1
|
Lee B, White KI, Socolich M, Klureza MA, Henning R, Srajer V, Ranganathan R, Hekstra DR. Direct visualization of electric-field-stimulated ion conduction in a potassium channel. Cell 2025; 188:77-88.e15. [PMID: 39793560 PMCID: PMC11924917 DOI: 10.1016/j.cell.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/22/2024] [Accepted: 12/08/2024] [Indexed: 01/13/2025]
Abstract
Understanding protein function would be facilitated by direct, real-time observation of chemical kinetics in the atomic structure. The selectivity filter (SF) of the K+ channel provides an ideal model, catalyzing the dehydration and transport of K+ ions across the cell membrane through a narrow pore. We used a "pump-probe" method called electric-field-stimulated time-resolved X-ray crystallography (EFX) to initiate and observe K+ conduction in the NaK2K channel in both directions on the timescale of the transport process. We observe both known and potentially new features in the high-energy conformations visited along the conduction pathway, including the associated dynamics of protein residues that control selectivity and conduction rate. A single time series of one channel in action shows the orderly appearance of features observed in diverse homologs with diverse methods, arguing for deep conservation of the dynamics underlying the reaction coordinate in this protein family.
Collapse
Affiliation(s)
- BoRam Lee
- Center for Physics of Evolving Systems, Biochemistry & Molecular Biology and the Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA; Modeling and Informatics, Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - K Ian White
- Department of Molecular and Cellular Physiology and HHMI, Stanford University, Stanford, CA, USA
| | - Michael Socolich
- Center for Physics of Evolving Systems, Biochemistry & Molecular Biology and the Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Margaret A Klureza
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Robert Henning
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, USA
| | - Vukica Srajer
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, USA
| | - Rama Ranganathan
- Center for Physics of Evolving Systems, Biochemistry & Molecular Biology and the Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA; Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, USA.
| | - Doeke R Hekstra
- Department of Molecular and Cell Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Zhong W. Mechanism of selectivity filter constriction in potassium channel: Insights from high-throughput steered molecular dynamics simulations. Biochem Biophys Res Commun 2024; 741:151054. [PMID: 39615205 DOI: 10.1016/j.bbrc.2024.151054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 12/11/2024]
Abstract
Potassium channels are essential for regulating cellular excitability by controlling K+ ion flow. In voltage-gated potassium (Kv) channels, C-type inactivation modulates action potentials and holds significant physiological and clinical importance. The selectivity filter (SF) of potassium channels functions as the C-type inactivation gate by alternating between conductive and non-conductive states. The bacterial KcsA potassium channel, characterized by well-defined structural features, serves as an ideal model for investigating this mechanism through molecular dynamics (MD) simulations. However, limitations in computational power and the time scales of C-type inactivation, which extend up to seconds, have constrained a comprehensive understanding of this process. This study used high-throughput steered molecular dynamics (SMD) simulations, employing a knowledge-based acceleration strategy, to capture spontaneous SF constriction within nanoseconds in KcsA. Over a thousand SMD simulations recorded hundreds of SF constriction events, revealing a common constriction mechanism driven by an ion occupancy switch from state 13 to state 14 within the SF, facilitated by water molecules located behind the SF. Simulations of the E71V-mutated KcsA suggest that this constricted state and mechanism may also extend to Kv-like channels, albeit with reduced water dependence. These findings underscore the essential roles of ions and water molecules in regulating protein dynamics and highlight strategies for high-throughput MD studies to further explore protein dynamics.
Collapse
Affiliation(s)
- Wenyu Zhong
- Department of Mechanics, College of Architecture & Environment, & Failure Mechanics and Engineering Disaster Prevention, Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
3
|
Korn T, Hansen UP, Gabriel TS, Rauh O, Drexler N, Schroeder I. Binding kinetics of quaternary ammonium ions in Kcv potassium channels. Channels (Austin) 2024; 18:2402749. [PMID: 39383513 PMCID: PMC11575739 DOI: 10.1080/19336950.2024.2402749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 10/11/2024] Open
Abstract
Kcv channels from plant viruses represent the autonomous pore module of potassium channels, devoid of any regulatory domains. These small proteins show very reproducible single-channel behavior in planar lipid bilayers. Thus, they are an optimum system for the study of the biophysics of ion transport and gating. Structural models based on homology modeling have been used successfully, but experimental structural data are currently not available. Here we determine the size of the cytosolic pore entrance by studying the blocker kinetics. Blocker binding and dissociation rate constants ranging from 0.01 to 1000 ms-1 were determined for different quaternary ammonium ions. We found that the cytosolic pore entrance of KcvNTS must be at least 11 Å wide. The results further indicate that the residues controlling a cytosolic gate in one of the Kcv isoforms influence blocker binding/dissociation as well as a second gate even when the cytosolic gate is in the open state. The voltage dependence of the rate constant of blocker release is used to test, which blockers bind to the same binding site.
Collapse
Affiliation(s)
- Tobias Korn
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Ulf-Peter Hansen
- Department of Structural Biology, Christian-Albrechts-University, Kiel, Germany
| | | | - Oliver Rauh
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Nils Drexler
- Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Indra Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
- Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
4
|
Maroli N, Ryan MJ, Zanni MT, Kananenka AA. Do selectivity filter carbonyls in K + channels flip away from the pore? Two-dimensional infrared spectroscopy study. J Struct Biol X 2024; 10:100108. [PMID: 39157159 PMCID: PMC11328031 DOI: 10.1016/j.yjsbx.2024.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 08/20/2024] Open
Abstract
Molecular dynamics simulations revealed that the carbonyls of the Val residue in the conserved selectivity filter sequence TVGTG of potassium ion channels can flip away from the pore to form hydrogen bonds with the network of water molecules residing behind the selectivity filter. Such a configuration has been proposed to be relevant for C-type inactivation. Experimentally, X-ray crystallography of the KcsA channel admits the possibility that the Val carbonyls can flip, but it cannot decisively confirm the existence of such a configuration. In this study, we combined molecular dynamics simulations and line shape theory to design two-dimensional infrared spectroscopy experiments that can corroborate the existence of the selectivity filter configuration with flipped Val carbonyls. This ability to distinguish between flipped and unflipped carbonyls is based on the varying strength of the electric field inside and outside the pore, which is directly linked to carbonyl stretching frequencies that can be resolved using infrared spectroscopy.
Collapse
Affiliation(s)
- Nikhil Maroli
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Matthew J. Ryan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alexei A. Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
5
|
Andrini O, Ben Soussia I, Tardy P, Walker DS, Peña-Varas C, Ramírez D, Gendrel M, Mercier M, El Mouridi S, Leclercq-Blondel A, González W, Schafer WR, Jospin M, Boulin T. Constitutive sodium permeability in a C. elegans two-pore domain potassium channel. Proc Natl Acad Sci U S A 2024; 121:e2400650121. [PMID: 39405352 PMCID: PMC11513965 DOI: 10.1073/pnas.2400650121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
Two-pore domain potassium (K2P) channels play a central role in modulating cellular excitability and neuronal function. The unique structure of the selectivity filter in K2P and other potassium channels determines their ability to allow the selective passage of potassium ions across cell membranes. The nematode C. elegans has one of the largest K2P families, with 47 subunit-coding genes. This remarkable expansion has been accompanied by the evolution of atypical selectivity filter sequences that diverge from the canonical TxGYG motif. Whether and how this sequence variation may impact the function of K2P channels has not been investigated so far. Here, we show that the UNC-58 K2P channel is constitutively permeable to sodium ions and that a cysteine residue in its selectivity filter is responsible for this atypical behavior. Indeed, by performing in vivo electrophysiological recordings and Ca2+ imaging experiments, we demonstrate that UNC-58 has a depolarizing effect in muscles and sensory neurons. Consistently, unc-58 gain-of-function mutants are hypercontracted, unlike the relaxed phenotype observed in hyperactive mutants of many neuromuscular K2P channels. Finally, by combining molecular dynamics simulations with functional studies in Xenopus laevis oocytes, we show that the atypical cysteine residue plays a key role in the unconventional sodium permeability of UNC-58. As predicting the consequences of selectivity filter sequence variations in silico remains a major challenge, our study illustrates how functional experiments are essential to determine the contribution of such unusual potassium channels to the electrical profile of excitable cells.
Collapse
Affiliation(s)
- Olga Andrini
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| | - Ismail Ben Soussia
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| | - Philippe Tardy
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| | - Denise S. Walker
- Neurobiology Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Carlos Peña-Varas
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion4070386, Chile
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion4070386, Chile
| | - Marie Gendrel
- Institut de Biologie de l’École Normale Supérieure, École Normale Supérieure, CNRS UMR 8197, INSERM U1024, Université Paris Sciences et Lettres, Paris75005, France
| | - Marine Mercier
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| | - Sonia El Mouridi
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| | | | - Wendy González
- Center for Bioinformatics, Simulation and Modelling, University of Talca, Talca3460000, Chile
| | - William R. Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Department of Biology, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Maelle Jospin
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| | - Thomas Boulin
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| |
Collapse
|
6
|
Kacher J, Sokolova OS, Tarek M. A Deep Learning Approach to Uncover Voltage-Gated Ion Channels' Intermediate States. J Phys Chem B 2024; 128:8724-8736. [PMID: 39213618 DOI: 10.1021/acs.jpcb.4c03182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Owing to recent advancements in cryo-electron microscopy, voltage-gated ion channels have gained a greater comprehension of their structural characteristics. However, a significant enigma remains unsolved for a large majority of these channels: their gating mechanism. This mechanism, which encompasses the conformational changes between open and closed states, is pivotal to their proper functioning. Beyond the binary states of open and closed, an ensemble of intermediate states defines the transition path in-between. Due to the lack of experimental data, one might resort to molecular dynamics simulations as an alternative to decipher these states and the transitions between them. However, the high-energy barriers and the colossal time scales involved hinder access to the latter. We present here an application of deep learning as a reliable pipeline for a comprehensive exploration of voltage-gated ion channel conformational rearrangements during gating. We showcase the pipeline performance specifically on the Kv1.2 voltage sensor domain and confront the results with existing data. We demonstrate how our physics-based deep learning approach contributes to the theoretical understanding of these channels and how it might provide further insights into the exploration of channelopathies.
