1
|
Migliano SM, Schultz SW, Wenzel EM, Takáts S, Liu D, Mørk S, Tan KW, Rusten TE, Raiborg C, Stenmark H. Removal of hypersignaling endosomes by simaphagy. Autophagy 2024; 20:769-791. [PMID: 37840274 PMCID: PMC11062362 DOI: 10.1080/15548627.2023.2267958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023] Open
Abstract
Activated transmembrane receptors continue to signal following endocytosis and are only silenced upon ESCRT-mediated internalization of the receptors into intralumenal vesicles (ILVs) of the endosomes. Accordingly, endosomes with dysfunctional receptor internalization into ILVs can cause sustained receptor signaling which has been implicated in cancer progression. Here, we describe a surveillance mechanism that allows cells to detect and clear physically intact endosomes with aberrant receptor accumulation and elevated signaling. Proximity biotinylation and proteomics analyses of ESCRT-0 defective endosomes revealed a strong enrichment of the ubiquitin-binding macroautophagy/autophagy receptors SQSTM1 and NBR1, a phenotype that was confirmed in cell culture and fly tissue. Live cell microscopy demonstrated that loss of the ESCRT-0 subunit HGS/HRS or the ESCRT-I subunit VPS37 led to high levels of ubiquitinated and phosphorylated receptors on endosomes. This was accompanied by dynamic recruitment of NBR1 and SQSTM1 as well as proteins involved in autophagy initiation and autophagosome biogenesis. Light microscopy and electron tomography revealed that endosomes with intact limiting membrane, but aberrant receptor downregulation were engulfed by phagophores. Inhibition of autophagy caused increased intra- and intercellular signaling and directed cell migration. We conclude that dysfunctional endosomes are surveyed and cleared by an autophagic process, simaphagy, which serves as a failsafe mechanism in signal termination.Abbreviations: AKT: AKT serine/threonine kinase; APEX2: apurinic/apyrimidinic endodoexyribonuclease 2; ctrl: control; EEA1: early endosome antigen 1; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; ESCRT: endosomal sorting complex required for transport; GFP: green fluorescent protein; HGS/HRS: hepatocyte growth factor-regulated tyrosine kinase substrate; IF: immunofluorescence; ILV: intralumenal vesicle; KO: knockout; LIR: LC3-interacting region; LLOMe: L-leucyl-L-leucine methyl ester (hydrochloride); MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPK3/ERK1: mitogen-activated protein kinase 3; NBR1: NBR1 autophagy cargo receptor; PAG10: Protein A-conjugated 10-nm gold; RB1CC1/FIP200: RB1 inducible coiled-coil 1; siRNA: small interfering RNA; SQSTM1: sequestosome 1; TUB: Tubulin; UBA: ubiquitin-associated; ULK1: unc-51 like autophagy activating kinase 1; VCL: Vinculin; VPS37: VPS37 subunit of ESCRT-I; WB: western blot; WT: wild-type.
Collapse
Affiliation(s)
- Simona M. Migliano
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sebastian W. Schultz
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eva M. Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Szabolcs Takáts
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dan Liu
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Silje Mørk
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kia Wee Tan
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Medical Cell Biology, University of Uppsala, Uppsala, Sweden
| | - Tor Erik Rusten
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Zhang C, Kalaitsidou E, Damen JMA, Grond R, Rabouille C, Wu W. Novel Components of the Stress Assembly Sec Body Identified by Proximity Labeling. Cells 2023; 12:cells12071055. [PMID: 37048128 PMCID: PMC10093351 DOI: 10.3390/cells12071055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Sec bodies are membraneless stress-induced assemblies that form by the coalescence of endoplasmic reticulum exit sites (ERES). Through APEX2 tagging of Sec24AB, we biotinylated and identified the full complement of Sec body proteins. In the presence of biotin-phenol and H2O2 (APEX on), APEX2 facilitates the transfer of a biotin moiety to nearby interactors of chimeric Sec24AB. Using this unbiased approach comparing APEX on and off (−H2O2) conditions, we identified 52 proteins specifically enriched in Sec bodies. These include a large proportion of ER and Golgi proteins, packaged without defined stoichiometry, which we could selectively verify by imaging. Interestingly, Sec body components are neither transcriptionally nor translationally regulated under the conditions that induce Sec body formation, suggesting that incorporation of these proteins into granules may be driven instead by the aggregation of nucleating proteins with a high content of intrinsically disordered regions. This reinforces the notion that Sec bodies may act as storage for ERES, ER and Golgi components during stress.
Collapse
|
3
|
Zanin N, Viaris de Lesegno C, Lamaze C, Blouin CM. Interferon Receptor Trafficking and Signaling: Journey to the Cross Roads. Front Immunol 2021; 11:615603. [PMID: 33552080 PMCID: PMC7855707 DOI: 10.3389/fimmu.2020.615603] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Like most plasma membrane proteins, type I interferon (IFN) receptor (IFNAR) traffics from the outer surface to the inner compartments of the cell. Long considered as a passive means to simply control subunits availability at the plasma membrane, an array of new evidence establishes IFNAR endocytosis as an active contributor to the regulation of signal transduction triggered by IFN binding to IFNAR. During its complex journey initiated at the plasma membrane, the internalized IFNAR complex, i.e. IFNAR1 and IFNAR2 subunits, will experience post-translational modifications and recruit specific effectors. These finely tuned interactions will determine not only IFNAR subunits destiny (lysosomal degradation vs. plasma membrane recycling) but also the control of IFN-induced signal transduction. Finally, the IFNAR system perfectly illustrates the paradigm of the crosstalk between membrane trafficking and intracellular signaling. Investigating the complexity of IFN receptor intracellular routes is therefore necessary to reveal new insight into the role of IFNAR membrane dynamics in type I IFNs signaling selectivity and biological activity.
