1
|
Özer H, Wasser D, Sandner L, Soppa J. Intermolecular Gene Conversion for the Equalization of Genome Copies in the Polyploid Haloarchaeon Haloferax volcanii: Identification of Important Proteins. Genes (Basel) 2024; 15:861. [PMID: 39062640 PMCID: PMC11276520 DOI: 10.3390/genes15070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The model haloarchaeon Haloferax volcanii is polyploid with about 20 copies of its major chromosome. Recently it has been described that highly efficient intermolecular gene conversion operates in H. volcanii to equalize the chromosomal copies. In the current study, 24 genes were selected that encode proteins with orthologs involved in gene conversion or homologous recombination in archaea, bacteria, or eukaryotes. Single gene deletion strains of 22 genes and a control gene were constructed in two parent strains for a gene conversion assay; only radA and radB were shown to be essential. Protoplast fusions were used to generate strains that were heterozygous for the gene HVO_2528, encoding an enzyme for carotinoid biosynthesis. It was revealed that a lack of six of the proteins did not influence the efficiency of gene conversion, while sixteen mutants had severe gene conversion defects. Notably, lack of paralogous proteins of gene families had very different effects, e.g., mutant Δrad25b had no phenotype, while mutants Δrad25a, Δrad25c, and Δrad25d were highly compromised. Generation of a quadruple rad25 and a triple sph deletion strain also indicated that the paralogs have different functions, in contrast to sph2 and sph4, which cannot be deleted simultaneously. There was no correlation between the severity of the phenotypes and the respective transcript levels under non-stressed conditions, indicating that gene expression has to be induced at the onset of gene conversion. Phylogenetic trees of the protein families Rad3/25, MutL/S, and Sph/SMC/Rad50 were generated to unravel the history of the paralogous proteins of H. volcanii. Taken together, unselected intermolecular gene conversion in H. volcanii involves at least 16 different proteins, the molecular roles of which can be studied in detail in future projects.
Collapse
Affiliation(s)
| | | | | | - Jörg Soppa
- Biocentre, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, D-60439 Frankfurt, Germany; (H.Ö.); (D.W.); (L.S.)
| |
Collapse
|
2
|
D'Souza A, Blee AM, Chazin WJ. Mechanism of action of nucleotide excision repair machinery. Biochem Soc Trans 2022; 50:375-386. [PMID: 35076656 PMCID: PMC9275815 DOI: 10.1042/bst20210246] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2023]
Abstract
Nucleotide excision repair (NER) is a versatile DNA repair pathway essential for the removal of a broad spectrum of structurally diverse DNA lesions arising from a variety of sources, including UV irradiation and environmental toxins. Although the core factors and basic stages involved in NER have been identified, the mechanisms of the NER machinery are not well understood. This review summarizes our current understanding of the mechanisms and order of assembly in the core global genome (GG-NER) pathway.
Collapse
Affiliation(s)
- Areetha D'Souza
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, U.S.A
| | - Alexandra M Blee
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, U.S.A
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, U.S.A
| |
Collapse
|
3
|
Pérez-Arnaiz P, Dattani A, Smith V, Allers T. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Open Biol 2020; 10:200293. [PMID: 33259746 PMCID: PMC7776575 DOI: 10.1098/rsob.200293] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical techniques were then needed to study the third domain of life. Haloferax volcanii, a halophilic species belonging to the phylum Euryarchaeota, has provided many useful tools to study Archaea, including easy culturing methods, genetic manipulation and phenotypic screening. This review will focus on DNA replication and DNA repair pathways in H. volcanii, how this work has advanced our knowledge of archaeal cellular biology, and how it may deepen our understanding of bacterial and eukaryotic processes.
Collapse
Affiliation(s)
| | | | | | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
4
|
Prahlad J, Yuan Y, Lin J, Chang CW, Iwata-Reuyl D, Liu Y, de Crécy-Lagard V, Wilson MA. The DUF328 family member YaaA is a DNA-binding protein with a novel fold. J Biol Chem 2020; 295:14236-14247. [PMID: 32796037 PMCID: PMC7549036 DOI: 10.1074/jbc.ra120.015055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/11/2020] [Indexed: 01/07/2023] Open
Abstract
DUF328 family proteins are present in many prokaryotes; however, their molecular activities are unknown. The Escherichia coli DUF328 protein YaaA is a member of the OxyR regulon and is protective against oxidative stress. Because uncharacterized proteins involved in prokaryotic oxidative stress response are rare, we sought to learn more about the DUF328 family. Using comparative genomics, we found a robust association between the DUF328 family and genes involved in DNA recombination and the oxidative stress response. In some proteins, DUF328 domains are fused to other domains involved in DNA binding, recombination, and repair. Cofitness analysis indicates that DUF328 family genes associate with recombination-mediated DNA repair pathways, particularly the RecFOR pathway. Purified recombinant YaaA binds to dsDNA, duplex DNA containing bubbles of unpaired nucleotides, and Holliday junction constructs in vitro with dissociation equilibrium constants of 200-300 nm YaaA binds DNA with positive cooperativity, forming multiple shifted species in electrophoretic mobility shift assays. The 1.65-Å resolution X-ray crystal structure of YaaA reveals that the protein possesses a new fold that we name the cantaloupe fold. YaaA has a positively charged cleft and a helix-hairpin-helix DNA-binding motif found in other DNA repair enzymes. Our results demonstrate that YaaA is a new type of DNA-binding protein associated with the oxidative stress response and that this molecular function is likely conserved in other DUF328 family members.
Collapse
Affiliation(s)
- Janani Prahlad
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA
| | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Jiusheng Lin
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA
| | - Chou-Wei Chang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Dirk Iwata-Reuyl
- Department of Chemistry, Portland State University, Portland, Oregon, USA
| | - Yilun Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA,University of Florida Genetics Institute, Gainesville, Florida, USA,For correspondence: Valérie de Crécy-Lagard, ; Mark A. Wilson,
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA,For correspondence: Valérie de Crécy-Lagard, ; Mark A. Wilson,
| |
Collapse
|
5
|
Zhang L, Jiang D, Wu M, Yang Z, Oger PM. New Insights Into DNA Repair Revealed by NucS Endonucleases From Hyperthermophilic Archaea. Front Microbiol 2020; 11:1263. [PMID: 32714287 PMCID: PMC7343888 DOI: 10.3389/fmicb.2020.01263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
Hyperthermophilic Archaea (HA) thrive in high temperature environments and their genome is facing severe stability challenge due to the increased DNA damage levels caused by high temperature. Surprisingly, HA display spontaneous mutation frequencies similar to mesophilic microorganisms, thereby indicating that the former must possess more efficient DNA repair systems than the latter to counteract the potentially enhanced mutation rates under the harsher environment. Although a few repair proteins or enzymes from HA have been biochemically and structurally characterized, the molecular mechanisms of DNA repair of HA remain largely unknown. Genomic analyses of HA revealed that they lack MutS/MutL homologues of the mismatch repair (MMR) pathway and the recognition proteins of the nucleotide excision repair (NER) pathway. Endonucleases play an essential role in DNA repair. NucS endonuclease, a novel endonuclease recently identified in some HA and bacteria, has been shown to act on branched, mismatched, and deaminated DNA, suggesting that this endonuclease is a multifunctional enzyme involved in NER, MMR, and deaminated base repair in a non-canonical manner. However, the catalytic mechanism and the physiological function of NucS endonucleases from HA need to be further clarified to determine how they participate in the different DNA repair pathways in cells from HA. In this review, we focus on recent advances in our understanding of the function of NucS endonucleases from HA in NER, MMR, and deaminated DNA repair, and propose directions for future studies of the NucS family of endonucleases.