Collapse
Affiliation(s)
- Julia Kacher
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | - Olga S Sokolova
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
- Shenzhen MSU-BIT University, 1 International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| |
Collapse
|
7
|
Lau CHY, Flood E, Hunter MJ, Williams-Noonan BJ, Corbett KM, Ng CA, Bouwer JC, Stewart AG, Perozo E, Allen TW, Vandenberg JI. Potassium dependent structural changes in the selectivity filter of HERG potassium channels. Nat Commun 2024; 15:7470. [PMID: 39209832 PMCID: PMC11362469 DOI: 10.1038/s41467-024-51208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
The fine tuning of biological electrical signaling is mediated by variations in the rates of opening and closing of gates that control ion flux through different ion channels. Human ether-a-go-go related gene (HERG) potassium channels have uniquely rapid inactivation kinetics which are critical to the role they play in regulating cardiac electrical activity. Here, we exploit the K+ sensitivity of HERG inactivation to determine structures of both a conductive and non-conductive selectivity filter structure of HERG. The conductive state has a canonical cylindrical shaped selectivity filter. The non-conductive state is characterized by flipping of the selectivity filter valine backbone carbonyls to point away from the central axis. The side chain of S620 on the pore helix plays a central role in this process, by coordinating distinct sets of interactions in the conductive, non-conductive, and transition states. Our model represents a distinct mechanism by which ion channels fine tune their activity and could explain the uniquely rapid inactivation kinetics of HERG.
Collapse
Affiliation(s)
- Carus H Y Lau
- Mark Cowley Lidwill Research Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Emelie Flood
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Mark J Hunter
- Mark Cowley Lidwill Research Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | | | - Karen M Corbett
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Chai-Ann Ng
- Mark Cowley Lidwill Research Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - James C Bouwer
- Molecular Horizons and School of Chemistry and Molecular Bioscience, and ARC Centre for Cryoelectron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| | - Alastair G Stewart
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
- Computational and Structural Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Toby W Allen
- School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Jamie I Vandenberg
- Mark Cowley Lidwill Research Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Renart ML, Giudici AM, González-Ros JM, Poveda JA. Steady-state and time-resolved fluorescent methodologies to characterize the conformational landscape of the selectivity filter of K + channels. Methods 2024; 225:89-99. [PMID: 38508347 DOI: 10.1016/j.ymeth.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/02/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
A variety of equilibrium and non-equilibrium methods have been used in a multidisciplinary approach to study the conformational landscape associated with the binding of different cations to the pore of potassium channels. These binding processes, and the conformational changes resulting therefrom, modulate the functional properties of such integral membrane properties, revealing these permeant and blocking cations as true effectors of such integral membrane proteins. KcsA, a prototypic K+ channel from Streptomyces lividans, has been extensively characterized in this regard. Here, we revise several fluorescence-based approaches to monitor cation binding under different experimental conditions in diluted samples, analyzing the advantages and disadvantages of each approach. These studies have contributed to explain the selectivity, conduction, and inactivation properties of K+ channels at the molecular level, together with the allosteric communication between the two gates that control the ion channel flux, and how they are modulated by lipids.
Collapse
Affiliation(s)
- María Lourdes Renart
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Ana Marcela Giudici
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - José M González-Ros
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - José A Poveda
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
9
|
Zhao X, Ding W, Wang H, Wang Y, Liu Y, Li Y, Liu C. Structural Insights and Influence of Terahertz Waves in Midinfrared Region on Kv1.2 Channel Selectivity Filter. ACS OMEGA 2024; 9:9702-9713. [PMID: 38434859 PMCID: PMC10905694 DOI: 10.1021/acsomega.3c09801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Potassium ion channels are the structural basis for excitation transmission, heartbeat, and other biological processes. The selectivity filter is a critical structural component of potassium ion channels, whose structure is crucial to realizing their function. As biomolecules vibrate and rotate at frequencies in the terahertz band, potassium ion channels are sensitive to terahertz waves. Therefore, it is worthwhile to investigate how the terahertz wave influences the selectivity filter of the potassium channels. In this study, we investigate the structure of the selectivity filter of Kv1.2 potassium ion channels using molecular dynamics simulations. The effect of an electric field on the channel has been examined at four different resonant frequencies of the carbonyl group in SF: 36.75 37.06, 37.68, and 38.2 THz. As indicated by the results, 376GLY appears to be the critical residue in the selectivity filter of the Kv1.2 channel. Its dihedral angle torsion is detrimental to the channel structural stability and the transmembrane movement of potassium ions. 36.75 THz is the resonance frequency of the carbonyl group of 376GLY. Among all four frequencies explored, the applied terahertz electric field of this frequency has the most significant impact on the channel structure, negatively impacting the channel stability and reducing the ion permeability by 20.2% compared to the absence of fields. In this study, we simulate that terahertz waves in the mid-infrared frequency region can significantly alter the structure and function of potassium ion channels and that the effects of terahertz waves differ greatly based on frequency.
Collapse
Affiliation(s)
- Xiaofei Zhao
- Key Laboratory
for Physical
Electronics and Devices of the Ministry of Education, School of Electronic
and Information Engineering, Xi’an
Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Wen Ding
- Key Laboratory
for Physical
Electronics and Devices of the Ministry of Education, School of Electronic
and Information Engineering, Xi’an
Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Hongguang Wang
- Key Laboratory
for Physical
Electronics and Devices of the Ministry of Education, School of Electronic
and Information Engineering, Xi’an
Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Yize Wang
- Key Laboratory
for Physical
Electronics and Devices of the Ministry of Education, School of Electronic
and Information Engineering, Xi’an
Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Yanjiang Liu
- Key Laboratory
for Physical
Electronics and Devices of the Ministry of Education, School of Electronic
and Information Engineering, Xi’an
Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Yongdong Li
- Key Laboratory
for Physical
Electronics and Devices of the Ministry of Education, School of Electronic
and Information Engineering, Xi’an
Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Chunliang Liu
- Key Laboratory
for Physical
Electronics and Devices of the Ministry of Education, School of Electronic
and Information Engineering, Xi’an
Jiaotong University, Xi’an, Shaanxi 710049, China
| |
Collapse
|
10
|
Chen X, Feng Y, Quinn RJ, Pountney DL, Richardson DR, Mellick GD, Ma L. Potassium Channels in Parkinson's Disease: Potential Roles in Its Pathogenesis and Innovative Molecular Targets for Treatment. Pharmacol Rev 2023; 75:758-788. [PMID: 36918260 DOI: 10.1124/pharmrev.122.000743] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the midbrain. The loss of neurons results in a subsequent reduction of dopamine in the striatum, which underlies the core motor symptoms of PD. To date, there are no effective treatments to stop, slow, or reverse the pathologic progression of dopaminergic neurodegeneration. This unfortunate predicament is because of the current early stages in understanding the biologic targets and pathways involved in PD pathogenesis. Ion channels have become emerging targets for new therapeutic development for PD due to their essential roles in neuronal function and neuroinflammation. Potassium channels are the most prominent ion channel family and have been shown to be critically important in PD pathology because of their roles in modulating neuronal excitability, neurotransmitter release, synaptic transmission, and neuroinflammation. In this review, members of the subfamilies of voltage-gated K+ channels, inward rectifying K+ channels, and Ca2+-activated K+ channels are described. Evidence of the role of these channels in PD etiology is discussed together with the latest views on related pathologic mechanisms and their potential as biologic targets for developing neuroprotective drugs for PD. SIGNIFICANCE STATEMENT: Parkinson's disease (PD) is the second most common neurodegenerative disorder, featuring progressive degeneration of dopaminergic neurons in the midbrain. It is a multifactorial disease involving multiple risk factors and complex pathobiological mechanisms. Mounting evidence suggests that ion channels play vital roles in the pathogenesis and progression of PD by regulating neuronal excitability and immune cell function. Therefore, they have become "hot" biological targets for PD, as demonstrated by multiple clinical trials of drug candidates targeting ion channels for PD therapy.
Collapse
Affiliation(s)
- Xiaoyi Chen
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Yunjiang Feng
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Ronald J Quinn
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Dean L Pountney
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Des R Richardson
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - George D Mellick
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Linlin Ma
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| |
Collapse
|
11
|
Summhammer J, Sulyok G, Bernroider G, Cocchi M. The Optimized Conformation Dynamics of the KcsA Filter as a Probe for Lateral Membrane Effects: A First Principle Based Femto-Sec Resolution MD Study. MEMBRANES 2022; 12:1183. [PMID: 36557090 PMCID: PMC9780881 DOI: 10.3390/membranes12121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
We provide a high resolution, all-atom, femto-second molecular dynamics (MD) simulation of the passage of K+ ions and H2O molecules through the selectivity filter of the KcsA potassium ion channel, based on first principle physical methods. Our results show that a change in the length of the selectivity filter of as little as 3%, regardless of whether the filter is made longer or shorter, will reduce the K+ ion current by around 50%. In addition, further squeezing or stretching by about 9% can effectively stop the current. Our results demonstrate optimized conformational dynamics that associate an increased mobility of parts in the filter linings with a standard configuration, leading to maximized conduction rates that are highly sensitive to geometrical distortions. We discuss this latter aspect in relation to lateral membrane effects on the filter region of ion channels and the 'force from lipids' hypothesis.
