1
|
Min J, Ali F, Brooks BR, Bruce BD, Amin M. Predicting Iron-Sulfur Cluster Redox Potentials: A Simple Model Derived from Protein Structures. ACS OMEGA 2025; 10:15790-15798. [PMID: 40291006 PMCID: PMC12019745 DOI: 10.1021/acsomega.5c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
Iron-sulfur (Fe-S) clusters are critical cofactors in metalloproteins, essential for cellular processes such as energy production, DNA repair, enzymatic catalysis, and metabolic regulation. While Fe-S cluster functions are intimately linked to their redox properties, their precise roles in many proteins remain unclear. In this study, we present a regression model based on experimental redox potential (E m ) data, utilizing only two features: the Fe-S cluster's total charge and the Fe atoms' average valence. This model achieves a high correlation with experimental data (R 2 = 0.82) and an average prediction error of 0.12 V. Applying this model across the Protein Data Bank, we predict E m values for all cataloged Fe-S clusters, uncovering redox potential trends across diverse cluster classes. The computed redox potentials showed strong agreement with experimental values, achieving an overall accuracy of 88%. This streamlined, computationally accessible approach enhances the annotation and mechanistic understanding of Fe-S proteins, offering new insights into the redox variability of electron transport proteins. Our model holds promise for advancing studies of metalloprotein function and facilitating the design of bioinspired redox systems.
Collapse
Affiliation(s)
- Jiyeon Min
- Laboratory
of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Biophysics
Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Fidaa Ali
- Bredesen
Center for Interdisciplinary Research and Graduate Education, Genome
Science and Technology Program, University
of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bernard R. Brooks
- Laboratory
of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Barry D. Bruce
- Bredesen
Center for Interdisciplinary Research and Graduate Education, Genome
Science and Technology Program, University
of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 United States
| | - Muhamed Amin
- Laboratory
of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Department
of Sciences, University College Groningen, University of Groningen, 9718 BG, Groningen, The Netherlands
| |
Collapse
|
2
|
Tsutsumi E, Niwa S, Takeda R, Sakamoto N, Okatsu K, Fukai S, Ago H, Nagao S, Sekiguchi H, Takeda K. Structure of a putative immature form of a Rieske-type iron-sulfur protein in complex with zinc chloride. Commun Chem 2023; 6:190. [PMID: 37689761 PMCID: PMC10492824 DOI: 10.1038/s42004-023-01000-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
Iron-sulfur clusters are prosthetic groups of proteins involved in various biological processes. However, details of the immature state of the iron-sulfur cluster into proteins have not yet been elucidated. We report here the first structural analysis of the Zn-containing form of a Rieske-type iron-sulfur protein, PetA, from Thermochromatium tepidum (TtPetA) by X-ray crystallography and small-angle X-ray scattering analysis. The Zn-containing form of TtPetA was indicated to be a dimer in solution. The zinc ion adopts a regular tetra-coordination with two chloride ions and two cysteine residues. Only a histidine residue in the cluster-binding site exhibited a conformational difference from the [2Fe-2S] containing form. The Zn-containing structure indicates that the conformation of the cluster binding site is already constructed and stabilized before insertion of [2Fe-2S]. The binding mode of ZnCl2, similar to the [2Fe-2S] cluster, suggests that the zinc ions might be involved in the insertion of the [2Fe-2S] cluster.
