Frontier Research Center and Department of Physics, College of Science and Engineering, Kanazawa University, Kanazawa 920-1192, and
| | - Natsuko Goda
- the Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Takeshi Tenno
- the Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hidekazu Hiroaki
- the Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshizumi Ishino
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka 812-8581,
| |
Collapse
|
17
|
General Characteristics and Important Model Organisms. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014. [DOI: 10.1128/9781555815516.ch2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
RIG-I-Like Receptors Evolved Adaptively in Mammals, with Parallel Evolution at LGP2 and RIG-I. J Mol Biol 2014; 426:1351-65. [DOI: 10.1016/j.jmb.2013.10.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/11/2013] [Accepted: 10/30/2013] [Indexed: 01/18/2023]
|
19
|
Coulthard R, Deans A, Swuec P, Bowles M, Costa A, West S, McDonald N. Architecture and DNA recognition elements of the Fanconi anemia FANCM-FAAP24 complex. Structure 2013; 21:1648-58. [PMID: 23932590 PMCID: PMC3763369 DOI: 10.1016/j.str.2013.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 01/19/2023]
Abstract
Fanconi anemia (FA) is a disorder associated with a failure in DNA repair. FANCM (defective in FA complementation group M) and its partner FAAP24 target other FA proteins to sites of DNA damage. FANCM-FAAP24 is related to XPF/MUS81 endonucleases but lacks endonucleolytic activity. We report a structure of an FANCM C-terminal fragment (FANCMCTD) bound to FAAP24 and DNA. This S-shaped structure reveals the FANCM (HhH)2 domain is buried, whereas the FAAP24 (HhH)2 domain engages DNA. We identify a second DNA contact and a metal center within the FANCM pseudo-nuclease domain and demonstrate that mutations in either region impair double-stranded DNA binding in vitro and FANCM-FAAP24 function in vivo. We show the FANCM translocase domain lies in proximity to FANCMCTD by electron microscopy and that binding fork DNA structures stimulate its ATPase activity. This suggests a tracking model for FANCM-FAAP24 until an encounter with a stalled replication fork triggers ATPase-mediated fork remodeling.
Collapse
Affiliation(s)
- Rachel Coulthard
- Structural Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Andrew J. Deans
- Genome Stability Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy 3165 Australia
- Genetic Recombination Laboratory, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | - Paolo Swuec
- Architecture and Dynamics of Macromolecular Machines, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | - Maureen Bowles
- Structural Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Alessandro Costa
- Architecture and Dynamics of Macromolecular Machines, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | - Stephen C. West
- Genetic Recombination Laboratory, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | - Neil Q. McDonald
- Structural Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
- Institute of Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
20
|
Roles of DNA helicases in the mediation and regulation of homologous recombination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:185-202. [PMID: 23161012 DOI: 10.1007/978-1-4614-5037-5_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homologous recombination (HR) is an evolutionarily conserved process that eliminates DNA double-strand breaks from chromosomes, repairs injured DNA replication forks, and helps orchestrate meiotic chromosome segregation. Recent studies have shown that DNA helicases play multifaceted roles in HR mediation and regulation. In particular, the S. cerevisiae Sgs1 helicase and its human ortholog BLM helicase are involved in not only the resection of the primary lesion to generate single-stranded DNA to prompt the assembly of the HR machinery, but they also function in somatic cells to suppress the formation of chromosome arm crossovers during HR. On the other hand, the S. cerevisiae Mph1 and Srs2 helicases, and their respective functional equivalents in other eukaryotes, suppress spurious HR events and favor the formation of noncrossovers via distinct mechanisms. Thus, the functional integrity of the HR process and HR outcomes are dependent upon these helicase enzymes. Since mutations in some of these helicases lead to cancer predisposition in humans and mice, studies on them have clear relevance to human health and disease.
Collapse
|
21
|
Beyer DC, Ghoneim MK, Spies M. Structure and Mechanisms of SF2 DNA Helicases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:47-73. [PMID: 23161006 DOI: 10.1007/978-1-4614-5037-5_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Effective transcription, replication, and maintenance of the genome require a diverse set of molecular machines to perform the many chemical transactions that constitute these processes. Many of these machines use single-stranded nucleic acids as templates, and their actions are often regulated by the participation of nucleic acids in multimeric structures and macromolecular assemblies that restrict access to chemical information. Superfamily II (SF2) DNA helicases and translocases are a group of molecular machines that remodel nucleic acid lattices and enable essential cellular processes to use the information stored in the duplex DNA of the packaged genome. Characteristic accessory domains associated with the subgroups of the superfamily direct the activity of the common motor core and expand the repertoire of activities and substrates available to SF2 DNA helicases, translocases, and large multiprotein complexes containing SF2 motors. In recent years, single-molecule studies have contributed extensively to the characterization of this ubiquitous and essential class of enzymes.
Collapse
Affiliation(s)
- David C Beyer
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | |
Collapse
|
22
|
Kolakofsky D, Kowalinski E, Cusack S. A structure-based model of RIG-I activation. RNA (NEW YORK, N.Y.) 2012; 18:2118-27. [PMID: 23118418 PMCID: PMC3504664 DOI: 10.1261/rna.035949.112] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A series of high-resolution crystal structures of RIG-I and RIG-I:dsRNA cocrystals has recently been reported. Comparison of these structures provides considerable insight into how this innate immune pattern recognition receptor is activated upon detecting and binding a certain class of viral RNAs.