Collapse
Affiliation(s)
- Johann Summhammer
- Institue of Atomic and Subatomic Physics, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
| | - Georg Sulyok
- Institue of Atomic and Subatomic Physics, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
| | - Gustav Bernroider
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Massimo Cocchi
- Department of Veterinary Medical Sciences, Università di Bologna, 40064 Bologna, Italy
| |
Collapse
|
12
|
A distinct mechanism of C-type inactivation in the Kv-like KcsA mutant E71V. Nat Commun 2022; 13:1574. [PMID: 35322021 PMCID: PMC8943062 DOI: 10.1038/s41467-022-28866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/01/2022] [Indexed: 11/08/2022] Open
Abstract
C-type inactivation is of great physiological importance in voltage-activated K+ channels (Kv), but its structural basis remains unresolved. Knowledge about C-type inactivation has been largely deduced from the bacterial K+ channel KcsA, whose selectivity filter constricts under inactivating conditions. However, the filter is highly sensitive to its molecular environment, which is different in Kv channels than in KcsA. In particular, a glutamic acid residue at position 71 along the pore helix in KcsA is substituted by a valine conserved in most Kv channels, suggesting that this side chain is a molecular determinant of function. Here, a combination of X-ray crystallography, solid-state NMR and MD simulations of the E71V KcsA mutant is undertaken to explore inactivation in this Kv-like construct. X-ray and ssNMR data show that the filter of the Kv-like mutant does not constrict under inactivating conditions. Rather, the filter adopts a conformation that is slightly narrowed and rigidified. On the other hand, MD simulations indicate that the constricted conformation can nonetheless be stably established in the mutant channel. Together, these findings suggest that the Kv-like KcsA mutant may be associated with different modes of C-type inactivation, showing that distinct filter environments entail distinct C-type inactivation mechanisms.
Collapse
|
13
|
Rearrangement of a unique Kv1.3 selectivity filter conformation upon binding of a drug. Proc Natl Acad Sci U S A 2022; 119:2113536119. [PMID: 35091471 PMCID: PMC8812516 DOI: 10.1073/pnas.2113536119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
Voltage-gated potassium channels (Kv) open with membrane depolarization and allow the flow of K+ ions. Ion flow is tightly governed by time-dependent entry into nonconducting inactivated states. Here, we focus on Kv1.3, a channel of physiological importance in immune cells. We used cryogenic electron microscopy to determine structures of human Kv1.3 alone and bound to dalazatide, a peptide inhibitor in human trials. In the unbound state, Kv1.3’s outer pore is rearranged compared to all other K+ channels analyzed. Interaction of dalazatide with Kv1.3’s outer pore causes a dynamic rearrangement of the selectivity filter as Kv1.3 enters a drug-blocked state. We report two structures of the human voltage-gated potassium channel (Kv) Kv1.3 in immune cells alone (apo-Kv1.3) and bound to an immunomodulatory drug called dalazatide (dalazatide–Kv1.3). Both the apo-Kv1.3 and dalazatide–Kv1.3 structures are in an activated state based on their depolarized voltage sensor and open inner gate. In apo-Kv1.3, the aromatic residue in the signature sequence (Y447) adopts a position that diverges 11 Å from other K+ channels. The outer pore is significantly rearranged, causing widening of the selectivity filter and perturbation of ion binding within the filter. This conformation is stabilized by a network of intrasubunit hydrogen bonds. In dalazatide–Kv1.3, binding of dalazatide to the channel’s outer vestibule narrows the selectivity filter, Y447 occupies a position seen in other K+ channels, and this conformation is stabilized by a network of intersubunit hydrogen bonds. These remarkable rearrangements in the selectivity filter underlie Kv1.3’s transition into the drug-blocked state.
Collapse
|
14
|
Structural and functional basis of the selectivity filter as a gate in human TRPM2 channel. Cell Rep 2021; 37:110025. [PMID: 34788616 DOI: 10.1016/j.celrep.2021.110025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable cation channel, is gated by intracellular adenosine diphosphate ribose (ADPR), Ca2+, warm temperature, and oxidative stress. It is critically involved in physiological and pathological processes ranging from inflammation to stroke to neurodegeneration. At present, the channel's gating and ion permeation mechanisms, such as the location and identity of the selectivity filter, remain ambiguous. Here, we report the cryo-electron microscopy (cryo-EM) structure of human TRPM2 in nanodisc in the ligand-free state. Cryo-EM map-guided computational modeling and patch-clamp recording further identify a quadruple-residue motif as the ion selectivity filter, which adopts a restrictive conformation in the closed state and acts as a gate, profoundly contrasting with its widely open conformation in the Nematostella vectensis TRPM2. Our study reveals the gating of human TRPM2 by the filter and demonstrates the feasibility of using cryo-EM in conjunction with computational modeling and functional studies to garner structural information for intrinsically dynamic but functionally important domains.
Collapse
|
15
|
Vallée C, Howlin B, Lewis R. Ion Selectivity in the ENaC/DEG Family: A Systematic Review with Supporting Analysis. Int J Mol Sci 2021; 22:ijms222010998. [PMID: 34681656 PMCID: PMC8536179 DOI: 10.3390/ijms222010998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022] Open
Abstract
The Epithelial Sodium Channel/Degenerin (ENaC/DEG) family is a superfamily of sodium-selective channels that play diverse and important physiological roles in a wide variety of animal species. Despite their differences, they share a high homology in the pore region in which the ion discrimination takes place. Although ion selectivity has been studied for decades, the mechanisms underlying this selectivity for trimeric channels, and particularly for the ENaC/DEG family, are still poorly understood. This systematic review follows PRISMA guidelines and aims to determine the main components that govern ion selectivity in the ENaC/DEG family. In total, 27 papers from three online databases were included according to specific exclusion and inclusion criteria. It was found that the G/SxS selectivity filter (glycine/serine, non-conserved residue, serine) and other well conserved residues play a crucial role in ion selectivity. Depending on the ion type, residues with different properties are involved in ion permeability. For lithium against sodium, aromatic residues upstream of the selectivity filter seem to be important, whereas for sodium against potassium, negatively charged residues downstream of the selectivity filter seem to be important. This review provides new perspectives for further studies to unravel the mechanisms of ion selectivity.
Collapse
Affiliation(s)
- Cédric Vallée
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford GU2 5XH, UK; (C.V.); (B.H.)
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - Brendan Howlin
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford GU2 5XH, UK; (C.V.); (B.H.)
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Rebecca Lewis
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford GU2 5XH, UK; (C.V.); (B.H.)
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
- Correspondence:
| |
Collapse
|
16
|
Baker MR, Fan G, Seryshev AB, Agosto MA, Baker ML, Serysheva II. Cryo-EM structure of type 1 IP 3R channel in a lipid bilayer. Commun Biol 2021; 4:625. [PMID: 34035440 PMCID: PMC8149723 DOI: 10.1038/s42003-021-02156-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) is the predominant Ca2+-release channel in neurons. IP3R1 mediates Ca2+ release from the endoplasmic reticulum into the cytosol and thereby is involved in many physiological processes. Here, we present the cryo-EM structures of full-length rat IP3R1 reconstituted in lipid nanodisc and detergent solubilized in the presence of phosphatidylcholine determined in ligand-free, closed states by single-particle electron cryo-microscopy. Notably, both structures exhibit the well-established IP3R1 protein fold and reveal a nearly complete representation of lipids with similar locations of ordered lipids bound to the transmembrane domains. The lipid-bound structures show improved features that enabled us to unambiguously build atomic models of IP3R1 including two membrane associated helices that were not previously resolved in the TM region. Our findings suggest conserved locations of protein-bound lipids among homotetrameric ion channels that are critical for their structural and functional integrity despite the diversity of structural mechanisms for their gating. 3D structure of full-length rat type 1 inositol 1,4,5-trisphosphate receptor reconstituted in lipid nanodisc is determined using single-particle cryo-electron microscopy. The study suggests conserved locations of protein-bound lipids among structurally diverse, homo-tetrameric ion channels.
Collapse
Affiliation(s)
- Mariah R Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alexander B Seryshev
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Melina A Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Matthew L Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
17
|
Tikhonov DB. Channel Blockers of Ionotropic Glutamate
Receptors. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Cosseddu SM, Choe EJ, Khovanov IA. Unraveling of a Strongly Correlated Dynamical Network of Residues Controlling the Permeation of Potassium in KcsA Ion Channel. ENTROPY (BASEL, SWITZERLAND) 2021; 23:E72. [PMID: 33418985 PMCID: PMC7825352 DOI: 10.3390/e23010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 12/26/2022]
Abstract
The complicated patterns of the single-channel currents in potassium ion channel KcsA are governed by the structural variability of the selectivity filter. A comparative analysis of the dynamics of the wild type KcsA channel and several of its mutants showing different conducting patterns was performed. A strongly correlated dynamical network of interacting residues is found to play a key role in regulating the state of the wild type channel. The network is centered on the aspartate D80 which plays the role of a hub by strong interacting via hydrogen bonds with residues E71, R64, R89, and W67. Residue D80 also affects the selectivity filter via its backbones. This network further compromises ions and water molecules located inside the channel that results in the mutual influence: the permeation depends on the configuration of residues in the network, and the dynamics of network's residues depends on locations of ions and water molecules inside the selectivity filter. Some features of the network provide a further understanding of experimental results describing the KcsA activity. In particular, the necessity of anionic lipids to be present for functioning the channel is explained by the interaction between the lipids and the arginine residues R64 and R89 that prevents destabilizing the structure of the selectivity filter.
