1
|
Chau AK, Bracken K, Bai L, Pham D, Good L, Maillard RA. Conformational changes in Protein Kinase A along its activation cycle are rooted in the folding energetics of cyclic-nucleotide binding domains. J Biol Chem 2023:104790. [PMID: 37150322 DOI: 10.1016/j.jbc.2023.104790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023] Open
Abstract
Cyclic-nucleotide binding (CNB) domains are structurally and evolutionarily conserved signaling modules that regulate proteins with diverse folds and functions. Despite a wealth of structural information, the mechanisms by which CNB domains couple cyclic-nucleotide binding to conformational changes involved in signal transduction remain unknown. Here we combined single-molecule and computational approaches to investigate the conformation and folding energetics of the two CNB domains of the regulatory subunit of protein kinase A (PKA). We found that the CNB domains exhibit different conformational and folding signatures in the apo state, when bound to cAMP, or when bound to the PKA catalytic subunit, underscoring their ability to adapt to different binding partners. Moreover, we show while the two CNB domains have near-identical structures, their thermodynamic coupling signatures are divergent, leading to distinct cAMP responses and differential mutational effects. Specifically, we demonstrate the mutation W260A exerts local and allosteric effects that impact multiple steps of the PKA activation cycle. Taken together, these results highlight the complex interplay between folding energetics, conformational dynamics, and thermodynamic signatures that underlies structurally conserved signaling modules in response to ligand binding and mutational effects.
Collapse
Affiliation(s)
- Amy K Chau
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Katherine Bracken
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Lihui Bai
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Dominic Pham
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Lydia Good
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Rodrigo A Maillard
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
2
|
Zhang J, Tang W, Bhatia NK, Xu Y, Paudyal N, Liu D, Kim S, Song R, XiangWei W, Shaulsky G, Myers SJ, Dobyns W, Jayaraman V, Traynelis SF, Yuan H, Bozarth X. A de novo GRIN1 Variant Associated With Myoclonus and Developmental Delay: From Molecular Mechanism to Rescue Pharmacology. Front Genet 2021; 12:694312. [PMID: 34413877 PMCID: PMC8369916 DOI: 10.3389/fgene.2021.694312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
N-Methyl-D-aspartate receptors (NMDARs) are highly expressed in brain and play important roles in neurodevelopment and various neuropathologic conditions. Here, we describe a new phenotype in an individual associated with a novel de novo deleterious variant in GRIN1 (c.1595C>A, p.Pro532His). The clinical phenotype is characterized with developmental encephalopathy, striking stimulus-sensitive myoclonus, and frontal lobe and frontal white matter hypoplasia, with no apparent seizures detected. NMDARs that contained the P532H within the glycine-binding domain of GluN1 with either the GluN2A or GluN2B subunits were evaluated for changes in their pharmacological and biophysical properties, which surprisingly revealed only modest changes in glycine potency but a significant decrease in glutamate potency, an increase in sensitivity to endogenous zinc inhibition, a decrease in response to maximally effective concentrations of agonists, a shortened synaptic-like response time course, a decreased channel open probability, and a reduced receptor cell surface expression. Molecule dynamics simulations suggested that the variant can lead to additional interactions across the dimer interface in the agonist-binding domains, resulting in a more open GluN2 agonist-binding domain cleft, which was also confirmed by single-molecule fluorescence resonance energy transfer measurements. Based on the functional deficits identified, several positive modulators were evaluated to explore potential rescue pharmacology.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Weiting Tang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Nidhi K. Bhatia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, TX, United States
| | - Yuchen Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Nabina Paudyal
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, TX, United States
| | - Ding Liu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, United States
| | - Rui Song
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenshu XiangWei
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Gil Shaulsky
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Scott J. Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, United States
| | - William Dobyns
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Vasanthi Jayaraman
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, TX, United States
| | - Stephen F. Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, United States
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, United States
| | - Xiuhua Bozarth
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Division of Pediatric Neurology, Department of Neurology, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Durham RJ, Paudyal N, Carrillo E, Bhatia NK, Maclean DM, Berka V, Dolino DM, Gorfe AA, Jayaraman V. Conformational spread and dynamics in allostery of NMDA receptors. Proc Natl Acad Sci U S A 2020; 117:3839-3847. [PMID: 32015122 PMCID: PMC7035515 DOI: 10.1073/pnas.1910950117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Allostery can be manifested as a combination of repression and activation in multidomain proteins allowing for fine tuning of regulatory mechanisms. Here we have used single molecule fluorescence resonance energy transfer (smFRET) and molecular dynamics simulations to study the mechanism of allostery underlying negative cooperativity between the two agonists glutamate and glycine in the NMDA receptor. These data show that binding of one agonist leads to conformational flexibility and an increase in conformational spread at the second agonist site. Mutational and cross-linking studies show that the dimer-dimer interface at the agonist-binding domain mediates the allostery underlying the negative cooperativity. smFRET on the transmembrane segments shows that they are tightly coupled in the unliganded and single agonist-bound form and only upon binding both agonists the transmembrane domain explores looser packing which would facilitate activation.