Collapse
Affiliation(s)
- Natacha Zanin
- NDORMS, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Christine Viaris de Lesegno
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| | - Christophe Lamaze
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| | - Cedric M Blouin
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| |
Collapse
|
4
|
The Swing of Lipids at Peroxisomes and Endolysosomes in T Cell Activation. Int J Mol Sci 2020; 21:ijms21082859. [PMID: 32325900 PMCID: PMC7215844 DOI: 10.3390/ijms21082859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
The immune synapse (IS) is a well-known intercellular communication platform, organized at the interphase between the antigen presenting cell (APC) and the T cell. After T cell receptor (TCR) stimulation, signaling from plasma membrane proteins and lipids is amplified by molecules and downstream pathways for full synapse formation and maintenance. This secondary signaling event relies on intracellular reorganization at the IS, involving the cytoskeleton and components of the secretory/recycling machinery, such as the Golgi apparatus and the endolysosomal system (ELS). T cell activation triggers a metabolic reprogramming that involves the synthesis of lipids, which act as signaling mediators, and an increase of mitochondrial activity. Then, this mitochondrial activity results in elevated reactive oxygen species (ROS) production that may lead to cytotoxicity. The regulation of ROS levels requires the concerted action of mitochondria and peroxisomes. In this review, we analyze this reprogramming and the signaling implications of endolysosomal, mitochondrial, peroxisomal, and lipidic systems in T cell activation.
Collapse
|
5
|
Ceccato L, Chicanne G, Nahoum V, Pons V, Payrastre B, Gaits-Iacovoni F, Viaud J. PLIF: A rapid, accurate method to detect and quantitatively assess protein-lipid interactions. Sci Signal 2016; 9:rs2. [PMID: 27025878 DOI: 10.1126/scisignal.aad4337] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Phosphoinositides are a type of cellular phospholipid that regulate signaling in a wide range of cellular and physiological processes through the interaction between their phosphorylated inositol head group and specific domains in various cytosolic proteins. These lipids also influence the activity of transmembrane proteins. Aberrant phosphoinositide signaling is associated with numerous diseases, including cancer, obesity, and diabetes. Thus, identifying phosphoinositide-binding partners and the aspects that define their specificity can direct drug development. However, current methods are costly, time-consuming, or technically challenging and inaccessible to many laboratories. We developed a method called PLIF (for "protein-lipid interaction by fluorescence") that uses fluorescently labeled liposomes and tethered, tagged proteins or peptides to enable fast and reliable determination of protein domain specificity for given phosphoinositides in a membrane environment. We validated PLIF against previously known phosphoinositide-binding partners for various proteins and obtained relative affinity profiles. Moreover, PLIF analysis of the sorting nexin (SNX) family revealed not only that SNXs bound most strongly to phosphatidylinositol 3-phosphate (PtdIns3P or PI3P), which is known from analysis with other methods, but also that they interacted with other phosphoinositides, which had not previously been detected using other techniques. Different phosphoinositide partners, even those with relatively weak binding affinity, could account for the diverse functions of SNXs in vesicular trafficking and protein sorting. Because PLIF is sensitive, semiquantitative, and performed in a high-throughput manner, it may be used to screen for highly specific protein-lipid interaction inhibitors.
Collapse
Affiliation(s)
- Laurie Ceccato
- INSERM, U1048 and Université Toulouse 3, I2MC, Avenue Jean Poulhès BP84225, 31432 Toulouse Cedex 04, France
| | - Gaëtan Chicanne
- INSERM, U1048 and Université Toulouse 3, I2MC, Avenue Jean Poulhès BP84225, 31432 Toulouse Cedex 04, France
| | - Virginie Nahoum
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), 31000 Toulouse, France. Université de Toulouse, UPS (Université Paul Sabatier), IPBS, 31000 Toulouse, France
| | - Véronique Pons
- INSERM, U1048 and Université Toulouse 3, I2MC, Avenue Jean Poulhès BP84225, 31432 Toulouse Cedex 04, France
| | - Bernard Payrastre
- INSERM, U1048 and Université Toulouse 3, I2MC, Avenue Jean Poulhès BP84225, 31432 Toulouse Cedex 04, France. CHU (Centre Hospitalier Universitaire) de Toulouse, Laboratoire d'Hématologie, 31059 Toulouse Cedex 03, France
| | - Frédérique Gaits-Iacovoni
- INSERM, U1048 and Université Toulouse 3, I2MC, Avenue Jean Poulhès BP84225, 31432 Toulouse Cedex 04, France
| | - Julien Viaud
- INSERM, U1048 and Université Toulouse 3, I2MC, Avenue Jean Poulhès BP84225, 31432 Toulouse Cedex 04, France.