Collapse
Affiliation(s)
- Daniel Kolakofsky
- Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, CMU, 1211 Geneva, Switzerland.
| | | | | |
Collapse
|
23
|
McNeil EM, Melton DW. DNA repair endonuclease ERCC1-XPF as a novel therapeutic target to overcome chemoresistance in cancer therapy. Nucleic Acids Res 2012; 40:9990-10004. [PMID: 22941649 PMCID: PMC3488251 DOI: 10.1093/nar/gks818] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ERCC1–XPF complex is a structure-specific endonuclease essential for the repair of DNA damage by the nucleotide excision repair pathway. It is also involved in other key cellular processes, including DNA interstrand crosslink (ICL) repair and DNA double-strand break (DSB) repair. New evidence has recently emerged, increasing our understanding of its requirement in these additional roles. In this review, we focus on the protein–protein and protein–DNA interactions made by the ERCC1 and XPF proteins and discuss how these coordinate ERCC1–XPF in its various roles. In a number of different cancers, high expression of ERCC1 has been linked to a poor response to platinum-based chemotherapy. We discuss prospects for the development of DNA repair inhibitors that target the activity, stability or protein interactions of the ERCC1–XPF complex as a novel therapeutic strategy to overcome chemoresistance.
Collapse
Affiliation(s)
- Ewan M McNeil
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | |
Collapse
|
24
|
Structural and Functional Characterization of RecG Helicase under Dilute and Molecular Crowding Conditions. J Nucleic Acids 2012; 2012:392039. [PMID: 22919464 PMCID: PMC3420092 DOI: 10.1155/2012/392039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/30/2012] [Indexed: 12/04/2022] Open
Abstract
In an ATP-dependent reaction, the Escherichia coli RecG helicase unwinds DNA junctions in vitro. We present evidence of a unique protein conformational change in the RecG helicase from an α-helix to a β-strand upon an ATP binding under dilute conditions using circular dichroism (CD) spectroscopy. In contrast, under molecular crowding conditions, the α-helical conformation was stable even upon an ATP binding. These distinct conformational behaviors were observed to be independent of Na+ and Mg2+. Interestingly, CD measurements demonstrated that the spectra of a frayed duplex decreased with increasing of the RecG concentration both under dilute and molecular crowding conditions in the presence of ATP, suggesting that RecG unwound the frayed duplex. Our findings raise the possibility that the α-helix and β-strand forms of RecG are a preactive and an active structure with the helicase activity, respectively.
Collapse
|
25
|
Abstract
Superfamily 2 helicases are involved in all aspects of RNA metabolism, and many steps in DNA metabolism. This review focuses on the basic mechanistic, structural and biological properties of each of the families of helicases within superfamily 2. There are ten separate families of helicases within superfamily 2, each playing specific roles in nucleic acid metabolism. The mechanisms of action are diverse, as well as the effect on the nucleic acid. Some families translocate on single-stranded nucleic acid and unwind duplexes, some unwind double-stranded nucleic acids without translocation, and some translocate on double-stranded or single-stranded nucleic acids without unwinding.
Collapse
Affiliation(s)
- Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | |
Collapse
|
26
|
Su Y, Orelli B, Madireddy A, Niedernhofer LJ, Schärer OD. Multiple DNA binding domains mediate the function of the ERCC1-XPF protein in nucleotide excision repair. J Biol Chem 2012; 287:21846-55. [PMID: 22547097 DOI: 10.1074/jbc.m111.337899] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERCC1-XPF is a heterodimeric, structure-specific endonuclease that cleaves single-stranded/double-stranded DNA junctions and has roles in nucleotide excision repair (NER), interstrand crosslink (ICL) repair, homologous recombination, and possibly other pathways. In NER, ERCC1-XPF is recruited to DNA lesions by interaction with XPA and incises the DNA 5' to the lesion. We studied the role of the four C-terminal DNA binding domains in mediating NER activity and cleavage of model substrates. We found that mutations in the helix-hairpin-helix domain of ERCC1 and the nuclease domain of XPF abolished cleavage activity on model substrates. Interestingly, mutations in multiple DNA binding domains were needed to significantly diminish NER activity in vitro and in vivo, suggesting that interactions with proteins in the NER incision complex can compensate for some defects in DNA binding. Mutations in DNA binding domains of ERCC1-XPF render cells more sensitive to the crosslinking agent mitomycin C than to ultraviolet radiation, suggesting that the ICL repair function of ERCC1-XPF requires tighter substrate binding than NER. Our studies show that multiple domains of ERCC1-XPF contribute to substrate binding, and are consistent with models of NER suggesting that multiple weak protein-DNA and protein-protein interactions drive progression through the pathway. Our findings are discussed in the context of structural studies of individual domains of ERCC1-XPF and of its role in multiple DNA repair pathways.