Collapse
Affiliation(s)
| | | | - Igor A. Khovanov
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (S.M.C.); (E.J.C.)
| |
Collapse
|
19
|
Ocello R, Furini S, Lugli F, Recanatini M, Domene C, Masetti M. Conduction and Gating Properties of the TRAAK Channel from Molecular Dynamics Simulations with Different Force Fields. J Chem Inf Model 2020; 60:6532-6543. [PMID: 33295174 PMCID: PMC8016162 DOI: 10.1021/acs.jcim.0c01179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 12/20/2022]
Abstract
In recent years, the K2P family of potassium channels has been the subject of intense research activity. Owing to the complex function and regulation of this family of ion channels, it is common practice to complement experimental findings with the atomistic description provided by computational approaches such as molecular dynamics (MD) simulations, especially, in light of the unprecedented timescales accessible at present. However, despite recent substantial improvements, the accuracy of MD simulations is still undermined by the intrinsic limitations of force fields. Here, we systematically assessed the performance of the most popular force fields employed to study ion channels at timescales that are orders of magnitude greater than the ones accessible when these energy functions were first developed. Using 32 μs of trajectories, we investigated the dynamics of a member of the K2P ion channel family, the TRAAK channel, using two established force fields in simulations of biological systems: AMBER and CHARMM. We found that while results are comparable on the nanosecond timescales, significant inconsistencies arise at microsecond timescales.
Collapse
Affiliation(s)
- Riccardo Ocello
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum−Università di Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Simone Furini
- Department
of Medical Biotechnologies, University of
Siena, 53100 Siena, Italy
| | - Francesca Lugli
- Department
of Chemistry “G. Ciamician”, Alma Mater Studiorum—Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Maurizio Recanatini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum−Università di Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Carmen Domene
- Department
of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, U.K.
- Department
of Chemistry, University of Oxford, Mansfield Road, OX1 3TA Oxford, U.K.
| | - Matteo Masetti
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum−Università di Bologna, via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
20
|
Selectivity filter ion binding affinity determines inactivation in a potassium channel. Proc Natl Acad Sci U S A 2020; 117:29968-29978. [PMID: 33154158 DOI: 10.1073/pnas.2009624117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Potassium channels can become nonconducting via inactivation at a gate inside the highly conserved selectivity filter (SF) region near the extracellular side of the membrane. In certain ligand-gated channels, such as BK channels and MthK, a Ca2+-activated K+ channel from Methanobacterium thermoautotrophicum, the SF has been proposed to play a role in opening and closing rather than inactivation, although the underlying conformational changes are unknown. Using X-ray crystallography, identical conductive MthK structures were obtained in wide-ranging K+ concentrations (6 to 150 mM), unlike KcsA, whose SF collapses at low permeant ion concentrations. Surprisingly, three of the SF's four binding sites remained almost fully occupied throughout this range, indicating high affinities (likely submillimolar), while only the central S2 site titrated, losing its ion at 6 mM, indicating low K+ affinity (∼50 mM). Molecular simulations showed that the MthK SF can also collapse in the absence of K+, similar to KcsA, but that even a single K+ binding at any of the SF sites, except S4, can rescue the conductive state. The uneven titration across binding sites differs from KcsA, where SF sites display a uniform decrease in occupancy with K+ concentration, in the low millimolar range, leading to SF collapse. We found that ions were disfavored in MthK's S2 site due to weaker coordination by carbonyl groups, arising from different interactions with the pore helix and water behind the SF. We conclude that these differences in interactions endow the seemingly identical SFs of KcsA and MthK with strikingly different inactivating phenotypes.
Collapse
|
21
|
Furini S, Domene C. Critical Assessment of Common Force Fields for Molecular Dynamics Simulations of Potassium Channels. J Chem Theory Comput 2020; 16:7148-7159. [DOI: 10.1021/acs.jctc.0c00331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Simone Furini
- Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
22
|
Tikhonov DB, Zhorov BS. The pore domain in glutamate-gated ion channels: Structure, drug binding and similarity with potassium channels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183401. [PMID: 32562696 DOI: 10.1016/j.bbamem.2020.183401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/28/2023]
Abstract
Ionotropic glutamate receptors in the CNS excitatory synapses of vertebrates are involved in numerous physiological and pathological processes. Decades of intensive studies greatly advanced our understanding of molecular organization of these transmembrane proteins. Here we focus on the channel pore domain, its selectivity filter and the activation gate, and the pore block by organic ligands. We compare findings from indirect experimental approaches, including site-directed mutagenesis, with recent crystal and cryo-EM structures of different channels in different functional states and complexed with different ligands. We summarize remaining uncertainties and unresolved problems related to the channel structure, function and pharmacology.
Collapse
Affiliation(s)
- Denis B Tikhonov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Prospect, St. Petersburg 194223, Russia.
| | - Boris S Zhorov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Prospect, St. Petersburg 194223, Russia; Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8N 4K1, Canada
| |
Collapse
|
23
|
Callahan KM, Mondou B, Sasseville L, Schwartz JL, D'Avanzo N. The influence of membrane bilayer thickness on KcsA channel activity. Channels (Austin) 2020; 13:424-439. [PMID: 31608774 PMCID: PMC6802934 DOI: 10.1080/19336950.2019.1676367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Atomic resolution structures have provided significant insight into the gating and permeation mechanisms of various ion channels, including potassium channels. However, ion channels may also be regulated by numerous factors, including the physiochemical properties of the membrane in which they are embedded. For example, the matching of the bilayer's hydrophobic region to the hydrophobic external surface of the ion channel is thought to minimize the energetic penalty needed to solvate hydrophobic residues or exposed lipid tails. To understand the molecular basis of such regulation by hydrophobic matching requires examining channels in the presence of the lipid membrane. Here we examine the role of hydrophobic matching in regulating the activity of the model potassium channel, KcsA. 86Rb+ influx assays and single-channel recordings indicate that the non-inactivating E71A KcsA channel is most active in thin bilayers (<diC18:1PC). Bilayer thickness affects the open probability of KcsA and not its unitary conductance. Molecular dynamics simulations indicate that the bilayer can sufficiently modify its dimensions to accommodate KcsA channels without major perturbations in the protein helical packing within the nanosecond timescale. Based on experimental results and MD simulations, we present a model in which bilayer thickness influences the stability of the open and closed conformations of the intracellular gate of KcsA, with minimal impact on the stability of the selectivity filter of the non-inactivating mutant, E71A.
Collapse
Affiliation(s)
- Karen M Callahan
- From the Département de pharmacologie et physiologie, Faculté de médecine, Université de Montréal , Montréal , Canada
| | - Benoit Mondou
- Département de biochimie et médecine moléculaire, Université de Montréal , Montréal , Canada
| | - Louis Sasseville
- From the Département de pharmacologie et physiologie, Faculté de médecine, Université de Montréal , Montréal , Canada
| | - Jean-Louis Schwartz
- From the Département de pharmacologie et physiologie, Faculté de médecine, Université de Montréal , Montréal , Canada.,Département de biochimie et médecine moléculaire, Université de Montréal , Montréal , Canada.,Centre SÈVE, Université de Sherbrooke , Sherbrooke , Canada
| | - Nazzareno D'Avanzo
- From the Département de pharmacologie et physiologie, Faculté de médecine, Université de Montréal , Montréal , Canada.,Département de biochimie et médecine moléculaire, Université de Montréal , Montréal , Canada
| |
Collapse
|
24
|
Quantum Mechanical Coherence of K+ Ion Wave Packets Increases Conduction in the KcsA Ion Channel. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We simulate the transmission of K+ ions through the KcsA potassium ion channel filter region at physiological temperatures, employing classical molecular dynamics (MD) at the atomic scale together with a quantum mechanical version of MD simulation (QMD), treating single ions as quantum wave packets. We provide a direct comparison between both concepts, embedding the simulations into identical force fields and thermal fluctuations. The quantum simulations permit the estimation of coherence times and wave packet dispersions of a K+ ion over a range of 0.5 nm (a range that covers almost 50% of the filter domains longitudinal extension). We find that this observed extension of particle delocalization changes the mean orientation of the coordinating carbonyl oxygen atoms significantly, transiently suppressing their ‘caging action’ responsible for selective ion coordination. Compared to classical MD simulations, this particular quantum effect allows the K+ ions to ‘escape’ more easily from temporary binding sites provided by the surrounding filter atoms. To further elucidate the role of this observation for ion conduction rates, we compare the temporal pattern of single conduction events between classical MD and quantum QMD simulations at a femto-sec time scale. A finding from both approaches is that ion permeation follows a very irregular time pattern, involving flushes of permeation interrupted by non-conductive time intervals. However, as compared with classical behavior, the QMD simulation shortens non-conductive time by more than a half. As a consequence, and given the same force-fields, the QMD-simulated ion current appears to be considerably stronger as compared with the classical current. To bring this result in line with experimentally observed ion currents and the predictions based on Nernst–Planck theories, the conclusion is that a transient short time quantum behavior of permeating ions can successfully compromise high conduction rates with ion selectivity in the filter of channel proteins.