Collapse
Affiliation(s)
- Erika Tsutsumi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Satomi Niwa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ryota Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Natsuki Sakamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kei Okatsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideo Ago
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Satoshi Nagao
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Hiroshi Sekiguchi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Kazuki Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
3
|
Jafari S, Ryde U, Irani M. Two local minima for structures of [4Fe-4S] clusters obtained with density functional theory methods. Sci Rep 2023; 13:10832. [PMID: 37402767 PMCID: PMC10319735 DOI: 10.1038/s41598-023-37755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
[4Fe-4S] clusters are essential cofactors in many proteins involved in biological redox-active processes. Density functional theory (DFT) methods are widely used to study these clusters. Previous investigations have indicated that there exist two local minima for these clusters in proteins. We perform a detailed study of these minima in five proteins and two oxidation states, using combined quantum mechanical and molecular mechanical (QM/MM) methods. We show that one local minimum (L state) has longer Fe-Fe distances than the other (S state), and that the L state is more stable for all cases studied. We also show that some DFT methods may only obtain the L state, while others may obtain both states. Our work provides new insights into the structural diversity and stability of [4Fe-4S] clusters in proteins, and highlights the importance of reliable DFT methods and geometry optimization. We recommend r2SCAN for optimizing [4Fe-4S] clusters in proteins, which gives the most accurate structures for the five proteins studied.
Collapse
Affiliation(s)
- Sonia Jafari
- Department of Chemistry, University of Kurdistan, P.O.Box 66175-416, Sanandaj, Iran
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, P.O.Box 124, 221 00, Lund, Sweden
| | - Mehdi Irani
- Department of Chemistry, University of Kurdistan, P.O.Box 66175-416, Sanandaj, Iran.
| |
Collapse
|
4
|
Kishimoto H, Azai C, Yamamoto T, Mutoh R, Nakaniwa T, Tanaka H, Miyanoiri Y, Kurisu G, Oh-oka H. Soluble domains of cytochrome c-556 and Rieske iron-sulfur protein from Chlorobaculum tepidum: Crystal structures and interaction analysis. Curr Res Struct Biol 2023; 5:100101. [PMID: 37180033 PMCID: PMC10172866 DOI: 10.1016/j.crstbi.2023.100101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
In photosynthetic green sulfur bacteria, the electron transfer reaction from menaquinol:cytochrome c oxidoreductase to the P840 reaction center (RC) complex occurs directly without any involvement of soluble electron carrier protein(s). X-ray crystallography has determined the three-dimensional structures of the soluble domains of the CT0073 gene product and Rieske iron-sulfur protein (ISP). The former is a mono-heme cytochrome c with an α-absorption peak at 556 nm. The overall fold of the soluble domain of cytochrome c-556 (designated as cyt c-556sol) consists of four α-helices and is very similar to that of water-soluble cyt c-554 that independently functions as an electron donor to the P840 RC complex. However, the latter's remarkably long and flexible loop between the α3 and α4 helices seems to make it impossible to be a substitute for the former. The structure of the soluble domain of the Rieske ISP (Rieskesol protein) shows a typical β-sheets-dominated fold with a small cluster-binding and a large subdomain. The architecture of the Rieskesol protein is bilobal and belongs to those of b6f-type Rieske ISPs. Nuclear magnetic resonance (NMR) measurements revealed weak non-polar but specific interaction sites on Rieskesol protein when mixed with cyt c-556sol. Therefore, menaquinol:cytochrome c oxidoreductase in green sulfur bacteria features a Rieske/cytb complex tightly associated with membrane-anchored cyt c-556.
Collapse
Affiliation(s)
- Hiraku Kishimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Chihiro Azai
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Tomoya Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Risa Mutoh
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tetsuko Nakaniwa
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yohei Miyanoiri
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
- Corresponding author.
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
- Corresponding author.
| | - Hirozo Oh-oka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- Corresponding author. Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
5
|
Effects of Active-Center Reduction of Plant-Type Ferredoxin on Its Structure and Dynamics: Computational Analysis Using Molecular Dynamics Simulations. Int J Mol Sci 2022; 23:ijms232415913. [PMID: 36555561 PMCID: PMC9782105 DOI: 10.3390/ijms232415913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
"Plant-type" ferredoxins (Fds) in the thylakoid membranes of plants, algae, and cyanobacteria possess a single [2Fe-2S] cluster in active sites and mediate light-induced electron transfer from Photosystem I reaction centers to various Fd-dependent enzymes. Structural knowledge of plant-type Fds is relatively limited to static structures, and the detailed behavior of oxidized and reduced Fds has not been fully elucidated. It is important that the investigations of the effects of active-center reduction on the structures and dynamics for elucidating electron-transfer mechanisms. In this study, model systems of oxidized and reduced Fds were constructed from the high-resolution crystal structure of Chlamydomonas reinhardtii Fd1, and three 200 ns molecular dynamics simulations were performed for each system. The force field parameters of the oxidized and reduced active centers were independently obtained using quantum chemical calculations. There were no substantial differences in the global conformations of the oxidized and reduced forms. In contrast, active-center reduction affected the hydrogen-bond network and compactness of the surrounding residues, leading to the increased flexibility of the side chain of Phe61, which is essential for the interaction between Fd and the target protein. These computational results will provide insight into the electron-transfer mechanisms in the Fds.