Collapse
Affiliation(s)
- Likui Zhang
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China.,Guangling College, Yangzhou University, Yangzhou, China
| | - Donghao Jiang
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China
| | - Mai Wu
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China
| | - Zhihui Yang
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| | - Philippe M Oger
- Univ Lyon, INSA de Lyon, CNRS UMR 5240, Villeurbanne, France
| |
Collapse
|
6
|
Falquet B, Rass U. Structure-Specific Endonucleases and the Resolution of Chromosome Underreplication. Genes (Basel) 2019; 10:E232. [PMID: 30893921 PMCID: PMC6470701 DOI: 10.3390/genes10030232] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Complete genome duplication in every cell cycle is fundamental for genome stability and cell survival. However, chromosome replication is frequently challenged by obstacles that impede DNA replication fork (RF) progression, which subsequently causes replication stress (RS). Cells have evolved pathways of RF protection and restart that mitigate the consequences of RS and promote the completion of DNA synthesis prior to mitotic chromosome segregation. If there is entry into mitosis with underreplicated chromosomes, this results in sister-chromatid entanglements, chromosome breakage and rearrangements and aneuploidy in daughter cells. Here, we focus on the resolution of persistent replication intermediates by the structure-specific endonucleases (SSEs) MUS81, SLX1-SLX4 and GEN1. Their actions and a recently discovered pathway of mitotic DNA repair synthesis have emerged as important facilitators of replication completion and sister chromatid detachment in mitosis. As RS is induced by oncogene activation and is a common feature of cancer cells, any advances in our understanding of the molecular mechanisms related to chromosome underreplication have important biomedical implications.
Collapse
Affiliation(s)
- Benoît Falquet
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
- Faculty of Natural Sciences, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland.
| | - Ulrich Rass
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
7
|
Das D, Faridounnia M, Kovacic L, Kaptein R, Boelens R, Folkers GE. Single-stranded DNA Binding by the Helix-Hairpin-Helix Domain of XPF Protein Contributes to the Substrate Specificity of the ERCC1-XPF Protein Complex. J Biol Chem 2016; 292:2842-2853. [PMID: 28028171 DOI: 10.1074/jbc.m116.747857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/24/2016] [Indexed: 11/06/2022] Open
Abstract
The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble.
Collapse
Affiliation(s)
- Devashish Das
- From the Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and
| | - Maryam Faridounnia
- From the Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and
| | - Lidija Kovacic
- the Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Robert Kaptein
- From the Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and
| | - Rolf Boelens
- From the Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and
| | - Gert E Folkers
- From the Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and
| |
Collapse
|
8
|
Nowotny M, Gaur V. Structure and mechanism of nucleases regulated by SLX4. Curr Opin Struct Biol 2016; 36:97-105. [PMID: 26827285 DOI: 10.1016/j.sbi.2016.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 01/08/2023]
Abstract
SLX4 is a multidomain platform that regulates various proteins that are involved in genome maintenance and stability. Among these proteins are three structure-selective nucleases (SSEs). XPF-ERCC1 and MUS81-EME1 are structurally similar and function as heterodimers of highly similar subunits, in which only one is active. Two independent modules are formed from subunits of the heterodimers - a dimer of nuclease and nuclease-like domains and a dimer of tandem helix-hairpin-helix HhH2 domains. Both modules are responsible for substrate recognition. The third SSE, SLX1, contains GIY-YIG and RING domains and is a promiscuous nuclease. Structural data imply that SLX1 exists in free form as an autoinhibited homodimer. Association with SLX4 platform disrupts the homodimer and activates SLX1. This review discusses the available structural and mechanistic information on SLX4-regulated SSEs.
Collapse
Affiliation(s)
- Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | - Vineet Gaur
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
9
|
Abstract
Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. In this review, Xue et al. provide an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes. Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. FANCM supports genome duplication and repair under different circumstances and also functions in the ATR-mediated DNA damage checkpoint. Some of these roles are shared among lower eukaryotic family members. Human FANCM has been linked to Fanconi anemia, a syndrome characterized by cancer predisposition, developmental disorder, and bone marrow failure. Recent studies on human FANCM and its orthologs from other organisms have provided insights into their biological functions, regulation, and collaboration with other genome maintenance factors. This review summarizes the progress made, with the goal of providing an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes.
Collapse
Affiliation(s)
- Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
10
|
Chamieh H, Ibrahim H, Kozah J. Genome-wide identification of SF1 and SF2 helicases from archaea. Gene 2015; 576:214-28. [PMID: 26456193 DOI: 10.1016/j.gene.2015.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/13/2015] [Accepted: 10/04/2015] [Indexed: 11/26/2022]
Abstract
Archaea microorganisms have long been used as model organisms for the study of protein molecular machines. Archaeal proteins are particularly appealing to study since archaea, even though prokaryotic, possess eukaryotic-like cellular processes. Super Family I (SF1) and Super Family II (SF2) helicase families have been studied in many model organisms, little is known about their presence and distribution in archaea. We performed an exhaustive search of homologs of SF1 and SF2 helicase proteins in 95 complete archaeal genomes. In the present study, we identified the complete sets of SF1 and SF2 helicases in archaea. Comparative analysis between archaea, human and the bacteria E. coli SF1 and SF2 helicases, resulted in the identification of seven helicase families conserved among representatives of the domains of life. This analysis suggests that these helicase families are highly conserved throughout evolution. We highlight the conserved motifs of each family and characteristic domains of the detected families. Distribution of SF1/SF2 families show that Ski2-like, Lhr, Sfth and Rad3-like helicases are ubiquitous among archaeal genomes while the other families are specific to certain archaeal groups. We also report the presence of a novel SF2 helicase specific to archaea domain named Archaea Specific Helicase (ASH). Phylogenetic analysis indicated that ASH has evolved in Euryarchaeota and is evolutionary related to the Ski2-like family with specific characteristic domains. Our study provides the first exhaustive analysis of SF1 and SF2 helicases from archaea. It expands the variety of SF1 and SF2 archaeal helicases known to exist to date and provides a starting point for new biochemical and genetic studies needed to validate their biological functions.