Collapse
|
25
|
Lewis A, McCrossan ZA, Manville RW, Popa MO, Cuello LG, Goldstein SAN. TOK channels use the two gates in classical K + channels to achieve outward rectification. FASEB J 2020; 34:8902-8919. [PMID: 32519783 DOI: 10.1096/fj.202000545r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 11/11/2022]
Abstract
TOKs are outwardly rectifying K+ channels in fungi with two pore-loops and eight transmembrane spans. Here, we describe the TOKs from four pathogens that cause the majority of life-threatening fungal infections in humans. These TOKs pass large currents only in the outward direction like the canonical isolate from Saccharomyces cerevisiae (ScTOK), and distinct from other K+ channels. ScTOK, AfTOK1 (Aspergillus fumigatus), and H99TOK (Cryptococcus neoformans grubii) are K+ -selective and pass current above the K+ reversal potential. CaTOK (Candida albicans) and CnTOK (Cryptococcus neoformans neoformans) pass both K+ and Na+ and conduct above a reversal potential reflecting the mixed permeability of their selectivity filter. Mutations in CaTOK and ScTOK at sites homologous to those that open the internal gates in classical K+ channels are shown to produce inward TOK currents. A favored model for outward rectification is proposed whereby the reversal potential determines ion occupancy, and thus, conductivity, of the selectivity filter gate that is coupled to an imperfectly restrictive internal gate, permitting the filter to sample ion concentrations on both sides of the membrane.
Collapse
Affiliation(s)
- Anthony Lewis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Zoe A McCrossan
- NIHR Evaluation, Trials and Studies Coordinating Centre (NETSCC), University of Southampton, Southampton, UK
| | - Rían W Manville
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - M Oana Popa
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Steve A N Goldstein
- Departments of Physiology & Biophysics and Pediatrics, School of Medicine, Samueli College of Health Sciences, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
26
|
Selectivity filter modalities and rapid inactivation of the hERG1 channel. Proc Natl Acad Sci U S A 2020; 117:2795-2804. [PMID: 31980532 DOI: 10.1073/pnas.1909196117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human ether-á-go-go-related gene (hERG1) channel conducts small outward K+ currents that are critical for cardiomyocyte membrane repolarization. The gain-of-function mutation N629D at the outer mouth of the selectivity filter (SF) disrupts inactivation and K+-selective transport in hERG1, leading to arrhythmogenic phenotypes associated with long-QT syndrome. Here, we combined computational electrophysiology with Markov state model analysis to investigate how SF-level gating modalities control selective cation transport in wild-type (WT) and mutant (N629D) hERG1 variants. Starting from the recently reported cryogenic electron microscopy (cryo-EM) open-state channel structure, multiple microseconds-long molecular-dynamics (MD) trajectories were generated using different cation configurations at the filter, voltages, electrolyte concentrations, and force-field parameters. Most of the K+ permeation events observed in hERG1-WT simulations occurred at microsecond timescales, influenced by the spontaneous dehydration/rehydration dynamics at the filter. The SF region displayed conductive, constricted, occluded, and dilated states, in qualitative agreement with the well-documented flickering conductance of hERG1. In line with mutagenesis studies, these gating modalities resulted from dynamic interaction networks involving residues from the SF, outer-mouth vestibule, P-helices, and S5-P segments. We found that N629D mutation significantly stabilizes the SF in a state that is permeable to both K+ and Na+, which is reminiscent of the SF in the nonselective bacterial NaK channel. Increasing the external K+ concentration induced "WT-like" SF dynamics in N629D, in qualitative agreement with the recovery of flickering currents in experiments. Overall, our findings provide an understanding of the molecular mechanisms controlling selective transport in K+ channels with a nonconventional SF sequence.
Collapse
|
27
|
Strong SE, Hestand NJ, Kananenka AA, Zanni MT, Skinner JL. IR Spectroscopy Can Reveal the Mechanism of K + Transport in Ion Channels. Biophys J 2019; 118:254-261. [PMID: 31812356 DOI: 10.1016/j.bpj.2019.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 01/18/2023] Open
Abstract
Ion channels like KcsA enable ions to move across cell membranes at near diffusion-limited rates and with very high selectivity. Various mechanisms have been proposed to explain this phenomenon. Broadly, there is disagreement among the proposed mechanisms about whether ions occupy adjacent sites in the channel during the transport process. Here, using a mixed quantum-classical approach to calculate theoretical infrared spectra, we propose a set of infrared spectroscopy experiments that can discriminate between mechanisms with and without adjacent ions. These experiments differ from previous ones in that they independently probe specific ion binding sites within the selectivity filter. When ions occupy adjacent sites in the selectivity filter, the predicted spectra are significantly redshifted relative to when ions do not occupy adjacent sites. Comparisons between theoretical and experimental peak frequencies will therefore discriminate the mechanisms.
Collapse
Affiliation(s)
- Steven E Strong
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Nicholas J Hestand
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois; Department of Natural and Applied Sciences, Evangel University, Springfield, Missouri
| | - Alexei A Kananenka
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois; Department of Physics and Astronomy, University of Delaware, Newark, Delaware
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin
| | - J L Skinner
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois.
| |
Collapse
|
28
|
Structure, function, and ion-binding properties of a K + channel stabilized in the 2,4-ion-bound configuration. Proc Natl Acad Sci U S A 2019; 116:16829-16834. [PMID: 31387976 DOI: 10.1073/pnas.1901888116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Here, we present the atomic resolution crystallographic structure, the function, and the ion-binding properties of the KcsA mutants, G77A and G77C, that stabilize the 2,4-ion-bound configuration (i.e., water, K+, water, K+-ion-bound configuration) of the K+ channel's selectivity filter. A full functional and thermodynamic characterization of the G77A mutant revealed wild-type-like ion selectivity and apparent K+-binding affinity, in addition to showing a lack of C-type inactivation gating and a marked reduction in its single-channel conductance. These structures validate, from a structural point of view, the notion that 2 isoenergetic ion-bound configurations coexist within a K+ channel's selectivity filter, which fully agrees with the water-K+-ion-coupled transport detected by streaming potential measurements.
Collapse
|
29
|
Öster C, Hendriks K, Kopec W, Chevelkov V, Shi C, Michl D, Lange S, Sun H, de Groot BL, Lange A. The conduction pathway of potassium channels is water free under physiological conditions. SCIENCE ADVANCES 2019; 5:eaaw6756. [PMID: 31392272 PMCID: PMC6669007 DOI: 10.1126/sciadv.aaw6756] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
Ion conduction through potassium channels is a fundamental process of life. On the basis of crystallographic data, it was originally proposed that potassium ions and water molecules are transported through the selectivity filter in an alternating arrangement, suggesting a "water-mediated" knock-on mechanism. Later on, this view was challenged by results from molecular dynamics simulations that revealed a "direct" knock-on mechanism where ions are in direct contact. Using solid-state nuclear magnetic resonance techniques tailored to characterize the interaction between water molecules and the ion channel, we show here that the selectivity filter of a potassium channel is free of water under physiological conditions. Our results are fully consistent with the direct knock-on mechanism of ion conduction but contradict the previously proposed water-mediated knock-on mechanism.
Collapse
Affiliation(s)
- Carl Öster
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Kitty Hendriks
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Wojciech Kopec
- Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Veniamin Chevelkov
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Dagmar Michl
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Sascha Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Han Sun
- Section Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Bert L. de Groot
- Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
30
|
Qasim A, Sher I, Hirschhorn O, Shaked H, Qasem Z, Ruthstein S, Chill JH. Investigation of a KcsA Cytoplasmic pH Gate in Lipoprotein Nanodiscs. Chembiochem 2019; 20:813-821. [PMID: 30565824 DOI: 10.1002/cbic.201800627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 12/14/2022]
Abstract
The bacterial potassium channel KcsA is gated by pH, opening for conduction under acidic conditions. Molecular determinants responsible for this effect have been identified at the extracellular selectivity filter, at the membrane-cytoplasm interface (TM2 gate), and in the cytoplasmic C-terminal domain (CTD), an amphiphilic four-helix bundle mediated by hydrophobic and electrostatic interactions. Here we have employed NMR and EPR to provide a structural view of the pH-induced open-to-closed CTD transition. KcsA was embedded in lipoprotein nanodiscs (LPNs), selectively methyl-protonated at Leu/Val residues to allow observation of both states by NMR, and spin-labeled for the purposes of EPR studies. We observed a pHinduced structural change between an associated structured CTD at neutral pH and a dissociated flexible CTD at acidic pH, with a transition in the 5.0-5.5 range, consistent with a stabilization of the CTD by channel architecture. A double mutant constitutively open at the TM2 gate exhibited reduced stability of associated CTD, as indicated by weaker spin-spin interactions, a shift to higher transition pH values, and a tenfold reduction in the population of the associated "closed" channels. We extended these findings for isolated CTD-derived peptides to full-length KcsA and have established a contribution of the CTD to KcsA pH-controlled gating, which exhibits a strong correlation with the state of the proximal TM2 gate.