Collapse
|
6
|
Jafari S, Tavares Santos YA, Bergmann J, Irani M, Ryde U. Benchmark Study of Redox Potential Calculations for Iron-Sulfur Clusters in Proteins. Inorg Chem 2022; 61:5991-6007. [PMID: 35403427 PMCID: PMC9044450 DOI: 10.1021/acs.inorgchem.1c03422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Redox potentials
have been calculated for 12 different iron–sulfur
sites of 6 different types with 1–4 iron ions. Structures were
optimized with combined quantum mechanical and molecular mechanical
(QM/MM) methods, and the redox potentials were calculated using the
QM/MM energies, single-point QM methods in a continuum solvent or
by QM/MM thermodynamic cycle perturbations. We show that the best
results are obtained with a large QM system (∼300 atoms, but
a smaller QM system, ∼150 atoms, can be used for the QM/MM
geometry optimization) and a large value of the dielectric constant
(80). For absolute redox potentials, the B3LYP density functional
method gives better results than TPSS, and the results are improved
with a larger basis set. However, for relative redox potentials, the
opposite is true. The results are insensitive to the force field (charges
of the surroundings) used for the QM/MM calculations or whether the
protein and solvent outside the QM system are relaxed or kept fixed
at the crystal structure. With the best approach for relative potentials,
mean absolute and maximum deviations of 0.17 and 0.44 V, respectively,
are obtained after removing a systematic error of −0.55 V.
Such an approach can be used to identify the correct oxidation states
involved in a certain redox reaction. We
have studied redox potentials of 12 iron−sulfur
sites of 6 types with 1−4 iron ions. Structures were optimized
with combined quantum mechanical and molecular mechanical (QM/MM)
methods, and the redox potentials were calculated with QM/MM, QM calculations
in a continuum solvent or by QM/MM thermodynamic cycle perturbations.
The best results are obtained with the second approach using ∼300
atoms in the QM model and a large dielectric constant.
Collapse
Affiliation(s)
- Sonia Jafari
- Department of Chemistry, University of Kurdistan, 66175-416 Sanandaj, Iran.,Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Yakini A Tavares Santos
- Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Justin Bergmann
- Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Mehdi Irani
- Department of Chemistry, University of Kurdistan, 66175-416 Sanandaj, Iran
| | - Ulf Ryde
- Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
7
|
Boncella AE, Sabo ET, Santore RM, Carter J, Whalen J, Hudspeth JD, Morrison CN. The expanding utility of iron-sulfur clusters: Their functional roles in biology, synthetic small molecules, maquettes and artificial proteins, biomimetic materials, and therapeutic strategies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Di Rocco G, Battistuzzi G, Borsari M, Bortolotti CA, Ranieri A, Sola M. The enthalpic and entropic terms of the reduction potential of metalloproteins: Determinants and interplay. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Crofts AR. The modified Q-cycle: A look back at its development and forward to a functional model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148417. [PMID: 33745972 DOI: 10.1016/j.bbabio.2021.148417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/28/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022]
Abstract
On looking back at a lifetime of research, it is interesting to see, in the light of current progress, how things came to be, and to speculate on how things might be. I am delighted in the context of the Mitchell prize to have that excuse to present this necessarily personal view of developments in areas of my interests. I have focused on the Q-cycle and a few examples showing wider ramifications, since that had been the main interest of the lab in the 20 years since structures became available, - a watershed event in determining our molecular perspective. I have reviewed the evidence for our model for the mechanism of the first electron transfer of the bifurcated reaction at the Qo-site, which I think is compelling. In reviewing progress in understanding the second electron transfer, I have revisited some controversies to justify important conclusions which appear, from the literature, not to have been taken seriously. I hope this does not come over as nitpicking. The conclusions are important to the final section in which I develop an internally consistent mechanism for turnovers of the complex leading to a state similar to that observed in recent rapid-mix/freeze-quench experiments, reported three years ago. The final model is necessarily speculative but is open to test.