Collapse
Affiliation(s)
- Yan Su
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | | | | | | | | |
Collapse
|
27
|
Bowles M, Lally J, Fadden AJ, Mouilleron S, Hammonds T, McDonald NQ. Fluorescence-based incision assay for human XPF-ERCC1 activity identifies important elements of DNA junction recognition. Nucleic Acids Res 2012; 40:e101. [PMID: 22457069 PMCID: PMC3401468 DOI: 10.1093/nar/gks284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The structure-specific endonuclease activity of the human XPF–ERCC1 complex is essential for a number of DNA processing mechanisms that help to maintain genomic integrity. XPF–ERCC1 cleaves DNA structures such as stem–loops, bubbles or flaps in one strand of a duplex where there is at least one downstream single strand. Here, we define the minimal substrate requirements for cleavage of stem–loop substrates allowing us to develop a real-time fluorescence-based assay to measure endonuclease activity. Using this assay, we show that changes in the sequence of the duplex upstream of the incision site results in up to 100-fold variation in cleavage rate of a stem-loop substrate by XPF-ERCC1. XPF–ERCC1 has a preference for cleaving the phosphodiester bond positioned on the 3′-side of a T or a U, which is flanked by an upstream T or U suggesting that a T/U pocket may exist within the catalytic domain. In addition to an endonuclease domain and tandem helix–hairpin–helix domains, XPF has a divergent and inactive DEAH helicase-like domain (HLD). We show that deletion of HLD eliminates endonuclease activity and demonstrate that purified recombinant XPF–HLD shows a preference for binding stem–loop structures over single strand or duplex alone, suggesting a role for the HLD in initial structure recognition. Together our data describe features of XPF–ERCC1 and an accepted model substrate that are important for recognition and efficient incision activity.
Collapse
Affiliation(s)
- Maureen Bowles
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY, UK
| | | | | | | | | | | |
Collapse
|
28
|
Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 2011; 147:423-35. [PMID: 22000019 DOI: 10.1016/j.cell.2011.09.039] [Citation(s) in RCA: 533] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 12/24/2022]
Abstract
RIG-I is a key innate immune pattern-recognition receptor that triggers interferon expression upon detection of intracellular 5'triphosphate double-stranded RNA (5'ppp-dsRNA) of viral origin. RIG-I comprises N-terminal caspase activation and recruitment domains (CARDs), a DECH helicase, and a C-terminal domain (CTD). We present crystal structures of the ligand-free, autorepressed, and RNA-bound, activated states of RIG-I. Inactive RIG-I has an open conformation with the CARDs sequestered by a helical domain inserted between the two helicase moieties. ATP and dsRNA binding induce a major rearrangement to a closed conformation in which the helicase and CTD bind the blunt end 5'ppp-dsRNA with perfect complementarity but incompatibly with continued CARD binding. We propose that after initial binding of 5'ppp-dsRNA to the flexibly linked CTD, co-operative tight binding of ATP and RNA to the helicase domain liberates the CARDs for downstream signaling. These findings significantly advance our molecular understanding of the activation of innate immune signaling helicases.
Collapse
|
29
|
Bruns AM, Horvath CM. Activation of RIG-I-like receptor signal transduction. Crit Rev Biochem Mol Biol 2011; 47:194-206. [PMID: 22066529 DOI: 10.3109/10409238.2011.630974] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian cells have the ability to recognize virus infection and mount a powerful antiviral response. Pattern recognition receptor proteins detect molecular signatures of virus infection and activate antiviral signaling cascades. The RIG-I-like receptors are cytoplasmic DExD/H box proteins that can specifically recognize virus-derived RNA species as a molecular feature discriminating the pathogen from the host. The RIG-I-like receptor family is composed of three homologous proteins, RIG-I, MDA5, and LGP2. All of these proteins can bind double-stranded RNA species with varying affinities via their conserved DExD/H box RNA helicase domains and C-terminal regulatory domains. The recognition of foreign RNA by the RLRs activates enzymatic functions and initiates signal transduction pathways resulting in the production of antiviral cytokines and the establishment of a broadly effective cellular antiviral state that protects neighboring cells from infection and triggers innate and adaptive immune systems. The propagation of this signal via the interferon antiviral system has been studied extensively, while the precise roles for enzymatic activities of the RNA helicase domain in antiviral responses are only beginning to be elucidated. Here, current models for RLR ligand recognition and signaling are reviewed.
Collapse
Affiliation(s)
- Annie M Bruns
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
30
|
Luo D, Ding SC, Vela A, Kohlway A, Lindenbach BD, Pyle AM. Structural insights into RNA recognition by RIG-I. Cell 2011; 147:409-22. [PMID: 22000018 PMCID: PMC3222294 DOI: 10.1016/j.cell.2011.09.023] [Citation(s) in RCA: 329] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/02/2011] [Accepted: 09/16/2011] [Indexed: 12/19/2022]
Abstract
Intracellular RIG-I-like receptors (RLRs, including RIG-I, MDA-5, and LGP2) recognize viral RNAs as pathogen-associated molecular patterns (PAMPs) and initiate an antiviral immune response. To understand the molecular basis of this process, we determined the crystal structure of RIG-I in complex with double-stranded RNA (dsRNA). The dsRNA is sheathed within a network of protein domains that include a conserved "helicase" domain (regions HEL1 and HEL2), a specialized insertion domain (HEL2i), and a C-terminal regulatory domain (CTD). A V-shaped pincer connects HEL2 and the CTD by gripping an α-helical shaft that extends from HEL1. In this way, the pincer coordinates functions of all the domains and couples RNA binding with ATP hydrolysis. RIG-I falls within the Dicer-RIG-I clade of the superfamily 2 helicases, and this structure reveals complex interplay between motor domains, accessory mechanical domains, and RNA that has implications for understanding the nanomechanical function of this protein family and other ATPases more broadly.