Collapse
Affiliation(s)
- Arwa Qasim
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Inbal Sher
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Orel Hirschhorn
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Hadassa Shaked
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Zena Qasem
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Sharon Ruthstein
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Jordan H Chill
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
31
|
DeMarco KR, Bekker S, Vorobyov I. Challenges and advances in atomistic simulations of potassium and sodium ion channel gating and permeation. J Physiol 2018; 597:679-698. [PMID: 30471114 DOI: 10.1113/jp277088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022] Open
Abstract
Ion channels are implicated in many essential physiological events such as electrical signal propagation and cellular communication. The advent of K+ and Na+ ion channel structure determination has facilitated numerous investigations of molecular determinants of their behaviour. At the same time, rapid development of computer hardware and molecular simulation methodologies has made computational studies of large biological molecules in all-atom representation tractable. The concurrent evolution of experimental structural biology with biomolecular computer modelling has yielded mechanistic details of fundamental processes unavailable through experiments alone, such as ion conduction and ion channel gating. This review is a short survey of the atomistic computational investigations of K+ and Na+ ion channels, focusing on KcsA and several voltage-gated channels from the KV and NaV families, which have garnered many successes and engendered several long-standing controversies regarding the nature of their structure-function relationship. We review the latest advancements and challenges facing the field of molecular modelling and simulation regarding the structural and energetic determinants of ion channel function and their agreement with experimental observations.
Collapse
Affiliation(s)
- Kevin R DeMarco
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.,Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| | - Slava Bekker
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.,Chemistry Department, American River College, Sacramento, CA, USA
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.,Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| |
Collapse
|
32
|
Quantum Dynamics and Non-Local Effects Behind Ion Transition States during Permeation in Membrane Channel Proteins. ENTROPY 2018; 20:e20080558. [PMID: 33265647 PMCID: PMC7513082 DOI: 10.3390/e20080558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022]
Abstract
We present a comparison of a classical and a quantum mechanical calculation of the motion of K+ ions in the highly conserved KcsA selectivity filter motive of voltage gated ion channels. We first show that the de Broglie wavelength of thermal ions is not much smaller than the periodic structure of Coulomb potentials in the nano-pore model of the selectivity filter. This implies that an ion may no longer be viewed to be at one exact position at a given time but can better be described by a quantum mechanical wave function. Based on first principle methods, we demonstrate solutions of a non-linear Schrödinger model that provide insight into the role of short-lived (~1 ps) coherent ion transition states and attribute an important role to subsequent decoherence and the associated quantum to classical transition for permeating ions. It is found that short coherences are not just beneficial but also necessary to explain the fast-directed permeation of ions through the potential barriers of the filter. Certain aspects of quantum dynamics and non-local effects appear to be indispensable to resolve the discrepancy between potential barrier height, as reported from classical thermodynamics, and experimentally observed transition rates of ions through channel proteins.
Collapse
|
33
|
Chen XM, Guo K, Li H, Lu QF, Yang C, Yu Y, Hou JW, Fei YD, Sun J, Wang J, Li YX, Li YG. A novel mutation KCNQ1p.Thr312del is responsible for long QT syndrome type 1. Heart Vessels 2018; 34:177-188. [DOI: 10.1007/s00380-018-1223-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/06/2018] [Indexed: 11/29/2022]
|
34
|
Rauh O, Hansen UP, Scheub DD, Thiel G, Schroeder I. Site-specific ion occupation in the selectivity filter causes voltage-dependent gating in a viral K + channel. Sci Rep 2018; 8:10406. [PMID: 29991721 PMCID: PMC6039446 DOI: 10.1038/s41598-018-28751-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/28/2018] [Indexed: 12/24/2022] Open
Abstract
Many potassium channels show voltage-dependent gating without a dedicated voltage sensor domain. This is not fully understood yet, but often explained by voltage-induced changes of ion occupation in the five distinct K+ binding sites in the selectivity filter. To better understand this mechanism of filter gating we measured the single-channel current and the rate constant of sub-millisecond channel closure of the viral K+ channel KcvNTS for a wide range of voltages and symmetric and asymmetric K+ concentrations in planar lipid membranes. A model-based analysis employed a global fit of all experimental data, i.e., using a common set of parameters for current and channel closure under all conditions. Three different established models of ion permeation and various relationships between ion occupation and gating were tested. Only one of the models described the data adequately. It revealed that the most extracellular binding site (S0) in the selectivity filter functions as the voltage sensor for the rate constant of channel closure. The ion occupation outside of S0 modulates its dependence on K+ concentration. The analysis uncovers an important role of changes in protein flexibility in mediating the effect from the sensor to the gate.
Collapse
Affiliation(s)
- O Rauh
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - U P Hansen
- Department of Structural Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - D D Scheub
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - G Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - I Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
35
|
S4-S5 linker movement during activation and inactivation in voltage-gated K + channels. Proc Natl Acad Sci U S A 2018; 115:E6751-E6759. [PMID: 29959207 DOI: 10.1073/pnas.1719105115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The S4-S5 linker physically links voltage sensor and pore domain in voltage-gated ion channels and is essential for electromechanical coupling between both domains. Little dynamic information is available on the movement of the cytosolic S4-S5 linker due to lack of a direct electrical or optical readout. To understand the movements of the gating machinery during activation and inactivation, we incorporated fluorescent unnatural amino acids at four positions along the linker of the Shaker KV channel. Using two-color voltage-clamp fluorometry, we compared S4-S5 linker movements with charge displacement, S4 movement, and pore opening. We found that the proximal S4-S5 linker moves with the S4 helix throughout the gating process, whereas the distal portion undergoes a separate motion related to late gating transitions. Both pore and S4-S5 linker undergo rearrangements during C-type inactivation. In presence of accelerated C-type inactivation, the energetic coupling between movement of the distal S4-S5 linker and pore opening disappears.
Collapse
|
36
|
Amirkulova DB, White AD. Combining enhanced sampling with experiment-directed simulation of the GYG peptide. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s0219633618400072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Experiment-directed simulation (EDS) is a technique to minimally bias molecular dynamics simulations to match experimentally observed results. The method improves accuracy but does not address the sampling problem of molecular dynamics simulations of large systems. This work combines EDS with both the parallel-tempering or parallel-tempering well-tempered ensemble replica-exchange methods to enhance sampling. These methods are demonstrated on the GYG tripeptide in explicit water. The collective variables biased by EDS are chemical shifts, where the set-points are determined by NMR experiments. The results show that it is possible to enhance sampling with either parallel-tempering and parallel-tempering well-tempered ensemble in the EDS method. This combination of methods provides a novel approach for both accurately and exhaustively simulating biological systems.
Collapse
Affiliation(s)
| | - Andrew D. White
- Chemical Engineering, University of Rochester, Rochester NY 14627, USA
| |
Collapse
|
37
|
Andersson AEV, Kasimova MA, Delemotte L. Exploring the Viral Channel Kcv PBCV-1 Function via Computation. J Membr Biol 2018; 251:419-430. [PMID: 29476260 PMCID: PMC6028866 DOI: 10.1007/s00232-018-0022-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/15/2018] [Indexed: 11/30/2022]
Abstract
Viral potassium channels (Kcv) are homologous to the pore module of complex \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {K}^+$$\end{document}K+-selective ion channels of cellular organisms. Due to their relative simplicity, they have attracted interest towards understanding the principles of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {K}^+$$\end{document}K+ conduction and channel gating. In this work, we construct a homology model of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\hbox {Kcv}}_{\text{PBCV-1}}$$\end{document}KcvPBCV-1 open state, which we validate by studying the binding of known blockers and by monitoring ion conduction through the channel. Molecular dynamics simulations of this model reveal that the re-orientation of selectivity filter carbonyl groups coincides with the transport of potassium ions, suggesting a possible mechanism for fast gating. In addition, we show that the voltage sensitivity of this mechanism can originate from the relocation of potassium ions inside the selectivity filter. We also explore the interaction of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\hbox {Kcv}}_{\text{PBCV-1}}$$\end{document}KcvPBCV-1 with the surrounding bilayer and observe the binding of lipids in the area between two adjacent subunits. The model is available to the scientific community to further explore the structure/function relationship of Kcv channels.
Collapse
Affiliation(s)
- Alma E V Andersson
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Box 1031, SE-171 21, Solna, Sweden
| | - Marina A Kasimova
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Box 1031, SE-171 21, Solna, Sweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Box 1031, SE-171 21, Solna, Sweden.
| |
Collapse
|
38
|
Global versus local mechanisms of temperature sensing in ion channels. Pflugers Arch 2018; 470:733-744. [PMID: 29340775 DOI: 10.1007/s00424-017-2102-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNaV) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.
Collapse
|
39
|
Howard RJ, Carnevale V, Delemotte L, Hellmich UA, Rothberg BS. Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:927-942. [PMID: 29258839 DOI: 10.1016/j.bbamem.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022]
Abstract
Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Rebecca J Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, 17121 Solna, Sweden.
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Theoretical Physics, KTH Royal Institute of Technology, Box 1031, 17121 Solna, Sweden.
| | - Ute A Hellmich
- Johannes Gutenberg University Mainz, Institute for Pharmacy and Biochemistry, Johann-Joachim-Becherweg 30, 55128 Mainz, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| | - Brad S Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
40
|
Renart ML, Montoya E, Giudici AM, Poveda JA, Fernández AM, Morales A, González-Ros JM. Selective exclusion and selective binding both contribute to ion selectivity in KcsA, a model potassium channel. J Biol Chem 2017; 292:15552-15560. [PMID: 28778926 DOI: 10.1074/jbc.m117.795807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/17/2017] [Indexed: 11/06/2022] Open
Abstract
The selectivity filter in potassium channels, a main component of the ion permeation pathway, configures a stack of binding sites (sites S1-S4) to which K+ and other cations may bind. Specific ion binding to such sites induces changes in the filter conformation, which play a key role in defining both selectivity and permeation. Here, using the potassium channel KcsA as a model, we contribute new evidence to reinforce this assertion. First, ion binding to KcsA blocked by tetrabutylammonium at the most cytoplasmic site in the selectivity filter (S4) suggests that such a site, when in the nonconductive filter conformation, has a higher affinity for cation binding than the most extracellular S1 site. This filter asymmetry, along with differences in intracellular and extracellular concentrations of K+versus Na+ under physiological conditions, should strengthen selection of the permeant K+ by the channel. Second, we used different K+ concentrations to shift the equilibrium between nonconductive and conductive states of the selectivity filter in which to test competitive binding of Na+ These experiments disclosed a marked decrease in the affinity of Na+ to bind the channel when the conformational equilibrium shifts toward the conductive state. This finding suggested that in addition to the selective binding of K+ and other permeant species over Na+, there is a selective exclusion of nonpermeant species from binding the channel filter, once it reaches a fully conductive conformation. We conclude that selective binding and selective exclusion of permeant and nonpermeant cations, respectively, are important determinants of ion channel selectivity.