| |
Collapse
|
6
|
Abstract
Mop regulates endosomal localization and recycling of Frizzled. Hrs is ubiquitinated and degraded in the absence of Mop. Mop aids in the maintenance of Ubpy to control the ubiquitin homeostasis of Hrs. Mop and Ubpy can rescue each other. Mop’s function is not required in the cell in the absence of the ubiquitin ligase Cbl. Endosomal trafficking of signaling proteins plays an essential role in cellular homeostasis. The seven-pass transmembrane protein Frizzled (Fz) is a critical component of Wnt signaling. Although Wnt signaling is proposed to be regulated by endosomal trafficking of Fz, the molecular events that enable this regulation are not completely understood. Here we show that the endosomal protein Myopic (Mop) regulates Fz trafficking in the Drosophila wing disk by inhibiting the ubiquitination and degradation of Hrs. Deletion of Mop or Hrs results in endosomal accumulation of Fz and therefore reduced Wnt signaling. The in situ proximity ligation assay revealed a strong association between Mop and Hrs in the Drosophila wing disk. Overexpression of Hrs rescues the trafficking defect caused by mop knockdown. Mop aids in the maintenance of Ubpy, which deubiquitinates (and thus stabilizes) Hrs. In the absence of the ubiquitin ligase Cbl, Mop is dispensable. These findings support a previously unknown role for Mop in endosomal trafficking of Fz in Wnt-receiving cells.
Collapse
Affiliation(s)
- Tirthadipa Pradhan-Sundd
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
7
|
Gliadin peptides as triggers of the proliferative and stress/innate immune response of the celiac small intestinal mucosa. Int J Mol Sci 2014. [PMID: 25387079 DOI: 10.3390/ijms151120518.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides induce innate and adaptive T cell-mediated immune responses. The major mediator of the stress and innate immune response to gliadin peptides (i.e., peptide 31-43, P31-43) is the cytokine interleukin-15 (IL-15). The role of epithelial growth factor (EGF) as a mediator of enterocyte proliferation and the innate immune response has been described. In this paper, we review the most recent literature on the mechanisms responsible for triggering the up-regulation of these mediators in CD by gliadin peptides. We will discuss the role of P31-43 in enterocyte proliferation, structural changes and the innate immune response in CD mucosa in cooperation with EGF and IL-15, and the mechanism of up-regulation of these mediators related to vesicular trafficking. We will also review the literature that focuses on constitutive alterations of the structure, signalling/proliferation and stress/innate immunity pathways of CD cells. Finally, we will discuss how these pathways can be triggered by gliadin peptide P31-43 in controls, mimicking the celiac cellular phenotype.
Collapse
|
8
|
Barone MV, Troncone R, Auricchio S. Gliadin peptides as triggers of the proliferative and stress/innate immune response of the celiac small intestinal mucosa. Int J Mol Sci 2014; 15:20518-37. [PMID: 25387079 PMCID: PMC4264181 DOI: 10.3390/ijms151120518] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides induce innate and adaptive T cell-mediated immune responses. The major mediator of the stress and innate immune response to gliadin peptides (i.e., peptide 31–43, P31–43) is the cytokine interleukin-15 (IL-15). The role of epithelial growth factor (EGF) as a mediator of enterocyte proliferation and the innate immune response has been described. In this paper, we review the most recent literature on the mechanisms responsible for triggering the up-regulation of these mediators in CD by gliadin peptides. We will discuss the role of P31–43 in enterocyte proliferation, structural changes and the innate immune response in CD mucosa in cooperation with EGF and IL-15, and the mechanism of up-regulation of these mediators related to vesicular trafficking. We will also review the literature that focuses on constitutive alterations of the structure, signalling/proliferation and stress/innate immunity pathways of CD cells. Finally, we will discuss how these pathways can be triggered by gliadin peptide P31–43 in controls, mimicking the celiac cellular phenotype.
Collapse
Affiliation(s)
- Maria Vittoria Barone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| | - Riccardo Troncone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| |
Collapse
|
9
|
Kojima K, Amano Y, Yoshino K, Tanaka N, Sugamura K, Takeshita T. ESCRT-0 protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is targeted to endosomes independently of signal-transducing adaptor molecule (STAM) and the complex formation with STAM promotes its endosomal dissociation. J Biol Chem 2014; 289:33296-310. [PMID: 25296754 DOI: 10.1074/jbc.m114.578245] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ESCRT-0 complex, consisting of the hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) and the signal-transducing adaptor molecule (STAM) proteins, recognizes ubiquitylated cargo during the initial step of endosomal sorting. The endosomal accumulation of overexpressed Hrs has been reported previously to be associated with endosome enlargement. In this study, we have found that co-expressing exogenous STAM1 in Hrs-overexpressing cells leads to a diffuse localization for a large part of the Hrs accumulated on endosomes and a recovery of the impaired cargo protein degradation process, thus suggesting that exogenous STAM abrogates the abnormalities of the Hrs-positive endosomes. A fluorescently labeled Hrs, introduced into the cells by membrane permeabilization, exhibited endosomal localization in the absence of STAM1 and gradually dissociated from the endosomes upon the sequential addition of recombinant STAM1. Furthermore, when microinjected into cells, the fluorescently labeled Hrs also showed endosomal accumulation; however, ESCRT-0 complexes formed prior to the microinjection did not. Analysis of the state of the complex in HeLa cells using blue-native PAGE revealed that the membrane-associated Hrs exists partly as a monomer and not only in the STAM1-bound form. Thus, our data suggest that the membrane binding and dissociation cycle of the ESCRT-0 proteins on the endosomal membrane is a critical step during the cargo sorting process.