Collapse
Affiliation(s)
- Antony R Crofts
- Department of Biochemistry, 417 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, IL 61801, United States of America
| |
Collapse
|
10
|
Krishnan A, Burroughs AM, Iyer LM, Aravind L. Comprehensive classification of ABC ATPases and their functional radiation in nucleoprotein dynamics and biological conflict systems. Nucleic Acids Res 2020; 48:10045-10075. [PMID: 32894288 DOI: 10.1093/nar/gkaa726] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
ABC ATPases form one of the largest clades of P-loop NTPase fold enzymes that catalyze ATP-hydrolysis and utilize its free energy for a staggering range of functions from transport to nucleoprotein dynamics. Using sensitive sequence and structure analysis with comparative genomics, for the first time we provide a comprehensive classification of the ABC ATPase superfamily. ABC ATPases developed structural hallmarks that unambiguously distinguish them from other P-loop NTPases such as an alternative to arginine-finger-based catalysis. At least five and up to eight distinct clades of ABC ATPases are reconstructed as being present in the last universal common ancestor. They underwent distinct phases of structural innovation with the emergence of inserts constituting conserved binding interfaces for proteins or nucleic acids and the adoption of a unique dimeric toroidal configuration for DNA-threading. Specifically, several clades have also extensively radiated in counter-invader conflict systems where they serve as nodal nucleotide-dependent sensory and energetic components regulating a diversity of effectors (including some previously unrecognized) acting independently or together with restriction-modification systems. We present a unified mechanism for ABC ATPase function across disparate systems like RNA editing, translation, metabolism, DNA repair, and biological conflicts, and some unexpected recruitments, such as MutS ATPases in secondary metabolism.
Collapse
Affiliation(s)
- Arunkumar Krishnan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
11
|
Ohnishi Y, Muraki N, Kiyota D, Okumura H, Baba S, Kawano Y, Kumasaka T, Tanaka H, Kurisu G. X-ray dose-dependent structural changes of the [2Fe-2S] ferredoxin from Chlamydomonas reinhardtii. J Biochem 2020; 167:549-555. [PMID: 32282907 DOI: 10.1093/jb/mvaa045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 12/28/2019] [Indexed: 11/13/2022] Open
Abstract
Plant-type ferredoxin (Fd) is an electron transfer protein in chloroplast. Redox-dependent structural change of Fd controls its association with and dissociation from Fd-dependent enzymes. Among many X-ray structures of oxidized Fd have been reported so far, very likely a given number of them was partially reduced by strong X-ray. To understand the precise structural change between reduced and oxidized Fd, it is important to know whether the crystals of oxidized Fd may or may not be reduced during the X-ray experiment. We prepared the thin plate-shaped Fd crystals from Chlamydomonas reinhardtii and monitored its absorption spectra during experiment. Absorption spectra of oxidized Fd crystals were clearly changed to that of reduced form in an X-ray dose-dependent manner. In another independent experiment, the X-ray diffraction images obtained from different parts of one single crystal were sorted and merged to form two datasets with low and high X-ray doses. An Fo-Fo map calculated from the two datasets showed that X-ray reduction causes a small displacement of the iron atoms in the [2Fe-2S] cluster. Both our spectroscopic and crystallographic studies confirm X-ray dose-dependent reduction of Fd, and suggest a structural basis for its initial reduction step especially in the core of the cluster.