Collapse
Affiliation(s)
- Ryan J Durham
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Nabina Paudyal
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Nidhi Kaur Bhatia
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - David M Maclean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642
| | - Vladimir Berka
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Drew M Dolino
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Alemayehu A Gorfe
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030;
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
4
|
Switching of the folding-energy landscape governs the allosteric activation of protein kinase A. Proc Natl Acad Sci U S A 2018; 115:E7478-E7485. [PMID: 30038016 DOI: 10.1073/pnas.1802510115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein kinases are dynamic molecular switches that sample multiple conformational states. The regulatory subunit of PKA harbors two cAMP-binding domains [cyclic nucleotide-binding (CNB) domains] that oscillate between inactive and active conformations dependent on cAMP binding. The cooperative binding of cAMP to the CNB domains activates an allosteric interaction network that enables PKA to progress from the inactive to active conformation, unleashing the activity of the catalytic subunit. Despite its importance in the regulation of many biological processes, the molecular mechanism responsible for the observed cooperativity during the activation of PKA remains unclear. Here, we use optical tweezers to probe the folding cooperativity and energetics of domain communication between the cAMP-binding domains in the apo state and bound to the catalytic subunit. Our study provides direct evidence of a switch in the folding-energy landscape of the two CNB domains from energetically independent in the apo state to highly cooperative and energetically coupled in the presence of the catalytic subunit. Moreover, we show that destabilizing mutational effects in one CNB domain efficiently propagate to the other and decrease the folding cooperativity between them. Taken together, our results provide a thermodynamic foundation for the conformational plasticity that enables protein kinases to adapt and respond to signaling molecules.
Collapse
|
5
|
Electrostatic Switch Function in the Mechanism of Protein Kinase A I α Activation: Results of the Molecular Dynamics Simulation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5846073. [PMID: 28367443 PMCID: PMC5359514 DOI: 10.1155/2017/5846073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/22/2017] [Accepted: 02/07/2017] [Indexed: 11/17/2022]
Abstract
We used molecular dynamics to find the average path of the A-domain H → B conformational transition in protein kinase A Iα. We obtained thirteen productive trajectories and processed them sequentially using factor and cross-correlation analyses. The conformational transition is presented as partly deterministic sequence of six events. Event B represents H → B transition of the phosphate binding cassette. Main participants of this event form electrostatic switch cAMP(O6)–A202(N-H)–G199(C=O). Through this switch, cAMP transmits information about its binding to hydrophobic switch L203–Y229 and thus triggers conformational transition of A-domain. Events C and D consist in N3A-motif displacement towards phosphate binding cassette and B/C-helix rotation. Event E involves an increase in interaction energy between Y229 and β-subdomain. Taken together, events B, E, and D correspond to the hinge movement towards β-barrel. Transition of B/C-helix turn (a.a. 229–234) from α-form to π-form accounts for event F. Event G implies that π-helical turn is replaced by kink. Emerging in the resulting conformation, electrostatic interaction R241–E200 facilitates kink formation. The obtained data on the mechanism of cAMP-dependent activation of PKA Iα may contribute to new approaches to designing pharmaceuticals based on cAMP analogs.
Collapse
|
6
|
VanSchouwen B, Melacini G. Structural Basis of Tonic Inhibition by Dimers of Dimers in Hyperpolarization-Activated Cyclic-Nucleotide-Modulated (HCN) Ion Channels. J Phys Chem B 2016; 120:10936-10950. [DOI: 10.1021/acs.jpcb.6b07735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bryan VanSchouwen
- Department
of Chemistry and Chemical Biology, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Giuseppe Melacini
- Department
of Chemistry and Chemical Biology, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4M1, Canada
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
7
|
Unidirectional allostery in the regulatory subunit RIα facilitates efficient deactivation of protein kinase A. Proc Natl Acad Sci U S A 2016; 113:E6776-E6785. [PMID: 27791125 DOI: 10.1073/pnas.1610142113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The holoenzyme complex of protein kinase A is in an inactive state; activation involves ordered cAMP binding to two tandem domains of the regulatory subunit and release of the catalytic subunit. Deactivation has been less studied, during which the two cAMPs unbind from the regulatory subunit to allow association of the catalytic subunit to reform the holoenzyme complex. Unbinding of the cAMPs appears ordered as indicated by a large difference in unbinding rates from the two sites, but the cause has remained elusive given the structural similarity of the two tandem domains. Even more intriguingly, NMR data show that allosteric communication between the two domains is unidirectional. Here, we present a mechanism for the unidirectionality, developed from extensive molecular dynamics simulations of the tandem domains in different cAMP-bound forms. Disparate responses to cAMP releases from the two sites (A and B) in conformational flexibility and chemical shift perturbation confirmed unidirectional allosteric communication. Community analysis revealed that the A-site cAMP, by forming across-domain interactions, bridges an essential pathway for interdomain communication. The pathway is impaired when this cAMP is removed but remains intact when only the B-site cAMP is removed. Specifically, removal of the A-site cAMP leads to the separation of the two domains, creating room for binding the catalytic subunit. Moreover, the A-site cAMP, by maintaining interdomain coupling, retards the unbinding of the B-site cAMP and stalls an unproductive pathway of cAMP release. Our work expands the perspective on allostery and implicates functional importance for the directionality of allostery.