Collapse
Affiliation(s)
- Katsuhiko Kojima
- From the Department of Microbiology and Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 and
| | - Yuji Amano
- From the Department of Microbiology and Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 and
| | - Kazuhisa Yoshino
- From the Department of Microbiology and Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 and
| | | | - Kazuo Sugamura
- Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293, Japan
| | - Toshikazu Takeshita
- From the Department of Microbiology and Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 and
| |
Collapse
|
10
|
Chung WY, Park HW, Han JW, Lee MG, Kim JY. WNK4 inhibits plasma membrane targeting of NCC through regulation of syntaxin13 SNARE formation. Cell Signal 2013; 25:2469-77. [PMID: 23993962 DOI: 10.1016/j.cellsig.2013.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/23/2013] [Indexed: 01/27/2023]
Abstract
WNK4, a serine/threonine kinase, plays a critical role in the expression of membrane proteins in the cell surface; however, the underlying mechanism of WNK4 is not clear. Here, we demonstrate that WNK4 inhibits the fusion of plasma membrane delivering vesicle with sorting/recycling endosome through disrupting SNARE formation of syntaxin13, an endosomal t-SNARE and VAMP2, the v-SNARE in plasma membrane delivering vesicle. Their interaction and co-localization were enhanced by hyperosmotic stimulation which is known for WNK4 activation. The kinase domain of WNK4 interacts with the transmembrane domain (TM) of syntaxin13 and this interaction was abolished when the TM was replaced with that of syntaxin16. Interestingly, cell fractionation using sucrose gradients revealed that WNK4 inhibited the formation of the syntaxin13/VAMP2 SNARE complex in the endosomal compartment, but not syntaxin16/VAMP2 or syntaxin13/VAMP7. Syntaxin13 was not phosphorylated by WNK4 and WNK4KI also showed the same binding strength and similar inhibitory regulation on SNARE formation of syntaxin13. Physiological relevance of this mechanism was proved with the expression of NCC (Na(+) C1(-) co-transporter) in the cell surface. The inhibiting activity of WNK4 on surface expression of NCC was abolished by syntaxin13 siRNA transfection. These results suggest that WNK4 attenuates PM targeting of NCC proteins through regulation of syntaxin13 SNARE complex formation with VAMP2 in recycling and sorting endosome.
Collapse
Affiliation(s)
- Woo Young Chung
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | | | | | | | | |
Collapse
|
11
|
Abstract
Vesicle-mediated cargo transport within the endomembrane system requires precise coordination between adaptor molecules, which recognize sorting signals on substrates, and factors that promote changes in membrane architecture. At endosomal compartments, a set of protein complexes collectively known as the ESCRT machinery sequesters transmembrane cargoes that harbor a ubiquitin modification and packages them into vesicles that bud into the endosome lumen. Several models have been postulated to describe this process. However, consensus in the field remains elusive. Here, we discuss recent findings regarding the structure and function of the ESCRT machinery, highlighting specific roles for ESCRT-0 and ESCRT-III in regulating cargo selection and vesicle formation.
Collapse
Affiliation(s)
- Jonathan R Mayers
- Department of Biomolecular Chemistry; University of Wisconsin-Madison Medical School; Madison, WI USA
| | | |
Collapse
|
12
|
Pantakani DVK, Czyzewska MM, Sikorska A, Bodda C, Mannan AU. Oligomerization of ZFYVE27 (Protrudin) is necessary to promote neurite extension. PLoS One 2011; 6:e29584. [PMID: 22216323 PMCID: PMC3247280 DOI: 10.1371/journal.pone.0029584] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 12/01/2011] [Indexed: 11/20/2022] Open
Abstract
ZFYVE27 (Protrudin) was originally identified as an interacting partner of spastin, which is most frequently mutated in hereditary spastic paraplegia. ZFYVE27 is a novel member of FYVE family, which is implicated in the formation of neurite extensions by promoting directional membrane trafficking in neurons. Now, through a yeast two-hybrid screen, we have identified that ZFYVE27 interacts with itself and the core interaction region resides within the third hydrophobic region (HR3) of the protein. We confirmed the ZFYVE27's self-interaction in the mammalian cells by co-immunoprecipitation and co-localization studies. To decipher the oligomeric nature of ZFYVE27, we performed sucrose gradient centrifugation and showed that ZFYVE27 oligomerizes into dimer/tetramer forms. Sub-cellular fractionation and Triton X-114 membrane phase separation analysis indicated that ZFYVE27 is a peripheral membrane protein. Furthermore, ZFYVE27 also binds to phosphatidylinositol 3-phosphate lipid moiety. Interestingly, cells expressing ZFYVE27ΔHR3 failed to produce protrusions instead caused swelling of cell soma. When ZFYVE27ΔHR3 was co-expressed with wild-type ZFYVE27 (ZFYVE27WT), it exerted a dominant negative effect on ZFYVE27WT as the cells co-expressing both proteins were also unable to induce protrusions and showed cytoplasmic swelling. Altogether, it is evident that a functionally active form of oligomer is crucial for ZFYVE27 ability to promote neurite extensions.
Collapse
Affiliation(s)
| | - Marta M. Czyzewska
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany
| | - Anna Sikorska
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany
| | - Chiranjeevi Bodda
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany
| | - Ashraf U. Mannan
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany
- * E-mail:
| |
Collapse
|
13
|
Abstract
The endosomal-sorting complex required for transport (ESCRT) apparatus has multiple ubiquitin (Ub)-binding domains and participates in a wide variety of cellular processes. Many of these ESCRT-dependent processes are keenly regulated by Ub, which serves as a lysosomal-sorting signal for membrane proteins targeted into multivesicular bodies (MVBs) and which may serve as a mediator of viral budding from the cell surface. Hints that both ESCRTs and Ub work together in the processes such as cytokinesis, transcription and autophagy are beginning to emerge. Here, we explore the relationship between ESCRTs and Ub in MVB sorting and viral budding.