Collapse
Affiliation(s)
- Dahai Luo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Steve C. Ding
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Adriana Vela
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Andrew Kohlway
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Brett D. Lindenbach
- Section of Microbial Pathogenesis, Yale University, New Haven, Connecticut 06520
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| |
Collapse
|
31
|
Hauk G, Bowman GD. Structural insights into regulation and action of SWI2/SNF2 ATPases. Curr Opin Struct Biol 2011; 21:719-27. [PMID: 21996440 DOI: 10.1016/j.sbi.2011.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/13/2011] [Indexed: 01/08/2023]
Abstract
This review focuses on recent structural insights into regulation and nucleic acid binding of Superfamily 2 (SF2)-type helicases as they relate to chromatin remodelers. We review structural features of the Chd1 chromatin remodeler regarding regulation of the ATPase motor, and discuss related strategies observed for other SF2 ATPases. Since no SWI2/SNF2 ATPases have yet been captured bound to DNA in a state competent for ATP hydrolysis, we turn to structural examples from the DEAD-box RNA helicase family, and suggest that SWI2/SNF2-specific inserts may be poised to alter canonical duplex DNA structure.
Collapse
Affiliation(s)
- Glenn Hauk
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218-2685, USA
| | | |
Collapse
|
32
|
Abstract
Chromatin remodelling is the ATP-dependent change in nucleosome organisation driven by Snf2 family ATPases. The biochemistry of this process depends on the behaviours of ATP-dependent motor proteins and their dynamic nucleosome substrates, which brings significant technical and conceptual challenges. Steady progress has been made in characterising the polypeptides of which these enzymes are comprised. Divergence in the sequences of different subfamilies of Snf2-related proteins suggests that the motors are adapted for different functions. Recently, structural insights have suggested that the Snf2 ATPase acts as a context-sensitive DNA translocase. This may have arisen as a means to enable efficient access to DNA in the high density of the eukaryotic nucleus. How the enzymes engage nucleosomes and how the network of noncovalent interactions within the nucleosome respond to the force applied remains unclear, and it remains prudent to recognise the potential for both DNA distortions and dynamics within the underlying histone octamer structure.
Collapse
Affiliation(s)
- Andrew Flaus
- Centre for Chromosome Biology, Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| | | |
Collapse
|
33
|
Flechsig H, Popp D, Mikhailov AS. In silico investigation of conformational motions in superfamily 2 helicase proteins. PLoS One 2011; 6:e21809. [PMID: 21829442 PMCID: PMC3139591 DOI: 10.1371/journal.pone.0021809] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/07/2011] [Indexed: 01/31/2023] Open
Abstract
Helicases are motor proteins that play a central role in the metabolism of DNA and RNA in biological cells. Using the energy of ATP molecules, they are able to translocate along the nucleic acids and unwind their duplex structure. They have been extensively characterized in the past and grouped into superfamilies based on structural similarities and sequential motifs. However, their functional aspects and the mechanism of their operation are not yet well understood. Here, we consider three helicases from the major superfamily 2 - Hef, Hel308 and XPD - and study their conformational dynamics by using coarse-grained relaxational elastic network models. Specifically, their responses to mechanical perturbations are analyzed. This enables us to identify robust and ordered conformational motions which may underlie the functional activity of these proteins. As we show, such motions are well-organized and have large amplitudes. Their possible roles in the processing of nucleic substrate are discussed.
Collapse
Affiliation(s)
- Holger Flechsig
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany.
| | | | | |
Collapse
|
34
|
Fukui K, Kuramitsu S. Structure and Function of the Small MutS-Related Domain. Mol Biol Int 2011; 2011:691735. [PMID: 22091410 PMCID: PMC3200294 DOI: 10.4061/2011/691735] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/13/2011] [Indexed: 01/04/2023] Open
Abstract
MutS family proteins are widely distributed in almost all organisms from bacteria to human and play central roles in various DNA transactions such as DNA mismatch repair and recombinational events. The small MutS-related (Smr) domain was originally found in the C-terminal domain of an antirecombination protein, MutS2, a member of the MutS family. MutS2 is thought to suppress homologous recombination by endonucleolytic resolution of early intermediates in the process. The endonuclease activity of MutS2 is derived from the Smr domain. Interestingly, sequences homologous to the Smr domain are abundant in a variety of proteins other than MutS2 and can be classified into 3 subfamilies. Recently, the tertiary structures and endonuclease activities of all 3 Smr subfamilies were reported. In this paper, we review the biochemical characteristics and structures of the Smr domains as well as cellular functions of the Smr-containing proteins.