Collapse
Affiliation(s)
- M Lourdes Renart
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain and
| | - Estefanía Montoya
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain and
| | - A Marcela Giudici
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain and
| | - José A Poveda
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain and
| | - Asia M Fernández
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain and
| | - Andrés Morales
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03080 Alicante, Spain
| | - José M González-Ros
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain and
| |
Collapse
|
41
|
Jorgensen C, Furini S, Domene C. Energetics of Ion Permeation in an Open-Activated TRPV1 Channel. Biophys J 2017; 111:1214-1222. [PMID: 27653480 DOI: 10.1016/j.bpj.2016.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 01/11/2023] Open
Abstract
Ion channels enable diffusion of ions down physiological electrochemical gradients. Modulation of ion permeation is crucial for the physiological functioning of cells, and misregulation of ion channels is linked to a myriad of channelopathies. The ion permeation mechanism in the transient receptor potential (TRP) ion channel family is currently not understood at an atomistic level. In this work, we employed a simulation strategy for ion permeation (molecular-dynamics simulations with bias-exchange metadynamics) to study and compare monovalent (Na(+), K(+)) ion permeation in the open-activated TRP vanniloid-1 (TRPV1) ion channel. Using ∼3.6 μs of simulation trajectories, we obtained atomistic evidence for the nonselective nature of TRPV1. Our analysis shows that solvated monovalent ions permeate through the selectivity filter with comparable energetic barriers via a two-site mechanism. Finally, we confirmed that an intracellular binding site is located between the intracellular gate residues I679 and E684.
Collapse
Affiliation(s)
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Carmen Domene
- Department of Chemistry, King's College London, London, United Kingdom; Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
42
|
Kratochvil HT, Maj M, Matulef K, Annen AW, Ostmeyer J, Perozo E, Roux B, Valiyaveetil FI, Zanni MT. Probing the Effects of Gating on the Ion Occupancy of the K + Channel Selectivity Filter Using Two-Dimensional Infrared Spectroscopy. J Am Chem Soc 2017; 139:8837-8845. [PMID: 28472884 DOI: 10.1021/jacs.7b01594] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interplay between the intracellular gate and the selectivity filter underlies the structural basis for gating in potassium ion channels. Using a combination of protein semisynthesis, two-dimensional infrared (2D IR) spectroscopy, and molecular dynamics (MD) simulations, we probe the ion occupancy at the S1 binding site in the constricted state of the selectivity filter of the KcsA channel when the intracellular gate is open and closed. The 2D IR spectra resolve two features, whose relative intensities depend on the state of the intracellular gate. By matching the experiment to calculated 2D IR spectra of structures predicted by MD simulations, we identify the two features as corresponding to states with S1 occupied or unoccupied by K+. We learn that S1 is >70% occupied when the intracellular gate is closed and <15% occupied when the gate is open. Comparison of MD trajectories show that opening of the intracellular gate causes a structural change in the selectivity filter, which leads to a change in the ion occupancy. This work reveals the complexity of the conformational landscape of the K+ channel selectivity filter and its dependence on the state of the intracellular gate.
Collapse
Affiliation(s)
- Huong T Kratochvil
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michał Maj
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Kimberly Matulef
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University , Portland, Oregon 97239, United States
| | - Alvin W Annen
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University , Portland, Oregon 97239, United States
| | - Jared Ostmeyer
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | - Francis I Valiyaveetil
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University , Portland, Oregon 97239, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
43
|
Montoya E, Lourdes Renart M, Marcela Giudici A, Poveda JA, Fernández AM, Morales A, González-Ros JM. Differential binding of monovalent cations to KcsA: Deciphering the mechanisms of potassium channel selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:779-788. [PMID: 28088447 DOI: 10.1016/j.bbamem.2017.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/16/2016] [Accepted: 01/10/2017] [Indexed: 11/19/2022]
Abstract
This work explores whether the ion selectivity and permeation properties of a model potassium channel, KcsA, could be explained based on ion binding features. Non-permeant Na+ or Li+ bind with low affinity (millimolar KD's) to a single set of sites contributed by the S1 and S4 sites seen at the selectivity filter in the KcsA crystal structure. Conversely, permeant K+, Rb+, Tl+ and even Cs+ bind to two different sets of sites as their concentration increases, consistent with crystallographic evidence on the ability of permeant species to induce concentration-dependent transitions between conformational states (non-conductive and conductive) of the channel's selectivity filter. The first set of such sites, assigned also to the crystallographic S1 and S4 sites, shows similarly high affinities for all permeant species (micromolar KD's), thus, securing displacement of potentially competing non-permeant cations. The second set of sites, available only to permeant cations upon the transition to the conductive filter conformation, shows low affinity (millimolar KD's), thus, favoring cation dissociation and permeation and results from the contribution of all S1 through S4 crystallographic sites. The differences in affinities between permeant and non-permeant cations and the similarities in binding behavior within each of these two groups, correlate fully with their permeabilities relative to K+, suggesting that binding is an important determinant of the channel's ion selectivity. Conversely, the complexity observed in permeation features cannot be explained just in terms of binding and likely relates to reported differences in the occupancy of the S2 and S3 sites by the permeant cations.
Collapse
Affiliation(s)
- Estefanía Montoya
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - M Lourdes Renart
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - A Marcela Giudici
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - José A Poveda
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - Asia M Fernández
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - Andrés Morales
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - José M González-Ros
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain.
| |
Collapse
|
44
|
Tuszynski JA, Wenger C, Friesen DE, Preto J. An Overview of Sub-Cellular Mechanisms Involved in the Action of TTFields. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E1128. [PMID: 27845746 PMCID: PMC5129338 DOI: 10.3390/ijerph13111128] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 10/23/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022]
Abstract
Long-standing research on electric and electromagnetic field interactions with biological cells and their subcellular structures has mainly focused on the low- and high-frequency regimes. Biological effects at intermediate frequencies between 100 and 300 kHz have been recently discovered and applied to cancer cells as a therapeutic modality called Tumor Treating Fields (TTFields). TTFields are clinically applied to disrupt cell division, primarily for the treatment of glioblastoma multiforme (GBM). In this review, we provide an assessment of possible physical interactions between 100 kHz range alternating electric fields and biological cells in general and their nano-scale subcellular structures in particular. This is intended to mechanistically elucidate the observed strong disruptive effects in cancer cells. Computational models of isolated cells subject to TTFields predict that for intermediate frequencies the intracellular electric field strength significantly increases and that peak dielectrophoretic forces develop in dividing cells. These findings are in agreement with in vitro observations of TTFields' disruptive effects on cellular function. We conclude that the most likely candidates to provide a quantitative explanation of these effects are ionic condensation waves around microtubules as well as dielectrophoretic effects on the dipole moments of microtubules. A less likely possibility is the involvement of actin filaments or ion channels.
Collapse
Affiliation(s)
- Jack A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Cornelia Wenger
- The Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal.
| | - Douglas E Friesen
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| | - Jordane Preto
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
45
|
Kratochvil HT, Carr JK, Matulef K, Annen AW, Li H, Maj M, Ostmeyer J, Serrano AL, Raghuraman H, Moran SD, Skinner JL, Perozo E, Roux B, Valiyaveetil FI, Zanni MT. Instantaneous ion configurations in the K+ ion channel selectivity filter revealed by 2D IR spectroscopy. Science 2016; 353:1040-1044. [PMID: 27701114 PMCID: PMC5544905 DOI: 10.1126/science.aag1447] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/03/2016] [Indexed: 11/02/2022]
Abstract
Potassium channels are responsible for the selective permeation of K+ ions across cell membranes. K+ ions permeate in single file through the selectivity filter, a narrow pore lined by backbone carbonyls that compose four K+ binding sites. Here, we report on the two-dimensional infrared (2D IR) spectra of a semisynthetic KcsA channel with site-specific heavy (13C18O) isotope labels in the selectivity filter. The ultrafast time resolution of 2D IR spectroscopy provides an instantaneous snapshot of the multi-ion configurations and structural distributions that occur spontaneously in the filter. Two elongated features are resolved, revealing the statistical weighting of two structural conformations. The spectra are reproduced by molecular dynamics simulations of structures with water separating two K+ ions in the binding sites, ruling out configurations with ions occupying adjacent sites.