Collapse
|
8
|
Mapping the Free Energy Landscape of PKA Inhibition and Activation: A Double-Conformational Selection Model for the Tandem cAMP-Binding Domains of PKA RIα. PLoS Biol 2015; 13:e1002305. [PMID: 26618408 PMCID: PMC4664472 DOI: 10.1371/journal.pbio.1002305] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/22/2015] [Indexed: 01/31/2023] Open
Abstract
Protein Kinase A (PKA) is the major receptor for the cyclic adenosine monophosphate (cAMP) secondary messenger in eukaryotes. cAMP binds to two tandem cAMP-binding domains (CBD-A and -B) within the regulatory subunit of PKA (R), unleashing the activity of the catalytic subunit (C). While CBD-A in RIα is required for PKA inhibition and activation, CBD-B functions as a “gatekeeper” domain that modulates the control exerted by CBD-A. Preliminary evidence suggests that CBD-B dynamics are critical for its gatekeeper function. To test this hypothesis, here we investigate by Nuclear Magnetic Resonance (NMR) the two-domain construct RIα (91–379) in its apo, cAMP2, and C-bound forms. Our comparative NMR analyses lead to a double conformational selection model in which each apo CBD dynamically samples both active and inactive states independently of the adjacent CBD within a nearly degenerate free energy landscape. Such degeneracy is critical to explain the sensitivity of CBD-B to weak interactions with C and its high affinity for cAMP. Binding of cAMP eliminates this degeneracy, as it selectively stabilizes the active conformation within each CBD and inter-CBD contacts, which require both cAMP and W260. The latter is contributed by CBD-B and mediates capping of the cAMP bound to CBD-A. The inter-CBD interface is dispensable for intra-CBD conformational selection, but is indispensable for full activation of PKA as it occludes C-subunit recognition sites within CBD-A. In addition, the two structurally homologous cAMP-bound CBDs exhibit marked differences in their residual dynamics profiles, supporting the notion that conservation of structure does not necessarily imply conservation of dynamics. Protein Kinase A (PKA) is the major receptor for the cAMP secondary messenger in eukaryotes. This study shows how PKA's regulatory subunit dynamically samples a degenerate free energy landscape that controls affinities for the catalytic subunit and cAMP; intra-domain conformational selection by cAMP controls inter-domain interactions and PKA activation. Cyclic adenosine monophosphate (cAMP) is a messenger molecule produced within cells to control cellular metabolism in response to external stimuli. Protein Kinase A (PKA) is the major receptor for cAMP. cAMP binds to tandem cAMP-binding domains (CBD-A and -B) within the regulatory subunits of PKA (R), unleashing the activity of the catalytic subunit (C). While CBD-A is required for C-subunit inhibition and activation, in RIα CBD-B functions as a “gatekeeper” domain that modulates the control exerted by CBD-A. However, it is not currently clear how ligand binding and dynamics of CBD-B mediate its gatekeeper function. We comparatively analyzed by Nuclear Magnetic Resonance (NMR) a two-domain construct of the regulatory subunit RIα with no ligand, with cAMP2 bound, and the C-bound form. These data show that both CBDs can exist in a system of uncorrelated conformational selection as both can independently sample activated and inactivated states (in what is known as a nearly degenerate free energy landscape). This explains why both RIα CBDs exhibit a higher cAMP-affinity than other cAMP receptors. Once cAMP has bound, the degeneracy is lost and dissociation of the kinase subunit is promoted through a combination of intra-domain conformational selection and changes in inter-CBD orientation. The proposed model—a double-conformational selection model—provides a general framework to interpret the effect of PKA mutations that have been reported in rare human disorders such as Carney complex and Acrodysostosis.
Collapse
|
9
|
Probes of the mitochondrial cAMP-dependent protein kinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1359-63. [PMID: 23410952 DOI: 10.1016/j.bbapap.2013.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/02/2013] [Accepted: 02/02/2013] [Indexed: 11/22/2022]
Abstract
The development of a fluorescent assay to detect activity of the mitochondrial cAMP-dependent protein kinase (PKA) is described. A peptide-based sensor was utilized to quantify the relative amount of PKA activity present in each compartment of the mitochondria (the outer membrane, the intermembrane space, and the matrix). In the process of validating this assay, we discovered that PKA activity is regulated by the protease calpain. Upon exposure of bovine heart mitochondria to digitonin, Ca(2+), and a variety of electron transport chain inhibitors, the regulatory subunits of the PKA holoenzyme (R2C2) are digested, releasing active catalytic subunits. This proteolysis is attenuated by calpain inhibitor I (ALLN). This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
|
10
|
Shell JR, Lawrence DS. Proteolytic regulation of the mitochondrial cAMP-dependent protein kinase. Biochemistry 2012; 51:2258-64. [PMID: 22385295 DOI: 10.1021/bi201573k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mitochondrial cAMP-dependent protein kinase (PKA) is activatable in a cAMP-independent fashion. The regulatory (R) subunits of the PKA holoenzyme (R(2)C(2)), but not the catalytic (C) subunits, suffer proteolysis upon exposure of bovine heart mitochondria to digitonin, Ca(2+), and a myriad of electron transport inhibitors. Selective loss of both the RI- and RII-type subunits was demonstrated via Western blot analysis, and activation of the C subunit was revealed by phosphorylation of a validated PKA peptide substrate. Selective proteolysis transpires in a calpain-dependent fashion as demonstrated by exposure of the R and C subunits of PKA to calpain and by attenuation of R and C subunit proteolysis in the presence of calpain inhibitor I. By contrast, exposure of mitochondria to cAMP fails to promote R subunit degradation, although it does result in enhanced C subunit catalytic activity. Treatment of mitochondria with electron transport chain inhibitors rotenone, antimycin A, sodium azide, and oligomycin, as well as an uncoupler of oxidative phosphorylation, also elicits enhanced C subunit activity. These results are consistent with the notion that signals, originating from cAMP-independent sources, elicit enhanced mitochondrial PKA activity.