Collapse
Affiliation(s)
- Hala Chamieh
- Faculty of Science, Department of Biology, Lebanese University, Tripoli, Lebanon; Centre AZM pour la Recherche en Biotechnologie et ses Applications, Laboratoire de Biotechnologie Appliquée, Ecole Doctorale Sciences et Technologies, Mitein Street, Tripoli, Lebanon.
| | - Hiba Ibrahim
- Faculty of Science, Department of Environmental and Biological Science, Beirut Arab University, Tripoli, Lebanon
| | - Juliana Kozah
- Faculty of Science, Université Saint Esprit de Kaslik, Jounieh, Lebanon
| |
Collapse
|
11
|
Abstract
Understanding how frequently spontaneous replication arrests occur and how archaea deal with these arrests are very interesting and challenging research topics. Here we will described how genetic and imaging studies have revealed the central role of the archaeal helicase/nuclease Hef belonging to the XPF/MUS81/FANCM family of endonucleases in repair of arrested replication forks. Special focus will be on description of a recently developed combination of genetic and imaging tools to study the dynamic localization of a functional Hef::GFP (Green Fluorescent Protein) fusion protein in the living cells of halophilic archaea Haloferax volcanii. As Archaea provide an excellent and unique model for understanding how DNA replication is regulated to allow replication of a circular DNA molecule either from single or multiple replication origins, we will also summarize recent studies that have revealed peculiar features regarding DNA replication, particularly in halophilic archaea. We strongly believe that fundamental knowledge of our on-going studies will shed light on the evolutionary history of the DNA replication machinery and will help to establish general rules concerning replication restart and the key role of recombination proteins not only in bacteria, yeast and higher eukaryotes but also in archaea.
Collapse
|
12
|
Gwon GH, Jo A, Baek K, Jin KS, Fu Y, Lee JB, Kim Y, Cho Y. Crystal structures of the structure-selective nuclease Mus81-Eme1 bound to flap DNA substrates. EMBO J 2014; 33:1061-72. [PMID: 24733841 DOI: 10.1002/embj.201487820] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Mus81-Eme1 complex is a structure-selective endonuclease with a critical role in the resolution of recombination intermediates during DNA repair after interstrand cross-links, replication fork collapse, or double-strand breaks. To explain the molecular basis of 3' flap substrate recognition and cleavage mechanism by Mus81-Eme1, we determined crystal structures of human Mus81-Eme1 bound to various flap DNA substrates. Mus81-Eme1 undergoes gross substrate-induced conformational changes that reveal two key features: (i) a hydrophobic wedge of Mus81 that separates pre- and post-nick duplex DNA and (ii) a "5' end binding pocket" that hosts the 5' nicked end of post-nick DNA. These features are crucial for comprehensive protein-DNA interaction, sharp bending of the 3' flap DNA substrate, and incision strand placement at the active site. While Mus81-Eme1 unexpectedly shares several common features with members of the 5' flap nuclease family, the combined structural, biochemical, and biophysical analyses explain why Mus81-Eme1 preferentially cleaves 3' flap DNA substrates with 5' nicked ends.
Collapse
Affiliation(s)
- Gwang Hyeon Gwon
- Department of Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Fadden AJ, Schalbetter S, Bowles M, Harris R, Lally J, Carr AM, McDonald NQ. A winged helix domain in human MUS81 binds DNA and modulates the endonuclease activity of MUS81 complexes. Nucleic Acids Res 2013; 41:9741-52. [PMID: 23982516 PMCID: PMC3834828 DOI: 10.1093/nar/gkt760] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 07/05/2013] [Accepted: 07/31/2013] [Indexed: 11/14/2022] Open
Abstract
The MUS81-EME1 endonuclease maintains metazoan genomic integrity by cleaving branched DNA structures that arise during the resolution of recombination intermediates. In humans, MUS81 also forms a poorly characterized complex with EME2. Here, we identify and determine the structure of a winged helix (WH) domain from human MUS81, which binds DNA. WH domain mutations greatly reduce binding of the isolated domain to DNA and impact on incision activity of MUS81-EME1/EME2 complexes. Deletion of the WH domain reduces the endonuclease activity of both MUS81-EME1 and MUS81-EME2 complexes, and incisions made by MUS81-EME2 are made closer to the junction on substrates containing a downstream duplex, such as fork structures and nicked Holliday junctions. WH domain mutation or deletion in Schizosaccharomyces pombe phenocopies the DNA-damage sensitivity of strains deleted for mus81. Our results indicate an important role for the WH domain in both yeast and human MUS81 complexes.
Collapse
Affiliation(s)
- Andrew J. Fadden
- Structural Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK, Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK and Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Stephanie Schalbetter
- Structural Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK, Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK and Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Maureen Bowles
- Structural Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK, Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK and Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Richard Harris
- Structural Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK, Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK and Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - John Lally
- Structural Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK, Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK and Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Antony M. Carr
- Structural Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK, Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK and Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Neil Q. McDonald
- Structural Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK, Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK and Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
14
|
Wienk H, Slootweg JC, Speerstra S, Kaptein R, Boelens R, Folkers GE. The Fanconi anemia associated protein FAAP24 uses two substrate specific binding surfaces for DNA recognition. Nucleic Acids Res 2013; 41:6739-49. [PMID: 23661679 PMCID: PMC3711432 DOI: 10.1093/nar/gkt354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL is specifically recognized by the Fanconi anemia proteins FANCM and FAAP24, we determined the structure of the HhH domain of FAAP24. Although it resembles other HhH domains, the FAAP24 domain contains a canonical hairpin motif followed by distorted motif. The HhH domain can bind various DNA substrates; using nuclear magnetic resonance titration experiments, we demonstrate that the canonical HhH motif is required for double-stranded DNA (dsDNA) binding, whereas the unstructured N-terminus can interact with single-stranded DNA. Both DNA binding surfaces are used for binding to ICL-like single/double-strand junction-containing DNA substrates. A structural model for FAAP24 bound to dsDNA has been made based on homology with the translesion polymerase iota. Site-directed mutagenesis, sequence conservation and charge distribution support the dsDNA-binding model. Analogous to other HhH domain-containing proteins, we suggest that multiple FAAP24 regions together contribute to binding to single/double-strand junction, which could contribute to specificity in ICL DNA recognition.
Collapse
Affiliation(s)
- Hans Wienk
- Bijvoet Center For Biomolecular Research, NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Su Y, Orelli B, Madireddy A, Niedernhofer LJ, Schärer OD. Multiple DNA binding domains mediate the function of the ERCC1-XPF protein in nucleotide excision repair. J Biol Chem 2012; 287:21846-55. [PMID: 22547097 DOI: 10.1074/jbc.m111.337899] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERCC1-XPF is a heterodimeric, structure-specific endonuclease that cleaves single-stranded/double-stranded DNA junctions and has roles in nucleotide excision repair (NER), interstrand crosslink (ICL) repair, homologous recombination, and possibly other pathways. In NER, ERCC1-XPF is recruited to DNA lesions by interaction with XPA and incises the DNA 5' to the lesion. We studied the role of the four C-terminal DNA binding domains in mediating NER activity and cleavage of model substrates. We found that mutations in the helix-hairpin-helix domain of ERCC1 and the nuclease domain of XPF abolished cleavage activity on model substrates. Interestingly, mutations in multiple DNA binding domains were needed to significantly diminish NER activity in vitro and in vivo, suggesting that interactions with proteins in the NER incision complex can compensate for some defects in DNA binding. Mutations in DNA binding domains of ERCC1-XPF render cells more sensitive to the crosslinking agent mitomycin C than to ultraviolet radiation, suggesting that the ICL repair function of ERCC1-XPF requires tighter substrate binding than NER. Our studies show that multiple domains of ERCC1-XPF contribute to substrate binding, and are consistent with models of NER suggesting that multiple weak protein-DNA and protein-protein interactions drive progression through the pathway. Our findings are discussed in the context of structural studies of individual domains of ERCC1-XPF and of its role in multiple DNA repair pathways.