Collapse
Affiliation(s)
- Kenji Fukui
- RIKEN SPring-8 Center, Harima Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | | |
Collapse
|
35
|
Fagbemi AF, Orelli B, Schärer OD. Regulation of endonuclease activity in human nucleotide excision repair. DNA Repair (Amst) 2011; 10:722-9. [PMID: 21592868 PMCID: PMC3139800 DOI: 10.1016/j.dnarep.2011.04.022] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nucleotide excision repair (NER) is a DNA repair pathway that is responsible for removing a variety of lesions caused by harmful UV light, chemical carcinogens, and environmental mutagens from DNA. NER involves the concerted action of over 30 proteins that sequentially recognize a lesion, excise it in the form of an oligonucleotide, and fill in the resulting gap by repair synthesis. ERCC1-XPF and XPG are structure-specific endonucleases responsible for carrying out the incisions 5' and 3' to the damage respectively, culminating in the release of the damaged oligonucleotide. This review focuses on the recent work that led to a greater understanding of how the activities of ERCC1-XPF and XPG are regulated in NER to prevent unwanted cuts in DNA or the persistence of gaps after incision that could result in harmful, cytotoxic DNA structures.
Collapse
Affiliation(s)
- Adebanke F Fagbemi
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | | |
Collapse
|
36
|
Structure and function of a novel endonuclease acting on branched DNA substrates. Biochem Soc Trans 2011; 39:145-9. [PMID: 21265762 DOI: 10.1042/bst0390145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Branched DNA structures that occur during DNA repair and recombination must be efficiently processed by structure-specific endonucleases in order to avoid cell death. In the present paper, we summarize our screen for new interaction partners for the archaeal replication clamp that led to the functional characterization of a novel endonuclease family, dubbed NucS. Structural analyses of Pyrococcus abyssi NucS revealed an unexpected binding site for ssDNA (single-stranded DNA) that directs, together with the replication clamp, the nuclease activity of this protein towards ssDNA-dsDNA (double-stranded DNA) junctions. Our studies suggest that understanding the detailed architecture and dynamic behaviour of the NucS (nuclease specific for ssDNA)-PCNA (proliferating-cell nuclear antigen) complex with DNA will be crucial for identification of its physiologically relevant activities.
Collapse
|
37
|
Yusufzai T, Kadonaga JT. Branching out with DNA helicases. Curr Opin Genet Dev 2011; 21:214-8. [PMID: 21324673 DOI: 10.1016/j.gde.2011.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
Abstract
The proper resolution of branched DNA molecules, which arise during processes such as DNA replication, DNA repair, and transcription, is critical for the maintenance of the genome. Disruption of this process can lead to genome instability and cancer progression. In this review, we describe recent progress on several interesting and biologically important enzymes that act upon different types of branched DNA substrates.
Collapse
Affiliation(s)
- Timur Yusufzai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
38
|
Jankowsky E. RNA helicases at work: binding and rearranging. Trends Biochem Sci 2011; 36:19-29. [PMID: 20813532 DOI: 10.1016/j.tibs.2010.07.008] [Citation(s) in RCA: 407] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/20/2010] [Accepted: 07/23/2010] [Indexed: 12/22/2022]
Abstract
RNA helicases are ubiquitous, highly conserved enzymes that participate in nearly all aspects of RNA metabolism. These proteins bind or remodel RNA or RNA-protein complexes in an ATP-dependent fashion. How RNA helicases physically perform their cellular tasks has been a longstanding question, but in recent years, intriguing models have started to link structure, mechanism and biological function for some RNA helicases. This review outlines our current view on major structural and mechanistic themes of RNA helicase function, and on emerging physical models for cellular roles of these enzymes.
Collapse
Affiliation(s)
- Eckhard Jankowsky
- Center for RNA Molecular Biology & Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| |
Collapse
|
39
|
Rouillon C, White MF. The evolution and mechanisms of nucleotide excision repair proteins. Res Microbiol 2010; 162:19-26. [PMID: 20863882 DOI: 10.1016/j.resmic.2010.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
Abstract
Nucleotide excision repair (NER) pathways remove a wide variety of bulky and helix-distorting lesions from DNA, and involve the coordinated action of damage detection, helicase and nuclease proteins. Most archaeal genomes encode eucaryal-type NER proteins, including the helicases XPB and XPD and nuclease XPF. These have been a valuable resource, yielding important mechanistic and structural insights relevant to human health. However, the nature of archaeal NER remains very uncertain. Here we review recent studies of archaeal NER proteins relevant to both eucaryal and archaeal NER systems and the evolution of repair pathways.