Collapse
Affiliation(s)
- Jennifer R Shell
- Departments of Chemistry, Chemical Biology and Medicinal Chemistry, and Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | | |
Collapse
|
11
|
Diskar M, Zenn HM, Kaupisch A, Kaufholz M, Brockmeyer S, Sohmen D, Berrera M, Zaccolo M, Boshart M, Herberg FW, Prinz A. Regulation of cAMP-dependent protein kinases: the human protein kinase X (PrKX) reveals the role of the catalytic subunit alphaH-alphaI loop. J Biol Chem 2010; 285:35910-8. [PMID: 20819953 PMCID: PMC2975214 DOI: 10.1074/jbc.m110.155150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/10/2010] [Indexed: 11/06/2022] Open
Abstract
cAMP-dependent protein kinases are reversibly complexed with any of the four isoforms of regulatory (R) subunits, which contain either a substrate or a pseudosubstrate autoinhibitory domain. The human protein kinase X (PrKX) is an exemption as it is inhibited only by pseudosubstrate inhibitors, i.e. RIα or RIβ but not by substrate inhibitors RIIα or RIIβ. Detailed examination of the capacity of five PrKX-like kinases ranging from human to protozoa (Trypanosoma brucei) to form holoenzymes with human R subunits in living cells shows that this preference for pseudosubstrate inhibitors is evolutionarily conserved. To elucidate the molecular basis of this inhibitory pattern, we applied bioluminescence resonance energy transfer and surface plasmon resonance in combination with site-directed mutagenesis. We observed that the conserved αH-αI loop residue Arg-283 in PrKX is crucial for its RI over RII preference, as a R283L mutant was able to form a holoenzyme complex with wild type RII subunits. Changing the corresponding αH-αI loop residue in PKA Cα (L277R), significantly destabilized holoenzyme complexes in vitro, as cAMP-mediated holoenzyme activation was facilitated by a factor of 2-4, and lead to a decreased affinity of the mutant C subunit for R subunits, significantly affecting RII containing holoenzymes.
Collapse
Affiliation(s)
- Mandy Diskar
- From the Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Hans-Michael Zenn
- From the Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Alexandra Kaupisch
- From the Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Melanie Kaufholz
- From the Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Stefanie Brockmeyer
- From the Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Daniel Sohmen
- the Biocenter, Section Genetics, University of Munich (LMU), Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany, and
| | - Marco Berrera
- the University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Manuela Zaccolo
- the University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Michael Boshart
- the Biocenter, Section Genetics, University of Munich (LMU), Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany, and
| | - Friedrich W. Herberg
- From the Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Anke Prinz
- From the Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| |
Collapse
|
12
|
Byeon IJL, Dao KK, Jung J, Keen J, Leiros I, Døskeland SO, Martinez A, Gronenborn AM. Allosteric communication between cAMP binding sites in the RI subunit of protein kinase A revealed by NMR. J Biol Chem 2010; 285:14062-70. [PMID: 20197278 DOI: 10.1074/jbc.m110.106666] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation of protein kinase A involves the synergistic binding of cAMP to two cAMP binding sites on the inhibitory R subunit, causing release of the C subunit, which subsequently can carry out catalysis. We used NMR to structurally characterize in solution the RIalpha-(98-381) subunit, a construct comprising both cyclic nucleotide binding (CNB) domains, in the presence and absence of cAMP, and map the effects of cAMP binding at single residue resolution. Several conformationally disordered regions in free RIalpha become structured upon cAMP binding, including the interdomain alphaC:A and alphaC':A helices that connect CNB domains A and B and are primary recognition sites for the C subunit. NMR titration experiments with cAMP, B site-selective 2-Cl-8-hexylamino-cAMP, and A site-selective N(6)-monobutyryl-cAMP revealed that cyclic nucleotide binding to either the B or A site affected the interdomain helices. The NMR resonances of this interdomain region exhibited chemical shift changes upon ligand binding to a single site, either site B or A, with additional changes occurring upon binding to both sites. Such distinct, stepwise conformational changes in this region reflect the synergistic interplay between the two sites and may underlie the positive cooperativity of cAMP activation of the kinase. Furthermore, nucleotide binding to the A site also affected residues within the B domain. The present NMR study provides the first structural evidence of unidirectional allosteric communication between the sites. Trp(262), which lines the CNB A site but resides in the sequence of domain B, is an important structural determinant for intersite communication.
Collapse
Affiliation(s)
- In-Ja L Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Desiniotis A, Schäfer G, Klocker H, Eder IE. Enhanced antiproliferative and proapoptotic effects on prostate cancer cells by simultaneously inhibiting androgen receptor and cAMP-dependent protein kinase A. Int J Cancer 2010; 126:775-89. [PMID: 19653278 DOI: 10.1002/ijc.24806] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The androgen-signaling pathway with the androgen receptor (AR) as its key molecule is widely understood to influence prostate tumor growth significantly even after androgen ablation. Under androgen-deprived conditions, the AR may be activated inappropriately through interaction with other molecules, including cyclic AMP-dependent protein kinase A (PKA). In a previous study, we have shown that knocking down the AR significantly inhibits prostate tumor growth. In this study, we show that combined inhibition of the AR and the regulatory subunit I alpha of PKA (RIalpha) with small interference RNAs significantly increased the growth-inhibitory and proapoptotic effects of AR knockdown. This treatment strategy was effective in androgen-sensitive and in androgen ablation-resistant prostate cancer cells. In addition, we report that downregulating PKA RIalpha was sufficient to inhibit PKA signaling and interestingly also impaired AR expression and activation. Vice versa, AR knockdown induced a decline in PKA RIalpha, associated with reduced PKA activity. This mutual influence on expression level was specific, because siRNAs against the AR did not affect expression of PKA RIalpha in AR negative DU-145 cells and a siRNA control did not affect protein expression. Another important finding of our study was that depletion of PKA RIalpha also potentiated the antiproliferative effect of the antiandrogen bicalutamide in androgen-sensitive LNCaP. We therefore concluded that combined inhibition of PKA RIalpha and AR may be a promising new therapeutic option for prostate cancer patients and might be superior to solely preventing AR expression.