Collapse
Affiliation(s)
- Yan Su
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | | | | | | | | |
Collapse
|
16
|
Bowles M, Lally J, Fadden AJ, Mouilleron S, Hammonds T, McDonald NQ. Fluorescence-based incision assay for human XPF-ERCC1 activity identifies important elements of DNA junction recognition. Nucleic Acids Res 2012; 40:e101. [PMID: 22457069 PMCID: PMC3401468 DOI: 10.1093/nar/gks284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The structure-specific endonuclease activity of the human XPF–ERCC1 complex is essential for a number of DNA processing mechanisms that help to maintain genomic integrity. XPF–ERCC1 cleaves DNA structures such as stem–loops, bubbles or flaps in one strand of a duplex where there is at least one downstream single strand. Here, we define the minimal substrate requirements for cleavage of stem–loop substrates allowing us to develop a real-time fluorescence-based assay to measure endonuclease activity. Using this assay, we show that changes in the sequence of the duplex upstream of the incision site results in up to 100-fold variation in cleavage rate of a stem-loop substrate by XPF-ERCC1. XPF–ERCC1 has a preference for cleaving the phosphodiester bond positioned on the 3′-side of a T or a U, which is flanked by an upstream T or U suggesting that a T/U pocket may exist within the catalytic domain. In addition to an endonuclease domain and tandem helix–hairpin–helix domains, XPF has a divergent and inactive DEAH helicase-like domain (HLD). We show that deletion of HLD eliminates endonuclease activity and demonstrate that purified recombinant XPF–HLD shows a preference for binding stem–loop structures over single strand or duplex alone, suggesting a role for the HLD in initial structure recognition. Together our data describe features of XPF–ERCC1 and an accepted model substrate that are important for recognition and efficient incision activity.
Collapse
Affiliation(s)
- Maureen Bowles
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY, UK
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Nucleotide excision repair (NER) is a DNA repair pathway that is responsible for removing a variety of lesions caused by harmful UV light, chemical carcinogens, and environmental mutagens from DNA. NER involves the concerted action of over 30 proteins that sequentially recognize a lesion, excise it in the form of an oligonucleotide, and fill in the resulting gap by repair synthesis. ERCC1-XPF and XPG are structure-specific endonucleases responsible for carrying out the incisions 5' and 3' to the damage respectively, culminating in the release of the damaged oligonucleotide. This review focuses on the recent work that led to a greater understanding of how the activities of ERCC1-XPF and XPG are regulated in NER to prevent unwanted cuts in DNA or the persistence of gaps after incision that could result in harmful, cytotoxic DNA structures.
Collapse
Affiliation(s)
| | - Barbara Orelli
- Department of Pharmacological Sciences, Stony Brook, NY 11794-3400
| | - Orlando D. Schärer
- Department of Pharmacological Sciences, Stony Brook, NY 11794-3400
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400
| |
Collapse
|
18
|
Structure and function of a novel endonuclease acting on branched DNA substrates. Biochem Soc Trans 2011; 39:145-9. [PMID: 21265762 DOI: 10.1042/bst0390145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Branched DNA structures that occur during DNA repair and recombination must be efficiently processed by structure-specific endonucleases in order to avoid cell death. In the present paper, we summarize our screen for new interaction partners for the archaeal replication clamp that led to the functional characterization of a novel endonuclease family, dubbed NucS. Structural analyses of Pyrococcus abyssi NucS revealed an unexpected binding site for ssDNA (single-stranded DNA) that directs, together with the replication clamp, the nuclease activity of this protein towards ssDNA-dsDNA (double-stranded DNA) junctions. Our studies suggest that understanding the detailed architecture and dynamic behaviour of the NucS (nuclease specific for ssDNA)-PCNA (proliferating-cell nuclear antigen) complex with DNA will be crucial for identification of its physiologically relevant activities.
Collapse
|
19
|
Rouillon C, White MF. The evolution and mechanisms of nucleotide excision repair proteins. Res Microbiol 2010; 162:19-26. [PMID: 20863882 DOI: 10.1016/j.resmic.2010.09.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
Abstract
Nucleotide excision repair (NER) pathways remove a wide variety of bulky and helix-distorting lesions from DNA, and involve the coordinated action of damage detection, helicase and nuclease proteins. Most archaeal genomes encode eucaryal-type NER proteins, including the helicases XPB and XPD and nuclease XPF. These have been a valuable resource, yielding important mechanistic and structural insights relevant to human health. However, the nature of archaeal NER remains very uncertain. Here we review recent studies of archaeal NER proteins relevant to both eucaryal and archaeal NER systems and the evolution of repair pathways.
Collapse
Affiliation(s)
- Christophe Rouillon
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife KY169ST, UK
| | | |
Collapse
|
20
|
Alkyltransferase-like proteins: molecular switches between DNA repair pathways. Cell Mol Life Sci 2010; 67:3749-62. [PMID: 20502938 DOI: 10.1007/s00018-010-0405-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/04/2010] [Accepted: 05/10/2010] [Indexed: 01/08/2023]
Abstract
Alkyltransferase-like proteins (ATLs) play a role in the protection of cells from the biological effects of DNA alkylation damage. Although ATLs share functional motifs with the DNA repair protein and cancer chemotherapy target O⁶-alkylguanine-DNA alkyltransferase, they lack the reactive cysteine residue required for alkyltransferase activity, so its mechanism for cell protection was previously unknown. Here we review recent advances in unraveling the enigmatic cellular protection provided by ATLs against the deleterious effects of DNA alkylation damage. We discuss exciting new evidence that ATLs aid in the repair of DNA O⁶-alkylguanine lesions through a novel repair cross-talk between DNA-alkylation base damage responses and the DNA nucleotide excision repair pathway.
Collapse
|
21
|
Abstract
FANCM and its relatives, Hef, Mph1 and Fml1, are DNA junction-specific helicases/translocases that target and process perturbed replication forks and intermediates of homologous recombination. They have variously been implicated in promoting the activation of the S-phase checkpoint, recruitment of the Fanconi Anemia Core Complex to sites of DNA damage, crossover avoidance during DNA double-strand break repair by homologous recombination, and the replicative bypass of DNA lesions by template switching. This review summarises our current understanding of the biochemical activities and biological functions of the FANCM family.