Collapse
Affiliation(s)
- Christophe Rouillon
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife KY169ST, UK
| | | |
Collapse
|
40
|
Loss-of-function mutations E6 27X and I923V of IFIH1 are associated with lower poly(I:C)-induced interferon-β production in peripheral blood mononuclear cells of type 1 diabetes patients. Hum Immunol 2010; 71:1128-34. [PMID: 20736039 DOI: 10.1016/j.humimm.2010.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/17/2010] [Accepted: 08/16/2010] [Indexed: 12/20/2022]
Abstract
Melanoma differentiation-associated 5 (MDA5), a product of the IFIH1 gene, is responsible for sensing double-stranded viral double-stranded RNA (RNA). In this study, we showed a significant association of two rare IFIH1 variants, rs35744605 (E627X) and rs35667974 (I923V), with decreased risk of type 1 diabetes (T1D) in a Russian population (for the allele X627, odds ratio [OR] = 0.39, 95% confidence interval [95% CI] = 0.22-0.69, p = 0.0015; for the allele V923, OR = 0.45, 95% CI, 0.30-0.66, p = 5.4 × 10(-5)). We detected a 3.5-fold greater frequency of enteroviral RNA in T1D subjects compared with controls (p <1.0 × 10(-8)), and 2.1-fold more frequent presence of viral RNA in T1D patients with a recent-onset diabetes (duration ≤1 year) compared with those with a longer disease (p <1.0 × 10(-8)). The carriage of the predisposing IFIH1 EI/EI haplogenotype was significantly associated with a 1.5- to 1.7-fold increase in the poly(I:C)-stimulated secretion of IFN-β in PMBCs compared with the other IFIH1 variants. The upregulated MDA5-dependent production of inflammatory cytokines could enhance the autoimmune destruction of β-cells mediated by self-reactive T-cells.
Collapse
|
41
|
Fairman-Williams ME, Guenther UP, Jankowsky E. SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 2010; 20:313-24. [PMID: 20456941 DOI: 10.1016/j.sbi.2010.03.011] [Citation(s) in RCA: 708] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/29/2010] [Indexed: 12/25/2022]
Abstract
Helicases of the superfamily (SF) 1 and 2 are involved in virtually all aspects of RNA and DNA metabolism. SF1 and SF2 helicases share a catalytic core with high structural similarity, but different enzymes even within each SF perform a wide spectrum of distinct functions on diverse substrates. To rationalize similarities and differences between these helicases, we outline a classification based on protein families that are characterized by typical sequence, structural, and mechanistic features. This classification complements and extends existing SF1 and SF2 helicase categorizations and highlights major structural and functional themes for these proteins. We discuss recent data in the context of this unifying view of SF1 and SF2 helicases.
Collapse
Affiliation(s)
- Margaret E Fairman-Williams
- Center for RNA Molecular Biology & Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
42
|
Chistiakov DA. Interferon induced with helicase C domain 1 (IFIH1) and virus-induced autoimmunity: a review. Viral Immunol 2010; 23:3-15. [PMID: 20121398 DOI: 10.1089/vim.2009.0071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In addition to genetic factors, environmental triggers, including viruses and other pathogens, are thought to play a major role in the development of autoimmune disease. Recent findings have shown that viral-induced autoimmunity is likely to be genetically determined. In large-scale genetic analyses, an association of interferon induced with helicase C domain 1 (IFIH1) gene variants encoding a viral RNA-sensing helicase with susceptibility to several autoimmune diseases was found. To date, the precise role of IFIH1 in pathogenic mechanisms of viral-induced autoimmunity has yet to be fully elucidated. However, recent reports suggest that IFIH1 may play a role in the etiology of type 1 diabetes. Rare IFIH1 alleles have been shown to be protective against diabetes, and their carriage correlates with lower production of this helicase and its functional disruption. In contrast, upregulation of IFIH1 expression by viruses is associated with more severe disease, and could exacerbate the autoimmune process in susceptible individuals.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Diagnostics, National Research Center GosNIIgenetika, Moscow, Russia
| |
Collapse
|
43
|
Abstract
FANCM and its relatives, Hef, Mph1 and Fml1, are DNA junction-specific helicases/translocases that target and process perturbed replication forks and intermediates of homologous recombination. They have variously been implicated in promoting the activation of the S-phase checkpoint, recruitment of the Fanconi Anemia Core Complex to sites of DNA damage, crossover avoidance during DNA double-strand break repair by homologous recombination, and the replicative bypass of DNA lesions by template switching. This review summarises our current understanding of the biochemical activities and biological functions of the FANCM family.
Collapse
Affiliation(s)
- Matthew C Whitby
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
44
|
Rouillon C, White MF. The XBP-Bax1 helicase-nuclease complex unwinds and cleaves DNA: implications for eukaryal and archaeal nucleotide excision repair. J Biol Chem 2010; 285:11013-22. [PMID: 20139443 DOI: 10.1074/jbc.m109.094763] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
XPB helicase is an integral part of transcription factor TFIIH, required for both transcription initiation and nucleotide excision repair (NER). Along with the XPD helicase, XPB plays a crucial but only partly understood role in defining and extending the DNA repair bubble around lesions in NER. Archaea encode clear homologues of XPB and XPD, and structural studies of these proteins have yielded key insights relevant to the eukaryal system. Here we show that archaeal XPB functions with a structure-specific nuclease, Bax1, as a helicase-nuclease machine that unwinds and cleaves model NER substrates. DNA bubbles are extended by XPB and cleaved by Bax1 at a position equivalent to that cut by the XPG nuclease in eukaryal NER. The helicase activity of archaeal XPB is dependent on the conserved Thumb domain, which may act as the helix breaker. The N-terminal damage recognition domain of XPB is shown to be crucial for XPB-Bax1 activity and may be unique to the archaea. These findings have implications for the role of XPB in both archaeal and eukaryal NER and for the evolution of the NER pathway. XPB is shown to be a very limited helicase that can act on small DNA bubbles and open a defined region of the DNA duplex. The specialized functions of the accessory domains of XPB are now more clearly delineated. This is also the first direct demonstration of a repair function for archaeal XPB and suggests strongly that the role of XPB in transcription occurred later in evolution than that in repair.