Collapse
Affiliation(s)
- Andreas Desiniotis
- Division of Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
14
|
Cheng CY, Yang J, Taylor SS, Blumenthal DK. Sensing domain dynamics in protein kinase A-I{alpha} complexes by solution X-ray scattering. J Biol Chem 2010; 284:35916-25. [PMID: 19837668 PMCID: PMC2791020 DOI: 10.1074/jbc.m109.059493] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The catalytic (C) and regulatory (R) subunits of protein kinase A are exceptionally dynamic proteins. Interactions between the R- and C-subunits are regulated by cAMP binding to the two cyclic nucleotide-binding domains in the R-subunit. Mammalian cells express four different isoforms of the R-subunit (RIα, RIβ, RIIα, and RIIβ) that all interact with the C-subunit in different ways. Here, we investigate the dynamic behavior of protein complexes between RIα and C-subunits using small angle x-ray scattering. We show that a single point mutation in RIα, R333K (which alters the cAMP-binding properties of Domain B) results in a compact shape compared with the extended shape of the wild-type R·C complex. A double mutant complex that disrupts the interaction site between the C-subunit and Domain B in RIα, RIαABR333K·C(K285P), results in a broader P(r) curve that more closely resembles the P(r) profiles of wild-type complexes. These results together suggest that interactions between RIα Domain B and the C-subunit in the RIα·C complex involve large scale dynamics that can be disrupted by single point mutations in both proteins. In contrast to RIα·C complexes. Domain B in the RIIβ·C heterodimer is not dynamic and is critical for both inhibition and complex formation. Our study highlights the functional differences of domain dynamics between protein kinase A isoforms, providing a framework for elucidating the global organization of each holoenzyme and the cross-talk between the R- and C-subunits.
Collapse
Affiliation(s)
- Cecilia Y Cheng
- Departments of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92037-0654, USA
| | | | | | | |
Collapse
|
15
|
Chen YQ, Xie X. Podophyllotoxin induces CREB phosphorylation and CRE-driven gene expression via PKA but not MAPKs. Mol Cells 2010; 29:41-50. [PMID: 20033853 DOI: 10.1007/s10059-010-0015-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/15/2009] [Accepted: 10/20/2009] [Indexed: 12/11/2022] Open
Abstract
CRE-driven luciferase reporter is commonly used in drug screening systems involving G protein-coupled receptors (GPCRs). In a screen campaign designed to search for melanocortin-4 receptor (MC4R) agonists, podophyllotoxin, a microtubules disruptor, was found to induce cAMP-responsive element (CRE)-driven reporter expression. MC4R was not involved because podophyllotoxin induced CREB activation and CRE-driven transcription in cells not expressing MC4R. Previous studies indicated that intracellular calcium, PKA, and MAPKs are involved in CREB phosphorylation and activation. Our studies revealed that podophyllotoxin did not affect intracellular calcium level and the phosphorylation state of p38. Podophyllotoxin induced JNK and ERK activation, but blockade of JNK and ERK activation with specific inhibitors had no effect on podophyllotoxin-induced CREB activation and CRE-regulated gene expression. Further experiments revealed that H89, a specific inhibitor of PKA, significantly inhibited podophyllotoxin-induced CREB activation. Podophyllotoxin itself did not alter intracellular cAMP level. Taken together, podophyllotoxin induces CREB activation and CRE-driven gene expression via PKA activation by a cAMP-independent mechanism.
Collapse
Affiliation(s)
- Ya Qiong Chen
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | | |
Collapse
|
16
|
Yang S, Banavali NK, Roux B. Mapping the conformational transition in Src activation by cumulating the information from multiple molecular dynamics trajectories. Proc Natl Acad Sci U S A 2009; 106:3776-81. [PMID: 19225111 PMCID: PMC2656156 DOI: 10.1073/pnas.0808261106] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Indexed: 11/18/2022] Open
Abstract
The Src-family kinases are allosteric enzymes that play a key role in the regulation of cell growth and proliferation. In response to cellular signals, they undergo large conformational changes to switch between distinct inactive and active states. A computational strategy for characterizing the conformational transition pathway is presented to bridge the inactive and active states of the catalytic domain of Hck. The information from a large number (78) of independent all-atom molecular dynamics trajectories with explicit solvent is combined together to assemble a connectivity map of the conformational transition. Two intermediate states along the activation pathways are identified, and their structural features are characterized. A coarse free-energy landscape is built in terms of the collective motions corresponding to the opening of the activation loop (A-loop) and the rotation of the alphaC helix. This landscape shows that the protein can adopt a multitude of conformations in which the A-loop is partially open, while the alphaC helix remains in the orientation characteristic of the inactive conformation. The complete transition leading to the active conformation requires a concerted movement involving further opening of the A-loop, the relative alignment of N-lobe and C-lobe, and the rotation of the alphaC helix needed to recruit the residues necessary for catalysis in the active site. The analysis leads to a dynamic view of the full-length kinase activation, whereby transitions of the catalytic domain to intermediate configurations with a partially open A-loop are permitted, even while the SH2-SH3 clamp remains fully engaged. These transitions would render Y416 available for the transphosphorylation event that ultimately locks down the active state. The results provide a broad framework for picturing the conformational transitions leading to kinase activation.