Collapse
Affiliation(s)
- Matthew C Whitby
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
22
|
Hutton RD, Craggs TD, White MF, Penedo JC. PCNA and XPF cooperate to distort DNA substrates. Nucleic Acids Res 2009; 38:1664-75. [PMID: 20008103 PMCID: PMC2836553 DOI: 10.1093/nar/gkp1104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
XPF is a structure-specific endonuclease that preferentially cleaves 3′ DNA flaps during a variety of repair processes. The crystal structure of a crenarchaeal XPF protein bound to a DNA duplex yielded insights into how XPF might recognise branched DNA structures, and recent kinetic data have demonstrated that the sliding clamp PCNA acts as an essential cofactor, possibly by allowing XPF to distort the DNA structure into a proper conformation for efficient cleavage to occur. Here, we investigate the solution structure of the 3′-flap substrate bound to XPF in the presence and absence of PCNA using intramolecular Förster resonance energy transfer (FRET). We demonstrate that recognition of the flap substrate by XPF involves major conformational changes of the DNA, including a 90° kink of the DNA duplex and organization of the single-stranded flap. In the presence of PCNA, there is a further substantial reorganization of the flap substrate bound to XPF, providing a structural basis for the observation that PCNA has an essential catalytic role in this system. The wider implications of these observations for the plethora of PCNA-dependent enzymes are discussed.
Collapse
Affiliation(s)
- Richard D Hutton
- Centre for Biomolecular Sciences and School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
| | | | | | | |
Collapse
|
23
|
Orelli B, McClendon TB, Tsodikov OV, Ellenberger T, Niedernhofer LJ, Schärer OD. The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways. J Biol Chem 2009; 285:3705-3712. [PMID: 19940136 DOI: 10.1074/jbc.m109.067538] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The endonuclease ERCC1-XPF incises the damaged strand of DNA 5' to a lesion during nucleotide excision repair (NER) and has additional, poorly characterized functions in interstrand cross-link repair, double-strand break repair, and homologous recombination. XPA, another key factor in NER, interacts with ERCC1 and recruits it to sites of damage. We identified ERCC1 residues that are critical for the interaction with XPA and assessed their importance for NER in vitro and in vivo. Mutation of two conserved residues (Asn-110 and Tyr-145) located in the XPA-binding site of ERCC1 dramatically affected NER but not nuclease activity on model DNA substrates. In ERCC1-deficient cells expressing ERCC1(N110A/Y145A), the nuclease was not recruited to sites of UV damage. The repair of UV-induced (6-4)photoproducts was severely impaired in these cells, and they were hypersensitive to UV irradiation. Remarkably, the ERCC1(N110A/Y145A) protein rescues the sensitivity of ERCC1-deficient cells to cross-linking agents. Our studies suggest that ERCC1-XPF engages in different repair pathways through specific protein-protein interactions and that these functions can be separated through the selective disruption of these interactions. We discuss the impact of these findings for understanding how ERCC1 contributes to resistance of tumor cells to therapeutic agents such as cisplatin.
Collapse
Affiliation(s)
- Barbara Orelli
- From the Department of Pharmacological Sciences and Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - T Brooke McClendon
- the Department of Microbiology and Molecular Genetics and Cancer Institute, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-1863
| | - Oleg V Tsodikov
- the Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-2676, and
| | - Tom Ellenberger
- the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Laura J Niedernhofer
- the Department of Microbiology and Molecular Genetics and Cancer Institute, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-1863
| | - Orlando D Schärer
- From the Department of Pharmacological Sciences and Chemistry, Stony Brook University, Stony Brook, New York 11794-3400.
| |
Collapse
|
24
|
Ren B, Kühn J, Meslet-Cladiere L, Briffotaux J, Norais C, Lavigne R, Flament D, Ladenstein R, Myllykallio H. Structure and function of a novel endonuclease acting on branched DNA substrates. EMBO J 2009; 28:2479-89. [PMID: 19609302 PMCID: PMC2735178 DOI: 10.1038/emboj.2009.192] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 06/18/2009] [Indexed: 11/09/2022] Open
Abstract
We show that Pyrococcus abyssi PAB2263 (dubbed NucS (nuclease for ss DNA) is a novel archaeal endonuclease that interacts with the replication clamp PCNA. Structural determination of P. abyssi NucS revealed a two-domain dumbbell-like structure that in overall does not resemble any known protein structure. Biochemical and structural studies indicate that NucS orthologues use a non-catalytic ssDNA-binding domain to regulate the cleavage activity at another site, thus resulting into the specific cleavage at double-stranded DNA (dsDNA)/ssDNA junctions on branched DNA substrates. Both 3' and 5' extremities of the ssDNA can be cleaved at the nuclease channel that is too narrow to accommodate duplex DNA. Altogether, our data suggest that NucS proteins constitute a new family of structure-specific DNA endonucleases that are widely distributed in archaea and in bacteria, including Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Bin Ren
- Center for Structural Biochemistry, Karolinska Institutet, NOVUM, Huddinge, Sweden
| | - Joelle Kühn
- Institute of Genetics and Microbiology, CNRS UMR8621, Universite Paris XI, Orsay, France
| | | | - Julien Briffotaux
- Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Laboratoire de Microbiologie des Environnements Extrêmes, Université de Bretagne Occidentale, UMR 6197, Plouzané, France
| | - Cedric Norais
- Institute of Genetics and Microbiology, CNRS UMR8621, Universite Paris XI, Orsay, France
| | - Regis Lavigne
- INSERM U625, Université Rennes I, Campus de Beaulieu, Rennes, France
| | - Didier Flament
- Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Laboratoire de Microbiologie des Environnements Extrêmes, Université de Bretagne Occidentale, UMR 6197, Plouzané, France
| | - Rudolf Ladenstein
- Center for Structural Biochemistry, Karolinska Institutet, NOVUM, Huddinge, Sweden
| | - Hannu Myllykallio
- Institute of Genetics and Microbiology, CNRS UMR8621, Universite Paris XI, Orsay, France
- Laboratoire d'Optique et Biosciences, INSERM U696, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7645, Ecole Polytechnique, Palaiseau Cedex, France
| |
Collapse
|
25
|
XPF/ERCC4 and ERCC1: their products and biological roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009. [PMID: 19181112 DOI: 10.1007/978-0-387-09599-8_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
ERCC4 is the gene mutated in XPF cells and also in rodent cells representing the mutant complementation groups ERCC4 and ERCC 11. The protein functions principally as a complex with ERCC1 in a diversity of biological pathways that include NER, ICL repair, telomere maintenance and immunoglobulin switching. Sorting out these roles is an exciting and challenging problem and many important questions remain to be answered. The ERCC1/ERCC4 complex is conserved across most species presenting an opportunity to examine some functions in model organisms where mutants can be more readily generated and phenotypes more quickly assessed.