Collapse
Affiliation(s)
- S Brookhart Shields
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52246, USA
| | | |
Collapse
|
14
|
Mayers JR, Fyfe I, Schuh AL, Chapman ER, Edwardson JM, Audhya A. ESCRT-0 assembles as a heterotetrameric complex on membranes and binds multiple ubiquitinylated cargoes simultaneously. J Biol Chem 2010; 286:9636-45. [PMID: 21193406 DOI: 10.1074/jbc.m110.185363] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ESCRT machinery consists of multiple protein complexes that collectively participate in the biogenesis of multivesicular endosomes (MVEs). The ESCRT-0 complex is composed of two subunits, Hrs and STAM, both of which can engage ubiquitinylated substrates destined for lysosomal degradation. Here, we conduct a comprehensive analysis of ESCRT-0:ubiquitin interactions using isothermal titration calorimetry and define the affinity of each ubiquitin-binding domain (UBD) within the intact ESCRT-0 complex. Our data demonstrate that ubiquitin binding is non-cooperative between the ESCRT-0 UBDs. Additionally, our findings show that the affinity of the Hrs double ubiquitin interacting motif (DUIM) for ubiquitin is more than 2-fold greater than that of UBDs found in STAM, suggesting that Hrs functions as the major ubiquitin-binding protein in ESCRT-0. In vivo, Hrs and STAM localize to endosomal membranes. To study recombinant ESCRT-0 assembly on lipid bilayers, we used atomic force microscopy. Our data show that ESCRT-0 forms mostly heterodimers and heterotetramers of Hrs and STAM when analyzed in the presence of membranes. Consistent with these findings, hydrodynamic analysis of endogenous ESCRT-0 indicates that it exists largely as a heterotetrameric complex of its two subunits. Based on these data, we present a revised model for ESCRT-0 function in cargo recruitment and concentration at the endosome.
Collapse
Affiliation(s)
- Jonathan R Mayers
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
15
|
Berlin I, Higginbotham KM, Dise RS, Sierra MI, Nash PD. The deubiquitinating enzyme USP8 promotes trafficking and degradation of the chemokine receptor 4 at the sorting endosome. J Biol Chem 2010; 285:37895-908. [PMID: 20876529 PMCID: PMC2988392 DOI: 10.1074/jbc.m110.129411] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 08/30/2010] [Indexed: 01/08/2023] Open
Abstract
Reversible ubiquitination orchestrated by the opposition of ubiquitin ligases and deubiquitinating enzymes mediates endocytic trafficking of cell surface receptors for lysosomal degradation. Ubiquitin-specific protease 8 (USP8) has previously been implicated in endocytosis of several receptors by virtue of their deubiquitination. The present study explores an indirect role for USP8 in cargo trafficking through its regulation of the chemokine receptor 4 (CXCR4). Contrary to the effects of USP8 loss on enhanced green fluorescent protein, we find that USP8 depletion stabilizes CXCR4 on the cell surface and attenuates receptor degradation without affecting its ubiquitination status. In the presence of ligand, diminished CXCR4 turnover is accompanied by receptor accumulation on enlarged early endosomes and leads to enhancement of phospho-ERK signaling. Perturbation in CXCR4 trafficking, resulting from USP8 inactivation, occurs at the ESCRT-0 checkpoint, and catalytic mutation of USP8 specifically targeted to the ESCRT-0 complex impairs the spatial and temporal organization of the sorting endosome. USP8 functionally opposes the ubiquitin ligase AIP4 with respect to ESCRT-0 ubiquitination, thereby promoting trafficking of CXCR4. Collectively, our findings demonstrate a functional cooperation between USP8, AIP4, and the ESCRT-0 machinery at the early sorting phase of CXCR4 and underscore the versatility of USP8 in shaping trafficking events at the early-to-late endosome transition.