Collapse
Affiliation(s)
- Sichun Yang
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637; and
| | - Nilesh K. Banavali
- Laboratory of Computational and Structural Biology, Division of Genetics, Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, NY 12201
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637; and
| |
Collapse
|
17
|
A conserved protonation-dependent switch controls drug binding in the Abl kinase. Proc Natl Acad Sci U S A 2008; 106:139-44. [PMID: 19109437 DOI: 10.1073/pnas.0811223106] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many protein kinases, a characteristic conformational change (the "DFG flip") connects catalytically active and inactive conformations. Many kinase inhibitors--including the cancer drug imatinib--selectively target a specific DFG conformation, but the function and mechanism of the flip remain unclear. Using long molecular dynamics simulations of the Abl kinase, we visualized the DFG flip in atomic-level detail and formulated an energetic model predicting that protonation of the DFG aspartate controls the flip. Consistent with our model's predictions, we demonstrated experimentally that the kinetics of imatinib binding to Abl kinase have a pH dependence that disappears when the DFG aspartate is mutated. Our model suggests a possible explanation for the high degree of conservation of the DFG motif: that the flip, modulated by electrostatic changes inherent to the catalytic cycle, allows the kinase to access flexible conformations facilitating nucleotide binding and release.
Collapse
|
18
|
Meoli E, Bossis I, Cazabat L, Mavrakis M, Horvath A, Stergiopoulos S, Shiferaw ML, Fumey G, Perlemoine K, Muchow M, Robinson-White A, Weinberg F, Nesterova M, Patronas Y, Groussin L, Bertherat J, Stratakis CA. Protein kinase A effects of an expressed PRKAR1A mutation associated with aggressive tumors. Cancer Res 2008; 68:3133-41. [PMID: 18451138 PMCID: PMC3129544 DOI: 10.1158/0008-5472.can-08-0064] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most PRKAR1A tumorigenic mutations lead to nonsense mRNA that is decayed; tumor formation has been associated with an increase in type II protein kinase A (PKA) subunits. The IVS6+1G>T PRKAR1A mutation leads to a protein lacking exon 6 sequences [R1 alpha Delta 184-236 (R1 alpha Delta 6)]. We compared in vitro R1 alpha Delta 6 with wild-type (wt) R1 alpha. We assessed PKA activity and subunit expression, phosphorylation of target molecules, and properties of wt-R1 alpha and mutant (mt) R1 alpha; we observed by confocal microscopy R1 alpha tagged with green fluorescent protein and its interactions with Cerulean-tagged catalytic subunit (C alpha). Introduction of the R1 alpha Delta 6 led to aberrant cellular morphology and higher PKA activity but no increase in type II PKA subunits. There was diffuse, cytoplasmic localization of R1 alpha protein in wt-R1 alpha- and R1 alpha Delta 6-transfected cells but the former also exhibited discrete aggregates of R1 alpha that bound C alpha; these were absent in R1 alpha Delta 6-transfected cells and did not bind C alpha at baseline or in response to cyclic AMP. Other changes induced by R1 alpha Delta 6 included decreased nuclear C alpha. We conclude that R1 alpha Delta 6 leads to increased PKA activity through the mt-R1 alpha decreased binding to C alpha and does not involve changes in other PKA subunits, suggesting that a switch to type II PKA activity is not necessary for increased kinase activity or tumorigenesis.
Collapse
Affiliation(s)
- Elise Meoli
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Ioannis Bossis
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Laure Cazabat
- Institut National de la Santé et de la Recherche Médicale U567, Département d’Endocrinologie, Métabolisme and Cancer, Institut Cochin
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104
- Centre de Référence des Maladies Rares de la Surrénale, Service d’Endocrinologie, Hôpital Cochin, Université Paris 5, Paris, France
| | - Manos Mavrakis
- Section on Organelle Biology, Program in Cell Biology and Metabolism, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Anelia Horvath
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Sotiris Stergiopoulos
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Miriam L. Shiferaw
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Glawdys Fumey
- Institut National de la Santé et de la Recherche Médicale U567, Département d’Endocrinologie, Métabolisme and Cancer, Institut Cochin
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104
- Centre de Référence des Maladies Rares de la Surrénale, Service d’Endocrinologie, Hôpital Cochin, Université Paris 5, Paris, France
| | - Karine Perlemoine
- Institut National de la Santé et de la Recherche Médicale U567, Département d’Endocrinologie, Métabolisme and Cancer, Institut Cochin
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104
- Centre de Référence des Maladies Rares de la Surrénale, Service d’Endocrinologie, Hôpital Cochin, Université Paris 5, Paris, France
| | - Michael Muchow
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Audrey Robinson-White
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Frank Weinberg
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Maria Nesterova
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Yianna Patronas
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Lionel Groussin
- Institut National de la Santé et de la Recherche Médicale U567, Département d’Endocrinologie, Métabolisme and Cancer, Institut Cochin
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104
- Centre de Référence des Maladies Rares de la Surrénale, Service d’Endocrinologie, Hôpital Cochin, Université Paris 5, Paris, France
| | - Jérôme Bertherat
- Institut National de la Santé et de la Recherche Médicale U567, Département d’Endocrinologie, Métabolisme and Cancer, Institut Cochin
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104
- Centre de Référence des Maladies Rares de la Surrénale, Service d’Endocrinologie, Hôpital Cochin, Université Paris 5, Paris, France
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| |
Collapse
|
19
|
Yang S, Roux B. Src kinase conformational activation: thermodynamics, pathways, and mechanisms. PLoS Comput Biol 2008; 4:e1000047. [PMID: 18369437 PMCID: PMC2268010 DOI: 10.1371/journal.pcbi.1000047] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 02/28/2008] [Indexed: 11/19/2022] Open
Abstract
Tyrosine kinases of the Src-family are large allosteric enzymes that play a key role in cellular signaling. Conversion of the kinase from an inactive to an active state is accompanied by substantial structural changes. Here, we construct a coarse-grained model of the catalytic domain incorporating experimental structures for the two stable states, and simulate the dynamics of conformational transitions in kinase activation. We explore the transition energy landscapes by constructing a structural network among clusters of conformations from the simulations. From the structural network, two major ensembles of pathways for the activation are identified. In the first transition pathway, we find a coordinated switching mechanism of interactions among the alphaC helix, the activation-loop, and the beta strands in the N-lobe of the catalytic domain. In a second pathway, the conformational change is coupled to a partial unfolding of the N-lobe region of the catalytic domain. We also characterize the switching mechanism for the alphaC helix and the activation-loop in detail. Finally, we test the performance of a Markov model and its ability to account for the structural kinetics in the context of Src conformational changes. Taken together, these results provide a broad framework for understanding the main features of the conformational transition taking place upon Src activation.