Collapse
|
26
|
Biswas T, Pero JM, Joseph CG, Tsodikov OV. DNA-Dependent ATPase Activity of Bacterial XPB Helicases. Biochemistry 2009; 48:2839-48. [DOI: 10.1021/bi8022416] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tapan Biswas
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065
| | - Jessica M. Pero
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065
| | - Caleb G. Joseph
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065
| | - Oleg V. Tsodikov
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065
| |
Collapse
|
27
|
Oyama T, Oka H, Mayanagi K, Shirai T, Matoba K, Fujikane R, Ishino Y, Morikawa K. Atomic structures and functional implications of the archaeal RecQ-like helicase Hjm. BMC STRUCTURAL BIOLOGY 2009; 9:2. [PMID: 19159486 PMCID: PMC2636818 DOI: 10.1186/1472-6807-9-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Accepted: 01/22/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Pyrococcus furiosus Hjm (PfuHjm) is a structure-specific DNA helicase that was originally identified by in vitro screening for Holliday junction migration activity. It belongs to helicase superfamily 2, and shares homology with the human DNA polymerase Theta (PolTheta), HEL308, and Drosophila Mus308 proteins, which are involved in DNA repair. Previous biochemical and genetic analyses revealed that PfuHjm preferentially binds to fork-related Y-structured DNAs and unwinds their double-stranded regions, suggesting that this helicase is a functional counterpart of the bacterial RecQ helicase, which is essential for genome maintenance. Elucidation of the DNA unwinding and translocation mechanisms by PfuHjm will require its three-dimensional structure at atomic resolution. RESULTS We determined the crystal structures of PfuHjm, in two apo-states and two nucleotide bound forms, at resolutions of 2.0-2.7 A. The overall structures and the local conformations around the nucleotide binding sites are almost the same, including the side-chain conformations, irrespective of the nucleotide-binding states. The architecture of Hjm was similar to that of Archaeoglobus fulgidus Hel308 complexed with DNA. An Hjm-DNA complex model, constructed by fitting the five domains of Hjm onto the corresponding Hel308 domains, indicated that the interaction of Hjm with DNA is similar to that of Hel308. Notably, sulphate ions bound to Hjm lie on the putative DNA binding surfaces. Electron microscopic analysis of an Hjm-DNA complex revealed substantial flexibility of the double stranded region of DNA, presumably due to particularly weak protein-DNA interactions. Our present structures allowed reasonable homology model building of the helicase region of human PolTheta, indicating the strong conformational conservation between archaea and eukarya. CONCLUSION The detailed comparison between our DNA-free PfuHjm structure and the structure of Hel308 complexed with DNA suggests similar DNA unwinding and translocation mechanisms, which could be generalized to all of the members in the same family. Structural comparison also implied a minor rearrangement of the five domains during DNA unwinding reaction. The unexpected small contact between the DNA duplex region and the enzyme appears to be advantageous for processive helicase activity.
Collapse
Affiliation(s)
- Takuji Oyama
- The Takara Bio Endowed Division, Institute for Protein Research, Osaka University, Open Laboratories of Advanced Bioscience and Biotechnology (OLABB), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
SHOC1, an XPF endonuclease-related protein, is essential for the formation of class I meiotic crossovers. Curr Biol 2008; 18:1432-7. [PMID: 18812090 DOI: 10.1016/j.cub.2008.08.041] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 11/21/2022]
Abstract
Crossovers (COs) are essential for the completion of meiosis in most species and lead to new allelic combinations in gametes. Two pathways of meiotic crossover formation have been distinguished. Class I COs, which are the major class of CO in budding yeast, mammals, Caenorhabditis elegans, and Arabidopsis, depend on a group of proteins called ZMM and rely on specific DNA structure intermediates that are processed to form COs. We identified a novel gene, SHOC1, involved in meiosis in Arabidopsis. Shoc1 mutants showed a striking reduction in the number of COs produced, a similar phenotype to the previously described Arabidopsis zmm mutants. The early steps of recombination, revealed by DMC1 foci, and completion of synapsis are not affected in shoc1 mutants. Double mutant analysis showed that SHOC1 acts in the same pathway as AtMSH5, a conserved member of the ZMM group. SHOC1 is thus a novel gene required for class I CO formation in Arabidopsis. Sequence similarity studies detected putative SHOC1 homologs in a large range of eukaryotes including human. SHOC1 appears to be related to the XPF endonuclease protein family, which suggests that it is directly involved in the maturation of DNA intermediates that lead to COs.
Collapse
|
29
|
McCauley MJ, Shokri L, Sefcikova J, Venclovas Č, Beuning PJ, Williams MC. Distinct double- and single-stranded DNA binding of E. coli replicative DNA polymerase III alpha subunit. ACS Chem Biol 2008; 3:577-87. [PMID: 18652472 PMCID: PMC2665888 DOI: 10.1021/cb8001107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The α subunit of the replicative DNA polymerase III of Escherichia coli is the active polymerase of the 10-subunit bacterial replicase. The C-terminal region of the α subunit is predicted to contain an oligonucleotide binding (OB-fold) domain. In a series of optical tweezers experiments, the α subunit is shown to have an affinity for both double- and single-stranded DNA, in distinct subdomains of the protein. The portion of the protein that binds to double-stranded DNA stabilizes the DNA helix, because protein binding must be at least partially disrupted with increasing force to melt DNA. Upon relaxation, the DNA fails to fully reanneal, because bound protein interferes with the reformation of the double helix. In addition, the single-stranded DNA binding component appears to be passive, as the protein does not facilitate melting but instead binds to single-stranded regions already separated by force. From DNA stretching measurements we determine equilibrium association constants for the binding of α and several fragments to dsDNA and ssDNA. The results demonstrate that ssDNA binding is localized to the C-terminal region that contains the OB-fold domain, while a tandem helix-hairpin-helix (HhH)2 motif contributes significantly to dsDNA binding.
Collapse
Affiliation(s)
- Micah J. McCauley
- Department of Physics, Northeastern University, Boston, Massachusetts, 02115
| | - Leila Shokri
- Department of Physics, Northeastern University, Boston, Massachusetts, 02115
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
| | - Jana Sefcikova
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
| | - Česlovas Venclovas
- Laboratory of Bioinformatics, Institute of Biotechnology, Vilnius LT-02241, Lithuania
| | - Penny J. Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
- Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, Massachusetts, 02115
- Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115
| |
Collapse
|
30
|
Ciccia A, McDonald N, West SC. Structural and functional relationships of the XPF/MUS81 family of proteins. Annu Rev Biochem 2008; 77:259-87. [PMID: 18518821 DOI: 10.1146/annurev.biochem.77.070306.102408] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteins belonging to the XPF/MUS81 family play important roles in the repair of DNA lesions caused by UV-light or DNA cross-linking agents. Most eukaryotes have four family members that assemble into two distinct heterodimeric complexes, XPF-ERCC1 and MUS81-EME1. Each complex contains one catalytic and one noncatalytic subunit and exhibits endonuclease activity with a variety of 3'-flap or fork DNA structures. The catalytic subunits share a characteristic core containing an excision repair cross complementation group 4 (ERCC4) nuclease domain and a tandem helix-hairpin-helix (HhH)(2) domain. Diverged domains are present in the noncatalytic subunits and may be required for substrate targeting. Vertebrates possess two additional family members, FANCM and Fanconi anemia-associated protein 24 kDa (FAAP24), which possess inactive nuclease domains. Instead, FANCM contains a functional Superfamily 2 (SF2) helicase domain that is required for DNA translocation. Determining how these enzymes recognize specific DNA substrates and promote key repair reactions is an important challenge for the future.