Collapse
Affiliation(s)
- Ilana Berlin
- From the Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637
| | | | - Rebecca S. Dise
- From the Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637
| | - Maria I. Sierra
- From the Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637
| | - Piers D. Nash
- From the Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
16
|
Barone MV, Nanayakkara M, Paolella G, Maglio M, Vitale V, Troiano R, Ribecco MTS, Lania G, Zanzi D, Santagata S, Auricchio R, Troncone R, Auricchio S. Gliadin peptide P31-43 localises to endocytic vesicles and interferes with their maturation. PLoS One 2010; 5:e12246. [PMID: 20805894 PMCID: PMC2923621 DOI: 10.1371/journal.pone.0012246] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 07/22/2010] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Celiac Disease (CD) is both a frequent disease (1:100) and an interesting model of a disease induced by food. It consists in an immunogenic reaction to wheat gluten and glutenins that has been found to arise in a specific genetic background; however, this reaction is still only partially understood. Activation of innate immunity by gliadin peptides is an important component of the early events of the disease. In particular the so-called "toxic" A-gliadin peptide P31-43 induces several pleiotropic effects including Epidermal Growth Factor Receptor (EGFR)-dependent actin remodelling and proliferation in cultured cell lines and in enterocytes from CD patients. These effects are mediated by delayed EGFR degradation and prolonged EGFR activation in endocytic vesicles. In the present study we investigated the effects of gliadin peptides on the trafficking and maturation of endocytic vesicles. METHODS/PRINCIPAL FINDINGS Both P31-43 and the control P57-68 peptide labelled with fluorochromes were found to enter CaCo-2 cells and interact with the endocytic compartment in pulse and chase, time-lapse, experiments. P31-43 was localised to vesicles carrying early endocytic markers at time points when P57-68-carrying vesicles mature into late endosomes. In time-lapse experiments the trafficking of P31-43-labelled vesicles was delayed, regardless of the cargo they were carrying. Furthermore in celiac enterocytes, from cultured duodenal biopsies, P31-43 trafficking is delayed in early endocytic vesicles. A sequence similarity search revealed that P31-43 is strikingly similar to Hrs, a key molecule regulating endocytic maturation. A-gliadin peptide P31-43 interfered with Hrs correct localisation to early endosomes as revealed by western blot and immunofluorescence microscopy. CONCLUSIONS P31-43 and P57-68 enter cells by endocytosis. Only P31-43 localises at the endocytic membranes and delays vesicle trafficking by interfering with Hrs-mediated maturation to late endosomes in cells and intestinal biopsies. Consequently, in P31-43-treated cells, Receptor Tyrosine Kinase (RTK) activation is extended. This finding may explain the role played by gliadin peptides in inducing proliferation and other effects in enterocytes from CD biopsies.
Collapse
Affiliation(s)
- Maria Vittoria Barone
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Merlin Nanayakkara
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Giovanni Paolella
- CEINGE–Biotecnologie Avanzate, Naples, Italy
- Biochemistry Department, University of Naples, Federico II, Naples, Italy
| | - Mariantonia Maglio
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Virginia Vitale
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Raffaele Troiano
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Maria Teresa Silvia Ribecco
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
- CEINGE–Biotecnologie Avanzate, Naples, Italy
| | - Giuliana Lania
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Delia Zanzi
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Sara Santagata
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Renata Auricchio
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Riccardo Troncone
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Salvatore Auricchio
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| |
Collapse
|
17
|
Spahn CMT, Penczek PA. Exploring conformational modes of macromolecular assemblies by multiparticle cryo-EM. Curr Opin Struct Biol 2009; 19:623-31. [PMID: 19767196 DOI: 10.1016/j.sbi.2009.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 11/16/2022]
Abstract
Single particle cryo-electron microscopy (cryo-EM) is a technique aimed at structure determination of large macromolecular complexes in their unconstrained, physiological conditions. The power of the method has been demonstrated in selected studies where for highly symmetric molecules the resolution attained permitted backbone tracing. However, most molecular complexes appear to exhibit intrinsic conformational variability necessary to perform their functions. Therefore, it is now increasingly recognized that sample heterogeneity constitutes a major methodological challenge for cryo-EM. To overcome it dedicated experimental and particularly computational multiparticle approaches have been developed. Their applications point to the future of cryo-EM as an experimental method uniquely suited to visualize the conformational modes of large macromolecular complexes and machines.
Collapse
Affiliation(s)
- Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charite - Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany.
| | | |
Collapse
|
18
|
Ren X, Kloer DP, Kim YC, Ghirlando R, Saidi LF, Hummer G, Hurley JH. Hybrid structural model of the complete human ESCRT-0 complex. Structure 2009; 17:406-16. [PMID: 19278655 DOI: 10.1016/j.str.2009.01.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/16/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
The human Hrs and STAM proteins comprise the ESCRT-0 complex, which sorts ubiquitinated cell surface receptors to lysosomes for degradation. Here we report a model for the complete ESCRT-0 complex based on the crystal structure of the Hrs-STAM core complex, previously solved domain structures, hydrodynamic measurements, and Monte Carlo simulations. ESCRT-0 expressed in insect cells has a hydrodynamic radius of RH = 7.9 nm and is a 1:1 heterodimer. The 2.3 Angstroms crystal structure of the ESCRT-0 core complex reveals two domain-swapped GAT domains and an antiparallel two-stranded coiled-coil, similar to yeast ESCRT-0. ESCRT-0 typifies a class of biomolecular assemblies that combine structured and unstructured elements, and have dynamic and open conformations to ensure versatility in target recognition. Coarse-grained Monte Carlo simulations constrained by experimental RH values for ESCRT-0 reveal a dynamic ensemble of conformations well suited for diverse functions.
Collapse
Affiliation(s)
- Xuefeng Ren
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
High-resolution structural analysis has characterized nearly all of the individual domains of ESCRT (endosomal sorting complex required for transport) subunits, all of the core structures of the soluble complexes and many of the interactions involving domains. Recent emphasis in structural studies has shifted towards efforts to integrate these structures into a larger-scale model. Molecular simulations, hydrodynamic analysis, small-angle X-ray scattering and cryo-EM (electron microscopy) techniques have all been brought to bear on the ESCRT system over the last year.