Collapse
Affiliation(s)
- Huong T Kratochvil
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua K Carr
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kimberly Matulef
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Alvin W Annen
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Hui Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Michał Maj
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jared Ostmeyer
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Arnaldo L Serrano
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - H Raghuraman
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sean D Moran
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - J L Skinner
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Francis I Valiyaveetil
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
46
|
Schroeder I. How to resolve microsecond current fluctuations in single ion channels: the power of beta distributions. Channels (Austin) 2016; 9:262-80. [PMID: 26368656 DOI: 10.1080/19336950.2015.1083660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A main ingredient for the understanding of structure/function correlates of ion channels is the quantitative description of single-channel gating and conductance. However, a wealth of information provided from fast current fluctuations beyond the temporal resolution of the recording system is often ignored, even though it is close to the time window accessible to molecular dynamics simulations. This kind of current fluctuations provide a special technical challenge, because individual opening/closing or blocking/unblocking events cannot be resolved, and the resulting averaging over undetected events decreases the single-channel current. Here, I briefly summarize the history of fast-current fluctuation analysis and focus on the so-called "beta distributions." This tool exploits characteristics of current fluctuation-induced excess noise on the current amplitude histograms to reconstruct the true single-channel current and kinetic parameters. A guideline for the analysis and recent applications demonstrate that a construction of theoretical beta distributions by Markov Model simulations offers maximum flexibility as compared to analytical solutions.
Collapse
Affiliation(s)
- Indra Schroeder
- a Plant Membrane Biophysics, Technical University of Darmstadt ; Darmstadt , Germany
| |
Collapse
|
47
|
Medovoy D, Perozo E, Roux B. Multi-ion free energy landscapes underscore the microscopic mechanism of ion selectivity in the KcsA channel. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1722-32. [PMID: 26896693 PMCID: PMC4939264 DOI: 10.1016/j.bbamem.2016.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/20/2016] [Accepted: 02/13/2016] [Indexed: 11/28/2022]
Abstract
Potassium (K(+)) channels are transmembrane proteins that passively and selectively allow K(+) ions to flow through them, after opening in response to an external stimulus. One of the most critical functional aspects of their function is their ability to remain very selective for K(+) over Na(+) while allowing high-throughput ion conduction at a rate close to the diffusion limit. Classically, it is assumed that the free energy difference between K(+) and Na(+) in the pore relative to the bulk solution is the critical quantity at the origin of selectivity. This is the thermodynamic view of ion selectivity. An alternative view assumes that kinetic factors play the dominant role. Recent results from a number of studies have also highlighted the great importance of the multi-ion single file on the selectivity of K(+) channels. The data indicate that having multiple K(+) ions bound simultaneously is required for selective K(+) conduction, and that a reduction in the number of bound K(+) ions destroys the multi-ion selectivity mechanism utilized by K(+) channels. In the present study, multi-ion potential of mean force molecular dynamics computations are carried out to clarify the mechanism of ion selectivity in the KcsA channel. The computations show that the multi-ion character of the permeation process is a critical element for establishing the selective ion conductivity through K(+)-channels. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- David Medovoy
- Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Gordon Center for Integrative Science, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Eduardo Perozo
- Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Gordon Center for Integrative Science, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Benoît Roux
- Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Gordon Center for Integrative Science, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
48
|
Individual Ion Binding Sites in the K(+) Channel Play Distinct Roles in C-type Inactivation and in Recovery from Inactivation. Structure 2016; 24:750-761. [PMID: 27150040 DOI: 10.1016/j.str.2016.02.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 01/14/2023]
Abstract
The selectivity filter of K(+) channels contains four ion binding sites (S1-S4) and serves dual functions of discriminating K(+) from Na(+) and acting as a gate during C-type inactivation. C-type inactivation is modulated by ion binding to the selectivity filter sites, but the underlying mechanism is not known. Here we evaluate how the ion binding sites in the selectivity filter of the KcsA channel participate in C-type inactivation and in recovery from inactivation. We use unnatural amide-to-ester substitutions in the protein backbone to manipulate the S1-S3 sites and a side-chain substitution to perturb the S4 site. We develop an improved semisynthetic approach for generating these amide-to-ester substitutions in the selectivity filter. Our combined electrophysiological and X-ray crystallographic analysis of the selectivity filter mutants show that the ion binding sites play specific roles during inactivation and provide insights into the structural changes at the selectivity filter during C-type inactivation.
Collapse
|
49
|
Piccinini E, Ceccarelli M, Affinito F, Brunetti R, Jacoboni C. Biased Molecular Simulations for Free-Energy Mapping: A Comparison on the KcsA Channel as a Test Case. J Chem Theory Comput 2015; 4:173-83. [PMID: 26619991 DOI: 10.1021/ct7001896] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The calculation of free-energy landscapes in proteins is a challenge for modern numerical simulations. As to the case of potassium ion channels is concerned, it is particularly interesting because of the nanometric dimensions of the selectivity filter, where the complex electrostatics is highly relevant. The present study aims at comparing three different techniques used to bias molecular dynamics simulations, namely Umbrella Sampling, Steered Molecular Dynamics, and Metadynamics, never applied all together in the past to the same channel protein. Our test case is represented by potassium ions permeating the selectivity filter of the KcsA channel.
Collapse
Affiliation(s)
- Enrico Piccinini
- CNR-INFM National Research Center on nanoStructures and bioSystems at Surfaces (S3), Via Campi 213/A, I-41100 Modena, Italy, Dipartimento di Ingegneria Elettronica, Informatica e Sistemistica DEIS, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy, Dipartimento di Fisica and Sardinian Laboratory for Computational Materials Science - SLACS, Università di Cagliari, Cittadella Monserrato, I-09042 Monserrato (CA), Italy, and Dipartimento di Fisica, Università di Modena e Reggio Emilia, Via Campi 213/A, I-41100 Modena, Italy
| | - Matteo Ceccarelli
- CNR-INFM National Research Center on nanoStructures and bioSystems at Surfaces (S3), Via Campi 213/A, I-41100 Modena, Italy, Dipartimento di Ingegneria Elettronica, Informatica e Sistemistica DEIS, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy, Dipartimento di Fisica and Sardinian Laboratory for Computational Materials Science - SLACS, Università di Cagliari, Cittadella Monserrato, I-09042 Monserrato (CA), Italy, and Dipartimento di Fisica, Università di Modena e Reggio Emilia, Via Campi 213/A, I-41100 Modena, Italy
| | - Fabio Affinito
- CNR-INFM National Research Center on nanoStructures and bioSystems at Surfaces (S3), Via Campi 213/A, I-41100 Modena, Italy, Dipartimento di Ingegneria Elettronica, Informatica e Sistemistica DEIS, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy, Dipartimento di Fisica and Sardinian Laboratory for Computational Materials Science - SLACS, Università di Cagliari, Cittadella Monserrato, I-09042 Monserrato (CA), Italy, and Dipartimento di Fisica, Università di Modena e Reggio Emilia, Via Campi 213/A, I-41100 Modena, Italy
| | - Rossella Brunetti
- CNR-INFM National Research Center on nanoStructures and bioSystems at Surfaces (S3), Via Campi 213/A, I-41100 Modena, Italy, Dipartimento di Ingegneria Elettronica, Informatica e Sistemistica DEIS, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy, Dipartimento di Fisica and Sardinian Laboratory for Computational Materials Science - SLACS, Università di Cagliari, Cittadella Monserrato, I-09042 Monserrato (CA), Italy, and Dipartimento di Fisica, Università di Modena e Reggio Emilia, Via Campi 213/A, I-41100 Modena, Italy
| | - Carlo Jacoboni
- CNR-INFM National Research Center on nanoStructures and bioSystems at Surfaces (S3), Via Campi 213/A, I-41100 Modena, Italy, Dipartimento di Ingegneria Elettronica, Informatica e Sistemistica DEIS, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy, Dipartimento di Fisica and Sardinian Laboratory for Computational Materials Science - SLACS, Università di Cagliari, Cittadella Monserrato, I-09042 Monserrato (CA), Italy, and Dipartimento di Fisica, Università di Modena e Reggio Emilia, Via Campi 213/A, I-41100 Modena, Italy
| |
Collapse
|
50
|
A Disease Mutation Causing Episodic Ataxia Type I in the S1 Links Directly to the Voltage Sensor and the Selectivity Filter in Kv Channels. J Neurosci 2015; 35:12198-206. [PMID: 26338330 DOI: 10.1523/jneurosci.1419-15.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The mutation F184C in Kv1.1 leads to development of episodic ataxia type I (EA1). Although the mutation has been said to alter activation kinetics and to lower expression, we show here that the underlying molecular mechanisms may be more complex. Although F184 is positioned in the "peripheral" S1 helix, it occupies a central position in the 3D fold. We show in cut-open oocyte voltage-clamp recordings of gating and ionic currents of the Shaker Kv channel expressed in Xenopus oocytes that F184 not only interacts directly with the gating charges of the S4, but also creates a functional link to the selectivity filter of the neighboring subunit. This link leads to impaired fast and slow inactivation. The effect on fast inactivation is of an allosteric nature considering that fast inactivation is caused by a linked cytosolic ball peptide. The extensive effects of F184C provide a new mechanism underlying EA. SIGNIFICANCE STATEMENT Episodic ataxia (EA) is an inherited disease that leads to occasional loss of motor control in combination with variable other symptoms such as vertigo or migraine. EA type I (EA1), studied here, is caused by mutations in a voltage-gated potassium channel that contributes to the generation of electrical signals in the brain. The mechanism by which mutations in voltage-gated potassium channels lead to EA is still unknown and there is no consistent pharmacological treatment. By studying in detail one disease-causing mutation in Kv1.1, we describe a novel molecular mechanism distinct from mechanisms described previously. This mechanism contributes to the understanding of potassium channel function in general and might lead to a better understanding of how EA develops.
Collapse
|