Collapse
Affiliation(s)
- Alberto Ciccia
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, Hertfordshire, United Kingdom
| | | | | |
Collapse
|
31
|
Chang JH, Kim JJ, Choi JM, Lee JH, Cho Y. Crystal structure of the Mus81-Eme1 complex. Genes Dev 2008; 22:1093-106. [PMID: 18413719 PMCID: PMC2335329 DOI: 10.1101/gad.1618708] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 02/22/2008] [Indexed: 11/25/2022]
Abstract
The Mus81-Eme1 complex is a structure-specific endonuclease that plays an important role in rescuing stalled replication forks and resolving the meiotic recombination intermediates in eukaryotes. We have determined the crystal structure of the Mus81-Eme1 complex. Both Mus81 and Eme1 consist of a central nuclease domain, two repeats of the helix-hairpin-helix (HhH) motif at their C-terminal region, and a linker helix. While each domain structure resembles archaeal XPF homologs, the overall structure is significantly different from those due to the structure of a linker helix. We show that a flexible intradomain linker that formed with 36 residues in the nuclease domain of Eme1 is essential for the recognition of DNA. We identified several basic residues lining the outer surface of the active site cleft of Mus81 that are involved in the interaction with a flexible arm of a nicked Holliday junction (HJ). These interactions might contribute to the optimal positioning of the opposite junction across the nick into the catalytic site, which provided the basis for the "nick and counternick" mechanism of Mus81-Eme1 and for the nicked HJ to be the favored in vitro substrate of this enzyme.
Collapse
Affiliation(s)
- Jeong Ho Chang
- National Creative Initiatives for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Pohang, KyungBook 790-784, South Korea
| | - Jeong Joo Kim
- National Creative Initiatives for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Pohang, KyungBook 790-784, South Korea
| | - Jung Min Choi
- National Creative Initiatives for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Pohang, KyungBook 790-784, South Korea
| | - Jung Hoon Lee
- National Creative Initiatives for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Pohang, KyungBook 790-784, South Korea
| | - Yunje Cho
- National Creative Initiatives for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Pohang, KyungBook 790-784, South Korea
| |
Collapse
|
32
|
Das D, Tripsianes K, Jaspers NGJ, Hoeijmakers JHJ, Kaptein R, Boelens R, Folkers GE. The HhH domain of the human DNA repair protein XPF forms stable homodimers. Proteins 2008; 70:1551-63. [PMID: 17912758 DOI: 10.1002/prot.21635] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human XPF-ERCC1 protein complex plays an essential role in nucleotide excision repair by catalysing positioned nicking of a DNA strand at the 5' side of the damage. We have recently solved the structure of the heterodimeric complex of the C-terminal domains of XPF and ERCC1 (Tripsianes et al., Structure 2005;13:1849-1858). We found that this complex comprises a pseudo twofold symmetry axis and that the helix-hairpin-helix motif of ERCC1 is required for DNA binding, whereas the corresponding domain of XPF is functioning as a scaffold for complex formation with ERCC1. Despite the functional importance of heterodimerization, the C-terminal domain of XPF can also form homodimers in vitro. We here compare the stabilities of homodimeric and heterodimeric complexes of the C-terminal domains of XPF and ERCC1. The higher stability of the XPF HhH complexes under various experimental conditions, determined using CD and NMR spectroscopy and mass spectrometry, is well explained by the structural differences that exist between the HhH domains of the two complexes. The XPF HhH homodimer has a larger interaction interface, aromatic stacking interactions, and additional hydrogen bond contacts as compared to the XPF/ERCC1 HhH complex, which accounts for its higher stability.
Collapse
Affiliation(s)
- Devashish Das
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA. EMBO J 2007; 26:4768-76. [PMID: 17948053 DOI: 10.1038/sj.emboj.7601894] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Accepted: 09/25/2007] [Indexed: 12/16/2022] Open
Abstract
The nucleotide excision repair (NER) pathway corrects DNA damage caused by sunlight, environmental mutagens and certain antitumor agents. This multistep DNA repair reaction operates by the sequential assembly of protein factors at sites of DNA damage. The efficient recognition of DNA damage and its repair are orchestrated by specific protein-protein and protein-DNA interactions within NER complexes. We have investigated an essential protein-protein interaction of the NER pathway, the binding of the XPA protein to the ERCC1 subunit of the repair endonuclease ERCC1-XPF. The structure of ERCC1 in complex with an XPA peptide shows that only a small region of XPA interacts with ERCC1 to form a stable complex exhibiting submicromolar binding affinity. However, this XPA peptide is a potent inhibitor of NER activity in a cell-free assay, blocking the excision of a cisplatin adduct from DNA. The structure of the peptide inhibitor bound to its target site reveals a binding interface that is amenable to the development of small molecule peptidomimetics that could be used to modulate NER repair activities in vivo.
Collapse
|
34
|
|
35
|
Tripsianes K, Folkers GE, Zheng C, Das D, Grinstead JS, Kaptein R, Boelens R. Analysis of the XPA and ssDNA-binding surfaces on the central domain of human ERCC1 reveals evidence for subfunctionalization. Nucleic Acids Res 2007; 35:5789-98. [PMID: 17720715 PMCID: PMC2034474 DOI: 10.1093/nar/gkm503] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human ERCC1/XPF is a structure-specific endonuclease involved in multiple DNA repair pathways. We present the solution structure of the non-catalytic ERCC1 central domain. Although this domain shows structural homology with the catalytically active XPF nuclease domain, functional investigation reveals a completely distinct function for the ERCC1 central domain by performing interactions with both XPA and single-stranded DNA. These interactions are non-competitive and can occur simultaneously through distinct interaction surfaces. Interestingly, the XPA binding by ERCC1 and the catalytic function of XPF are dependent on a structurally homologous region of the two proteins. Although these regions are strictly conserved in each protein family, amino acid composition and surface characteristics are distinct. We discuss the possibility that after XPF gene duplication, the redundant ERCC1 central domain acquired novel functions, thereby increasing the fidelity of eukaryotic DNA repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rolf Boelens
- *To whom correspondence should be addressed. +31 30 2534035+31 30 2537623
| |
Collapse
|
36
|
Seki S, Ohzeki M, Uchida A, Hirano S, Matsushita N, Kitao H, Oda T, Yamashita T, Kashihara N, Tsubahara A, Takata M, Ishiai M. A requirement of FancL and FancD2 monoubiquitination in DNA repair. Genes Cells 2007; 12:299-310. [PMID: 17352736 DOI: 10.1111/j.1365-2443.2007.01054.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rare hereditary disorder Fanconi anemia (FA) can be caused by mutations in components of the FA core complex (FancA/B/C/E/F/G/L/M), a key regulator FancD2, the breast cancer susceptibility protein BRCA2/FancD1, or the newly identified FancJ/BRIP1 helicase. By performing yeast two-hybrid (Y2H) screens using N-terminal chicken (ch) FancD2 as a bait, we have identified chFancL, the likely ubiquitin E3 ligase subunit of the FA core complex. We also found that ectopically expressed FancD2 and FancL co-immunoprecipitated in 293T cells, and this interaction was dependent on the PHD domain of FancL. FANCL-disrupted chicken DT40 cells displayed defects in both FancD2 monoubiquitination and focus formation. Importantly, cell lines lacking the FANCL or FANCD2 genes, or carrying a "knock-in" mutation of the FancD2 monoubiquitination site (where the Lys 563 residue is changed to Arg), displayed quantitatively identical defects in the repair of I-SceI-induced chromosomal breaks by homologous recombination (HR). These data establish the role of FANCL and FancD2 monoubiquitination in HR repair.