Collapse
Affiliation(s)
- Sichun Yang
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, The University of Chicago, Chicago, Illinois, United States of America
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
20
|
Kim C, Cheng CY, Saldanha SA, Taylor SS. PKA-I Holoenzyme Structure Reveals a Mechanism for cAMP-Dependent Activation. Cell 2007; 130:1032-43. [PMID: 17889648 DOI: 10.1016/j.cell.2007.07.018] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 03/23/2007] [Accepted: 07/13/2007] [Indexed: 11/21/2022]
Abstract
Protein kinase A (PKA) holoenzyme is one of the major receptors for cyclic adenosine monophosphate (cAMP), where an extracellular stimulus is translated into a signaling response. We report here the structure of a complex between the PKA catalytic subunit and a mutant RI regulatory subunit, RIalpha(91-379:R333K), containing both cAMP-binding domains. Upon binding to the catalytic subunit, RI undergoes a dramatic conformational change in which the two cAMP-binding domains uncouple and wrap around the large lobe of the catalytic subunit. This large conformational reorganization reveals the concerted mechanism required to bind and inhibit the catalytic subunit. The structure also reveals a holoenzyme-specific salt bridge between two conserved residues, Glu261 and Arg366, that tethers the two adenine capping residues far from their cAMP-binding sites. Mutagenesis of these residues demonstrates their importance for PKA activation. Our structural insights, combined with the mutagenesis results, provide a molecular mechanism for the ordered and cooperative activation of PKA by cAMP.
Collapse
Affiliation(s)
- Choel Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0654, USA
| | | | | | | |
Collapse
|
21
|
Zhou L, Siegelbaum SA. Gating of HCN channels by cyclic nucleotides: residue contacts that underlie ligand binding, selectivity, and efficacy. Structure 2007; 15:655-70. [PMID: 17562313 PMCID: PMC1995447 DOI: 10.1016/j.str.2007.04.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/19/2007] [Accepted: 04/06/2007] [Indexed: 11/19/2022]
Abstract
Cyclic nucleotides (cNMPs) regulate the activity of various proteins by interacting with a conserved cyclic nucleotide-binding domain (CNBD). Although X-ray crystallographic studies have revealed the structures of several CNBDs, the residues responsible for generating the high efficacy with which ligand binding leads to protein activation remain unknown. Here, we combine molecular dynamics simulations with mutagenesis to identify ligand contacts important for the regulation of the hyperpolarization-activated HCN2 channel by cNMPs. Surprisingly, out of 7 residues that make strong contacts with ligand, only R632 in the C helix of the CNBD is essential for high ligand efficacy, due to its selective stabilization of cNMP binding to the open state of the channel. Principal component analysis suggests that a local movement of the C helix upon ligand binding propagates through the CNBD of one subunit to the C linker of a neighboring subunit to apply force to the gate of the channel.
Collapse
Affiliation(s)
- Lei Zhou
- Center for Neurobiology and Behavior, Howard Hughes Medical Institute, Columbia University, 722 W. 168 St. New York, NY 10032
| | - Steven A. Siegelbaum
- Center for Neurobiology and Behavior, Howard Hughes Medical Institute, Columbia University, 722 W. 168 St. New York, NY 10032
- Department of Pharmacology, Howard Hughes Medical Institute, Columbia University, 722 W. 168 St. New York, NY 10032
| |
Collapse
|
22
|
Gavina JMA, Das R, Britz-McKibbin P. Dynamic unfolding of a regulatory subunit of cAMP-dependent protein kinase by capillary electrophoresis: Impact of cAMP dissociation on protein stability. Electrophoresis 2007; 27:4196-204. [PMID: 17024688 DOI: 10.1002/elps.200600300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Characterization of the unfolding dynamics of a recombinant type IA regulatory subunit (RIalpha) of cyclic adenosine monophosphate (cAMP)-dependent protein kinase (cAPK) was examined by CE with UV detection. Electrophoretic separation of RIalpha by CE in a buffer devoid of cAMP resulted in rapid dissociation of the complex from the original sample due to the high negative mobility of the ligand relative to receptor. This process enabled in-capillary generation of cAMP-stripped RIalpha, which was used to estimate the apparent dissociation constant (Kd) of 0.6 +/- 0.2 microM. A comparison of RIalpha dynamic unfolding processes with urea denaturation was performed by CE with (i.e., RIalpha-cAMP) and without (i.e., cAMP-stripped RIalpha) excess cAMP in the buffer during electromigration. The presence of cAMP in the buffer confirmed greater stabilization of the protein, as reflected by a higher standard free energy change (DeltaG(U) degrees) of 10.1 +/- 0.5 kcal x mol(+1) and greater cooperativity in unfolding (m) of -2.30 +/- 0.11 kcal x mol(-1) M(-1). CE offers a rapid, yet versatile platform for probing the thermodynamics of cAPK and other types of receptor-ligand complexes in free solution.