Collapse
Affiliation(s)
- Christophe Rouillon
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, Fife KY16 9ST, Scotland, United Kingdom
| | | |
Collapse
|
45
|
Interplay between the Smc5/6 complex and the Mph1 helicase in recombinational repair. Proc Natl Acad Sci U S A 2009; 106:21252-7. [PMID: 19995966 DOI: 10.1073/pnas.0908258106] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The evolutionarily conserved Smc5/6 complex is implicated in recombinational repair, but its function in this process has been elusive. Here we report that the budding yeast Smc5/6 complex directly binds to the DNA helicase Mph1. Mph1 and its helicase activity define a replication-associated recombination subpathway. We show that this pathway is toxic when the Smc5/6 complex is defective, because mph1Delta and its helicase mutations suppress multiple defects in mutants of the Smc5/6 complex, including their sensitivity to replication-blocking agents, growth defects, and inefficient chromatid separation, whereas MPH1 overexpression exacerbates some of these defects. We further demonstrate that Mph1 and its helicase activity are largely responsible for the accumulation of potentially deleterious recombination intermediates in mutants of the Smc5/6 complex. We also present evidence that mph1Delta does not alleviate sensitivity to DNA damage or the accumulation of recombination intermediates in cells lacking Sgs1, which is thought to function together with the Smc5/6 complex. Thus, our results reveal a function of the Smc5/6 complex in the Mph1-dependent recombinational subpathway that is distinct from Sgs1. We suggest that the Smc5/6 complex can counteract/modulate a pro-recombinogenic function of Mph1 or facilitate the resolution of recombination structures generated by Mph1.
Collapse
|
46
|
Orelli B, McClendon TB, Tsodikov OV, Ellenberger T, Niedernhofer LJ, Schärer OD. The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways. J Biol Chem 2009; 285:3705-3712. [PMID: 19940136 DOI: 10.1074/jbc.m109.067538] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The endonuclease ERCC1-XPF incises the damaged strand of DNA 5' to a lesion during nucleotide excision repair (NER) and has additional, poorly characterized functions in interstrand cross-link repair, double-strand break repair, and homologous recombination. XPA, another key factor in NER, interacts with ERCC1 and recruits it to sites of damage. We identified ERCC1 residues that are critical for the interaction with XPA and assessed their importance for NER in vitro and in vivo. Mutation of two conserved residues (Asn-110 and Tyr-145) located in the XPA-binding site of ERCC1 dramatically affected NER but not nuclease activity on model DNA substrates. In ERCC1-deficient cells expressing ERCC1(N110A/Y145A), the nuclease was not recruited to sites of UV damage. The repair of UV-induced (6-4)photoproducts was severely impaired in these cells, and they were hypersensitive to UV irradiation. Remarkably, the ERCC1(N110A/Y145A) protein rescues the sensitivity of ERCC1-deficient cells to cross-linking agents. Our studies suggest that ERCC1-XPF engages in different repair pathways through specific protein-protein interactions and that these functions can be separated through the selective disruption of these interactions. We discuss the impact of these findings for understanding how ERCC1 contributes to resistance of tumor cells to therapeutic agents such as cisplatin.
Collapse
Affiliation(s)
- Barbara Orelli
- From the Department of Pharmacological Sciences and Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - T Brooke McClendon
- the Department of Microbiology and Molecular Genetics and Cancer Institute, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-1863
| | - Oleg V Tsodikov
- the Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-2676, and
| | - Tom Ellenberger
- the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Laura J Niedernhofer
- the Department of Microbiology and Molecular Genetics and Cancer Institute, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-1863
| | - Orlando D Schärer
- From the Department of Pharmacological Sciences and Chemistry, Stony Brook University, Stony Brook, New York 11794-3400.
| |
Collapse
|
47
|
Gari K, Constantinou A. The role of the Fanconi anemia network in the response to DNA replication stress. Crit Rev Biochem Mol Biol 2009; 44:292-325. [PMID: 19728769 DOI: 10.1080/10409230903154150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fanconi anemia is a genetically heterogeneous disorder associated with chromosome instability and a highly elevated risk for developing cancer. The mutated genes encode proteins involved in the cellular response to DNA replication stress. Fanconi anemia proteins are extensively connected with DNA caretaker proteins, and appear to function as a hub for the coordination of DNA repair with DNA replication and cell cycle progression. At a molecular level, however, the raison d'être of Fanconi anemia proteins still remains largely elusive. The thirteen Fanconi anemia proteins identified to date have not been embraced into a single and defined biological process. To help put the Fanconi anemia puzzle into perspective, we begin this review with a summary of the strategies employed by prokaryotes and eukaryotes to tolerate obstacles to the progression of replication forks. We then summarize what we know about Fanconi anemia with an emphasis on biochemical aspects, and discuss how the Fanconi anemia network, a late acquisition in evolution, may function to permit the faithful and complete duplication of our very large vertebrate chromosomes.