Collapse
Affiliation(s)
- Sohsuke Seki
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fujikane R, Shinagawa H, Ishino Y. The archaeal Hjm helicase has recQ-like functions, and may be involved in repair of stalled replication fork. Genes Cells 2007; 11:99-110. [PMID: 16436047 DOI: 10.1111/j.1365-2443.2006.00925.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The archaeal Hjm is a structure-specific DNA helicase, which was originally identified in the hyperthermophilic archaeon, Pyrococcus furiosus, by in vitro screening for Holliday junction migration activity. Further biochemical analyses of the Hjm protein from P. furiosus showed that this protein preferably binds to fork-related Y-structured DNAs and unwinds their double-stranded regions in vitro, just like the E. coli RecQ protein. Furthermore, genetic analyses showed that Hjm produced in E. coli cells partially complemented the defect of functions of RecQ in a recQ mutant E. coli strain. These results suggest that Hjm may be a functional counterpart of RecQ in Archaea, in which it is necessary for the maintenance of genome integrity, although the amino acid sequences are not conserved. The functional interaction of Hjm with PCNA for its helicase activity further suggests that the Hjm works at stalled replication forks, as a member of the reconstituted replisomes to restart replication.
Collapse
Affiliation(s)
- Ryosuke Fujikane
- Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka-shi, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
38
|
Cavero S, Chahwan C, Russell P. Xlf1 is required for DNA repair by nonhomologous end joining in Schizosaccharomyces pombe. Genetics 2007; 175:963-7. [PMID: 17151234 PMCID: PMC1800613 DOI: 10.1534/genetics.106.067850] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Accepted: 11/07/2006] [Indexed: 11/18/2022] Open
Abstract
The accurate repair of DNA double-strand breaks is essential for cell survival and maintenance of genome integrity. Here we describe xlf1+, a gene in the fission yeast Schizosaccharomyces pombe that is required for repair of double-strand breaks by nonhomologous end joining during G1 phase of the cell cycle. Xlf1 is the ortholog of budding yeast Nej1 and human XLF/Cernunnos proteins.
Collapse
Affiliation(s)
- Santiago Cavero
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 90237, USA
| | | | | |
Collapse
|
39
|
Ishino Y, Nishino T, Morikawa K. Mechanisms of maintaining genetic stability by homologous recombination. Chem Rev 2006; 106:324-39. [PMID: 16464008 DOI: 10.1021/cr0404803] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshizumi Ishino
- Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukukoka-shi, Fukuoka, Japan.
| | | | | |
Collapse
|
40
|
Nishino T, Ishino Y, Morikawa K. Structure-specific DNA nucleases: structural basis for 3D-scissors. Curr Opin Struct Biol 2006; 16:60-7. [PMID: 16439110 DOI: 10.1016/j.sbi.2006.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 01/10/2006] [Indexed: 11/16/2022]
Abstract
Structure-specific DNA nucleases play important roles in various DNA transactions such as DNA replication, repair and recombination. These enzymes recognize loops and branched DNA structures. Recent structural studies have provided detailed insights into the functions of these enzymes. Structures of Holliday junction resolvase revealed that nucleases are broadly diverged in the way in which they fold, however, are required to form homodimers with large basic patches of protein surfaces, which are complementary to DNA tertiary structures. Many nucleases maintain structure-specific recognition modes, which involve particular domain arrangements through conformal changes of flexible loops or have a separate DNA binding domain. Nucleases, such as FEN-1 and archaeal XPF, are bound to proliferating cell nuclear antigen through a common motif, and thereby actualize their inherent activities.
Collapse
Affiliation(s)
- Tatsuya Nishino
- Biomolecular Engineering Research Institute (BERI), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | |
Collapse
|
41
|
Sobeck A, Stone S, Costanzo V, de Graaf B, Reuter T, de Winter J, Wallisch M, Akkari Y, Olson S, Wang W, Joenje H, Christian JL, Lupardus PJ, Cimprich KA, Gautier J, Hoatlin ME. Fanconi anemia proteins are required to prevent accumulation of replication-associated DNA double-strand breaks. Mol Cell Biol 2006; 26:425-37. [PMID: 16382135 PMCID: PMC1346898 DOI: 10.1128/mcb.26.2.425-437.2006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 07/20/2005] [Accepted: 10/13/2005] [Indexed: 12/19/2022] Open
Abstract
Fanconi anemia (FA) is a multigene cancer susceptibility disorder characterized by cellular hypersensitivity to DNA interstrand cross-linking agents such as mitomycin C (MMC). FA proteins are suspected to function at the interface between cell cycle checkpoints, DNA repair, and DNA replication. Using replicating extracts from Xenopus eggs, we developed cell-free assays for FA proteins (xFA). Recruitment of the xFA core complex and xFANCD2 to chromatin is strictly dependent on replication initiation, even in the presence of MMC indicating specific recruitment to DNA lesions encountered by the replication machinery. The increase in xFA chromatin binding following treatment with MMC is part of a caffeine-sensitive S-phase checkpoint that is controlled by xATR. Recruitment of xFANCD2, but not xFANCA, is dependent on the xATR-xATR-interacting protein (xATRIP) complex. Immunodepletion of either xFANCA or xFANCD2 from egg extracts results in accumulation of chromosomal DNA breaks during replicative synthesis. Our results suggest coordinated chromatin recruitment of xFA proteins in response to replication-associated DNA lesions and indicate that xFA proteins function to prevent the accumulation of DNA breaks that arise during unperturbed replication.
Collapse
Affiliation(s)
- Alexandra Sobeck
- Division of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Roberts JA, White MF. DNA end-directed and processive nuclease activities of the archaeal XPF enzyme. Nucleic Acids Res 2005; 33:6662-70. [PMID: 16314325 PMCID: PMC1298930 DOI: 10.1093/nar/gki974] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The XPF/Mus81 family of structure-specific nucleases cleaves branched or nicked DNA substrates and are implicated in a wide range of DNA repair and recombination processes. The structure of the crenarchaeal XPF bound to a DNA duplex has revealed a plausible mechanism for DNA binding, involving DNA distortion into upstream and downstream duplexes engaged by the two helix–hairpin–helix domains that form a dimeric structure at the C-terminus of the enzyme. A flexible linker joins these to the dimeric nuclease domain, and a C-terminal motif interacts with the sliding clamp, which is essential for the activity of the enzyme. Here, we demonstrate the importance of the downstream duplex in directing the endonuclease activity of crenarchaeal XPF, which is similar to that of Mus81-Eme1, and suggest a mechanistic basis for this control. Furthermore, our data reveal that the enzyme can digest a nicked DNA strand processively over at least 60 nt in a 3′–5′ direction and can remove varied types of DNA lesions and blocked DNA termini. This in vitro activity suggests a potential role for crenarchaeal XPF in a variety of repair processes for which there are no clear pathways in archaea.
Collapse
Affiliation(s)
| | - Malcolm F. White
- To whom correspondence should be addressed. Tel: +44 1334 463432; Fax +44 1334 462595;
| |
Collapse
|