Collapse
|
20
|
Burkhead JL, Morgan CT, Shinde U, Haddock G, Lutsenko S. COMMD1 forms oligomeric complexes targeted to the endocytic membranes via specific interactions with phosphatidylinositol 4,5-bisphosphate. J Biol Chem 2009; 284:696-707. [PMID: 18940794 PMCID: PMC2610505 DOI: 10.1074/jbc.m804766200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/07/2008] [Indexed: 11/06/2022] Open
Abstract
Copper metabolism Murr1 domain 1 (COMMD1) is a 21-kDa protein involved in copper export from the liver, NF-kappaB signaling, HIV infection, and sodium transport. The precise function of COMMD and the mechanism through which COMMD1 performs its multiple roles are not understood. Recombinant COMMD1 is a soluble protein, yet in cells COMMD1 is largely seen as targeted to cellular membranes. Using co-localization with organelle markers and cell fractionation, we determined that COMMD1 is located in the vesicles of the endocytic pathway, whereas little COMMD1 is detected in either the trans-Golgi network or lysosomes. The mechanism of COMMD1 recruitment to cell membranes was investigated using lipid-spotted arrays and liposomes. COMMD1 specifically binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in the absence of other proteins and does not bind structural lipids; the phosphorylation of PtdIns at position 4 is essential for COMMD1 binding. Proteolytic sensitivity and molecular modeling experiments identified two distinct domains in the structure of COMMD1. The C-terminal domain appears sufficient for lipid binding, because both the full-length and C-terminal domain proteins bind to PtdIns(4,5)P2. In native conditions, endogenous COMMD1 forms large oligomeric complexes both in the cytosol and at the membrane; interaction with PtdIns(4,5)P2 increases the stability of oligomers. Altogether, our results suggest that COMMD1 is a scaffold protein in a distinct sub-compartment of endocytic pathway and offer first clues to its role as a regulator of structurally unrelated membrane transporters.
Collapse
Affiliation(s)
- Jason L Burkhead
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Clinton T Morgan
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Ujwal Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Gabrielle Haddock
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Svetlana Lutsenko
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239.
| |
Collapse
|
21
|
Hanyaloglu AC, von Zastrow M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol 2008; 48:537-68. [PMID: 18184106 DOI: 10.1146/annurev.pharmtox.48.113006.094830] [Citation(s) in RCA: 465] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The endocytic pathway tightly controls the activity of G protein-coupled receptors (GPCRs). Ligand-induced endocytosis can drive receptors into divergent lysosomal and recycling pathways, producing essentially opposite effects on the strength and duration of cellular signaling via heterotrimeric G proteins, and may also promote distinct signaling events from intracellular membranes. This chapter reviews recent developments toward understanding the molecular machinery and functional implications of GPCR sorting in the endocytic pathway, focusing on mammalian GPCRs whose ligand-induced endocytosis is mediated primarily by clathrin-coated pits. Lysosomal sorting of a number of GPCRs occurs via a highly conserved mechanism requiring covalent tagging of receptors with ubiquitin. There is increasing evidence that additional, noncovalent mechanisms control the sorting of endocytosed GPCRs to lysosomes in mammalian cells. Recycling of several GPCRs to the plasma membrane is also specifically sorted, via a mechanism requiring both receptor-specific and shared sorting proteins. The current data reveal an unprecedented degree of specificity and plasticity in the cellular regulation of mammalian GPCRs by endocytic membrane trafficking. These developments have fundamental implications for GPCR pharmacology, and suggest new mechanisms that could be exploited in GPCR-directed pharmacotherapy.
Collapse
Affiliation(s)
- Aylin C Hanyaloglu
- Institute of Reproductive Biology and Development, Imperial College London, Hammersmith Campus, London, United Kingdom
| | | |
Collapse
|
22
|
Nickerson DP, Russell MRG, Odorizzi G. A concentric circle model of multivesicular body cargo sorting. EMBO Rep 2007; 8:644-50. [PMID: 17603537 PMCID: PMC1905901 DOI: 10.1038/sj.embor.7401004] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 05/07/2007] [Indexed: 11/08/2022] Open
Abstract
Targeting of ubiquitylated transmembrane proteins into luminal vesicles of endosomal multivesicular bodies (MVBs) depends on their recognition by endosomal sorting complexes required for transport (ESCRTs), which are also required for MVB vesicle formation. The model originally proposed for how ESCRTs function succinctly summarizes much of the protein-protein interaction and genetic data but oversimplifies the coordination of cargo recognition and cannot explain why ESCRTs are required for the budding of MVB vesicles. Recent structural and functional studies of ESCRT complexes suggest an alternative model that might direct the next series of breakthroughs in understanding protein sorting through the MVB pathway.
Collapse
Affiliation(s)
- Daniel P Nickerson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, 347 UCB, Boulder, Colorado 80309-0347, USA
| | - Matthew R G Russell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, 347 UCB, Boulder, Colorado 80309-0347, USA
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, 347 UCB, Boulder, Colorado 80309-0347, USA
- Tel: +1 303 735 0179; Fax: +1 303 492 7744;
| |
Collapse
|
23
|
Barriere H, Nemes C, Du K, Lukacs GL. Plasticity of polyubiquitin recognition as lysosomal targeting signals by the endosomal sorting machinery. Mol Biol Cell 2007; 18:3952-65. [PMID: 17686993 PMCID: PMC1995726 DOI: 10.1091/mbc.e07-07-0678] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Lysosomal targeting is fundamental for the regulated disposal of ubiquitinated membrane proteins from the cell surface. To elucidate ubiquitin (Ub) configurations that are necessary and sufficient as multivesicular body (MVB)/lysosomal-sorting motifs, the intraendosomal destination and transport kinetics of model transmembrane cargo molecules bearing monoubiquitinated, multi-monoubiquitinated, or polyubiquitinated cytoplasmic tails were determined. Monomeric CD4 chimeras with K63-linked poly-Ub chains and tetrameric CD4-mono-Ub chimeras were rapidly targeted to the lysosome. In contrast, lysosomal delivery of CD4 chimeras exposing K48-linked Ub chains was delayed, whereas delivery of monoubiquitinated CD4 chimeras was undetectable. Similar difference was observed in the lysosomal targeting of mono- versus polyubiquitinated invariant chain and CD4 ubiquitinated by the MARCH (membrane-associated RING-CH) IV Ub ligase. Consistent with this, Hrs (hepatocyte growth factor regulated tyrosine kinase phosphorylated substrate), an endosomal sorting adaptor, binds preferentially to K63-Ub chain and negligibly to mono-Ub. These results highlight the plasticity of Ub as a sorting signal and its recognition by the endosomal sorting machinery, and together with previous data, suggest a regulatory role for assembly and disassembly of Ub chains of specific topology in lysosomal cargo sorting.