Collapse
|
23
|
Das R, Esposito V, Abu-Abed M, Anand GS, Taylor SS, Melacini G. cAMP activation of PKA defines an ancient signaling mechanism. Proc Natl Acad Sci U S A 2006; 104:93-8. [PMID: 17182741 PMCID: PMC1765484 DOI: 10.1073/pnas.0609033103] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
cAMP and the cAMP binding domain (CBD) constitute a ubiquitous regulatory switch that translates an extracellular signal into a biological response. The CBD contains alpha- and beta-subdomains with cAMP binding to a phosphate binding cassette (PBC) in the beta-sandwich. The major receptors for cAMP in mammalian cells are the regulatory subunits (R-subunits) of PKA where cAMP and the catalytic subunit compete for the same CBD. The R-subunits inhibit kinase activity, whereas cAMP releases that inhibition. Here, we use NMR to map at residue resolution the cAMP-dependent interaction network of the CBD-A domain of isoform Ialpha of the R-subunit of PKA. Based on H/D, H/H, and N(z) exchange data, we propose a molecular model for the allosteric regulation of PKA by cAMP. According to our model, cAMP binding causes long-range perturbations that propagate well beyond the immediate surroundings of the PBC and involve two key relay sites located at the C terminus of beta(2) (I163) and N terminus of beta(3) (D170). The I163 site functions as one of the key triggers of global unfolding, whereas the D170 locus acts as an electrostatic switch that mediates the communication between the PBC and the B-helix. Removal of cAMP not only disrupts the cap for the B' helix within the PBC, but also breaks the circuitry of cooperative interactions stemming from the PBC, thereby uncoupling the alpha- and beta-subdomains. The proposed model defines a signaling mechanism, conserved in every genome, where allosteric binding of a small ligand disrupts a large protein-protein interface.
Collapse
Affiliation(s)
- Rahul Das
- *Departments of Chemistry, Biochemistry, and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1; and
| | - Veronica Esposito
- *Departments of Chemistry, Biochemistry, and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1; and
| | - Mona Abu-Abed
- *Departments of Chemistry, Biochemistry, and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1; and
| | - Ganesh S. Anand
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, Department of Pharmacology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Susan S. Taylor
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, Department of Pharmacology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- To whom correspondence may be addressed. E-mail:
or
| | - Giuseppe Melacini
- *Departments of Chemistry, Biochemistry, and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
24
|
Das R, Melacini G. A model for agonism and antagonism in an ancient and ubiquitous cAMP-binding domain. J Biol Chem 2006; 282:581-93. [PMID: 17074757 DOI: 10.1074/jbc.m607706200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cAMP-binding domain (CBD) is an ancient and conserved regulatory motif that allosterically modulates the function of a group of diverse proteins, thereby translating the cAMP signal into a controlled biological response. The main receptor for cAMP in mammals is the ubiquitous regulatory (R) subunit of protein kinase A. Despite the recognized significant potential for pharmacological applications of CBDs, currently only one group of competitive inhibitor antagonists is known: the (R(p))-cAMPS family of phosphorothioate cAMP analogs, in which the equatorial exocyclic oxygen of cAMP is replaced by sulfur. It is also known that the diastereoisomer (S(p))-cAMPS with opposite phosphorous chirality is a cAMP agonist, but the molecular mechanism of action of these analogs is currently not fully understood. Previous crystallographic and unfolding investigations point to the enhanced CBD dynamics as a key determinant of antagonism. Here, we investigate the (R(p))- and (S(p))-cAMPS-bound states of R(CBD-A) using a comparative NMR approach that reveals a clear chemical shift and dynamic NMR signature, differentiating the (S(p))-cAMPS agonist from the (R(p))-cAMPS antagonist. Based on these data, we have proposed a model for the (R(p)/S(p))-cAMPS antagonism and agonism in terms of steric and electronic effects on two main allosteric relay sites, Ile(163) and Asp(170), respectively, affecting the stability of a ternary inhibitory complex formed by the effector ligand, the regulatory and the catalytic subunits of protein kinase A. The proposed model not only rationalizes the existing data on the phosphorothioate analogs, but it will also facilitate the design of novel cAMP antagonists and agonists.
Collapse
Affiliation(s)
- Rahul Das
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | | |
Collapse
|
25
|
Kim C, Vigil D, Anand G, Taylor SS. Structure and dynamics of PKA signaling proteins. Eur J Cell Biol 2006; 85:651-4. [PMID: 16647784 DOI: 10.1016/j.ejcb.2006.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Choel Kim
- Department of Chemistry/Biochemistry, Howard Hughes Medical Institute, University of California, Leichtag Biomedical Research Building, Room 412, 9500 Gilman Dr., La Jolla, CA 92093-0654, USA
| | | | | | | |
Collapse
|