Collapse
Affiliation(s)
- Kerstin Gari
- DNA Damage Response Laboratory, Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, UK
| | | |
Collapse
|
48
|
Ren B, Kühn J, Meslet-Cladiere L, Briffotaux J, Norais C, Lavigne R, Flament D, Ladenstein R, Myllykallio H. Structure and function of a novel endonuclease acting on branched DNA substrates. EMBO J 2009; 28:2479-89. [PMID: 19609302 DOI: 10.1038/emboj.2009.192] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 06/18/2009] [Indexed: 11/09/2022] Open
Abstract
We show that Pyrococcus abyssi PAB2263 (dubbed NucS (nuclease for ss DNA) is a novel archaeal endonuclease that interacts with the replication clamp PCNA. Structural determination of P. abyssi NucS revealed a two-domain dumbbell-like structure that in overall does not resemble any known protein structure. Biochemical and structural studies indicate that NucS orthologues use a non-catalytic ssDNA-binding domain to regulate the cleavage activity at another site, thus resulting into the specific cleavage at double-stranded DNA (dsDNA)/ssDNA junctions on branched DNA substrates. Both 3' and 5' extremities of the ssDNA can be cleaved at the nuclease channel that is too narrow to accommodate duplex DNA. Altogether, our data suggest that NucS proteins constitute a new family of structure-specific DNA endonucleases that are widely distributed in archaea and in bacteria, including Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Bin Ren
- Center for Structural Biochemistry, Karolinska Institutet, NOVUM, Huddinge, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
A shared interface mediates paramyxovirus interference with antiviral RNA helicases MDA5 and LGP2. J Virol 2009; 83:7252-60. [PMID: 19403670 DOI: 10.1128/jvi.00153-09] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Diverse members of the Paramyxovirus family of negative-strand RNA viruses effectively suppress host innate immune responses through the actions of their V proteins. The V protein mediates interference with the interferon regulatory RNA helicase MDA5 to avoid cellular antiviral responses. Analysis of the interaction interface revealed the MDA5 helicase C domain as necessary and sufficient for association with V proteins from human parainfluenza virus type 2, parainfluenza virus type 5, measles virus, mumps virus, Hendra virus, and Nipah virus. The identified approximately 130-residue region is highly homologous between MDA5 and the related antiviral helicase LGP2, but not RIG-I. Results indicate that the paramyxovirus V proteins can also associate with LGP2. The V protein interaction was found to disrupt ATP hydrolysis mediated by both MDA5 and LGP2. These findings provide a potential mechanistic basis for V protein-mediated helicase interference and identify LGP2 as a second cellular RNA helicase targeted by paramyxovirus V proteins.
Collapse
|
50
|
Oyama T, Oka H, Mayanagi K, Shirai T, Matoba K, Fujikane R, Ishino Y, Morikawa K. Atomic structures and functional implications of the archaeal RecQ-like helicase Hjm. BMC STRUCTURAL BIOLOGY 2009; 9:2. [PMID: 19159486 PMCID: PMC2636818 DOI: 10.1186/1472-6807-9-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Accepted: 01/22/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Pyrococcus furiosus Hjm (PfuHjm) is a structure-specific DNA helicase that was originally identified by in vitro screening for Holliday junction migration activity. It belongs to helicase superfamily 2, and shares homology with the human DNA polymerase Theta (PolTheta), HEL308, and Drosophila Mus308 proteins, which are involved in DNA repair. Previous biochemical and genetic analyses revealed that PfuHjm preferentially binds to fork-related Y-structured DNAs and unwinds their double-stranded regions, suggesting that this helicase is a functional counterpart of the bacterial RecQ helicase, which is essential for genome maintenance. Elucidation of the DNA unwinding and translocation mechanisms by PfuHjm will require its three-dimensional structure at atomic resolution. RESULTS We determined the crystal structures of PfuHjm, in two apo-states and two nucleotide bound forms, at resolutions of 2.0-2.7 A. The overall structures and the local conformations around the nucleotide binding sites are almost the same, including the side-chain conformations, irrespective of the nucleotide-binding states. The architecture of Hjm was similar to that of Archaeoglobus fulgidus Hel308 complexed with DNA. An Hjm-DNA complex model, constructed by fitting the five domains of Hjm onto the corresponding Hel308 domains, indicated that the interaction of Hjm with DNA is similar to that of Hel308. Notably, sulphate ions bound to Hjm lie on the putative DNA binding surfaces. Electron microscopic analysis of an Hjm-DNA complex revealed substantial flexibility of the double stranded region of DNA, presumably due to particularly weak protein-DNA interactions. Our present structures allowed reasonable homology model building of the helicase region of human PolTheta, indicating the strong conformational conservation between archaea and eukarya. CONCLUSION The detailed comparison between our DNA-free PfuHjm structure and the structure of Hel308 complexed with DNA suggests similar DNA unwinding and translocation mechanisms, which could be generalized to all of the members in the same family. Structural comparison also implied a minor rearrangement of the five domains during DNA unwinding reaction. The unexpected small contact between the DNA duplex region and the enzyme appears to be advantageous for processive helicase activity.
Collapse
Affiliation(s)
- Takuji Oyama
- The Takara Bio Endowed Division, Institute for Protein Research, Osaka University, Open Laboratories of Advanced Bioscience and Biotechnology (OLABB), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | | | | | |
Collapse
|