Collapse
Affiliation(s)
- Herve Barriere
- Hospital for Sick Children Research Institute, Department of Biochemistry and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5G 1X8
| | | | | | | |
Collapse
|
24
|
Prag G, Watson H, Kim YC, Beach BM, Ghirlando R, Hummer G, Bonifacino JS, Hurley JH. The Vps27/Hse1 complex is a GAT domain-based scaffold for ubiquitin-dependent sorting. Dev Cell 2007; 12:973-86. [PMID: 17543868 PMCID: PMC2292400 DOI: 10.1016/j.devcel.2007.04.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/20/2007] [Accepted: 04/18/2007] [Indexed: 01/29/2023]
Abstract
The yeast Vps27/Hse1 complex and the homologous mammalian Hrs/STAM complex deliver ubiquitinated transmembrane proteins to the ESCRT endosomal-sorting pathway. The Vps27/Hse1 complex directly binds to ubiquitinated transmembrane proteins and recruits both ubiquitin ligases and deubiquitinating enzymes. We have solved the crystal structure of the core responsible for the assembly of the Vps27/Hse1 complex at 3.0 A resolution. The structure consists of two intertwined GAT domains, each consisting of two helices from one subunit and one from the other. The two GAT domains are connected by an antiparallel coiled coil, forming a 90 A-long barbell-like structure. This structure places the domains of Vps27 and Hse1 that recruit ubiquitinated cargo and deubiquitinating enzymes close to each other. Coarse-grained Monte Carlo simulations of the Vps27/Hse1 complex on a membrane show how the complex binds cooperatively to lipids and ubiquitinated membrane proteins and acts as a scaffold for ubiquitination reactions.
Collapse
Affiliation(s)
- Gali Prag
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The past two years have seen an explosion in the structural understanding of the endosomal sorting complex required for transport (ESCRT) machinery that facilitates the trafficking of ubiquitylated proteins from endosomes to lysosomes via multivesicular bodies (MVBs). A common organization of all ESCRTs is a rigid core attached to flexibly connected modules that recognize other components of the MVB pathway. Several previously unsuspected key links between multiple ESCRT subunits, phospholipids and ubiquitin have now been elucidated, which, together with the detailed morphological analyses of ESCRT-depletion phenotypes, provide new insights into the mechanism of MVB biogenesis.
Collapse
Affiliation(s)
- Roger L Williams
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
26
|
Stockert RJ, Potvin B, Nath S, Wolkoff AW, Stanley P. New liver cell mutants defective in the endocytic pathway. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1741-9. [PMID: 17512493 PMCID: PMC1939891 DOI: 10.1016/j.bbamem.2007.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 03/06/2007] [Accepted: 04/02/2007] [Indexed: 11/17/2022]
Abstract
To isolate mutant liver cells defective in the endocytic pathway, a selection strategy using toxic ligands for two distinct membrane receptors was utilized. Rare survivors termed trafficking mutants (Trf2-Trf7) were stable and more resistant than the parental HuH-7 cells to both toxin conjugates. They differed from the previously isolated Trf1 HuH-7 mutant as they expressed casein kinase 2 alpha'' (CK2alpha'') which is missing from Trf1 cells and which corrects the Trf1 trafficking phenotype. Binding of (125)I-asialoorosomucoid (ASOR) and cell surface expression of asialoglycoprotein receptor (ASGPR) were reduced approximately 20%-60% in Trf2-Trf7 cells compared to parental HuH-7, without a reduction in total cellular ASGPR. Based on (125)I-transferrin binding, cell surface transferrin receptor activity was reduced between 13% and 88% in the various mutant cell lines. Distinctive phenotypic traits were identified in the differential resistance of Trf2-Trf7 to a panel of lectins and toxins and to UV light-induced cell death. By following the endocytic uptake and trafficking of Alexa(488)-ASOR, significant differences in endosomal fusion between parental HuH-7 and the Trf mutants became apparent. Unlike parental HuH-7 cells in which the fusion of endosomes into larger vesicles was evident as early as 20 min, ASOR endocytosed into the Trf mutants remained within small vesicles for up to 60 min. Identifying the biochemical and genetic mechanisms underlying these phenotypes should uncover novel and unpredicted protein-protein or protein-lipid interactions that orchestrate specific steps in membrane protein trafficking.
Collapse
Affiliation(s)
- Richard J Stockert
- The Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | |
Collapse
|