Collapse
Affiliation(s)
- Yusuke Ohnishi
- Division of Protein Structural Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Norifumi Muraki
- Division of Protein Structural Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daiki Kiyota
- Division of Protein Structural Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hideo Okumura
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Seiki Baba
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yoshiaki Kawano
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Takashi Kumasaka
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hideaki Tanaka
- Division of Protein Structural Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Genji Kurisu
- Division of Protein Structural Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
12
|
Chand A, Biswal HS. Hydrogen Bonds with Chalcogens: Looking Beyond the Second Row of the Periodic Table. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00140-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Xiao AY, Maynard MR, Piett CG, Nagel ZD, Alexander JS, Kevil CG, Berridge MV, Pattillo CB, Rosen LR, Miriyala S, Harrison L. Sodium sulfide selectively induces oxidative stress, DNA damage, and mitochondrial dysfunction and radiosensitizes glioblastoma (GBM) cells. Redox Biol 2019; 26:101220. [PMID: 31176262 PMCID: PMC6556549 DOI: 10.1016/j.redox.2019.101220] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) has a poor prognosis despite intensive treatment with surgery and chemoradiotherapy. Previous studies using dose-escalated radiotherapy have demonstrated improved survival; however, increased rates of radionecrosis have limited its use. Development of radiosensitizers could improve patient outcome. In the present study, we report the use of sodium sulfide (Na2S), a hydrogen sulfide (H2S) donor, to selectively kill GBM cells (T98G and U87) while sparing normal human cerebral microvascular endothelial cells (hCMEC/D3). Na2S also decreased mitochondrial respiration, increased oxidative stress and induced γH2AX foci and oxidative base damage in GBM cells. Since Na2S did not significantly alter T98G capacity to perform non-homologous end-joining or base excision repair, it is possible that GBM cell killing could be attributed to increased damage induction due to enhanced reactive oxygen species production. Interestingly, Na2S enhanced mitochondrial respiration, produced a more reducing environment and did not induce high levels of DNA damage in hCMEC/D3. Taken together, this data suggests involvement of mitochondrial respiration in Na2S toxicity in GBM cells. The fact that survival of LN-18 GBM cells lacking mitochondrial DNA (ρ0) was not altered by Na2S whereas the survival of LN-18 ρ+ cells was compromised supports this conclusion. When cells were treated with Na2S and photon or proton radiation, GBM cell killing was enhanced, which opens the possibility of H2S being a radiosensitizer. Therefore, this study provides the first evidence that H2S donors could be used in GBM therapy to potentiate radiation-induced killing. Sodium sulfide selectively kills GBM cells by inducing DNA damage. Sodium sulfide induces mitochondrial dysfunction and oxidative stress in GBM cells. Toxicity to sodium sulfide is dependent on mitochondrial respiration. Sodium sulfide radiosensitizes GBM cells to photon and proton radiation.
Collapse
Affiliation(s)
- Adam Y Xiao
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Matthew R Maynard
- Radiation Oncology, Willis-Knighton Cancer Center, Shreveport, LA, 71103, USA
| | - Cortt G Piett
- Harvard University, School of Public Health, Boston, MA, 02115, USA
| | - Zachary D Nagel
- Harvard University, School of Public Health, Boston, MA, 02115, USA
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | | | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Lane R Rosen
- Radiation Oncology, Willis-Knighton Cancer Center, Shreveport, LA, 71103, USA
| | - Sumitra Miriyala
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Lynn Harrison
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA.
| |
Collapse
|
14
|
Kubas A, Maszota P. Theoretical Insights into the Unique Ligation of [Fe
4
S
4
] Iron–Sulfur Clusters. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adam Kubas
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01‐224 Warsaw Poland
| | - Paweł Maszota
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01‐224 Warsaw Poland
| |
Collapse
|
15
|
Borek A, Ekiert R, Osyczka A. Functional flexibility of electron flow between quinol oxidation Q o site of cytochrome bc 1 and cytochrome c revealed by combinatory effects of mutations in cytochrome b, iron-sulfur protein and cytochrome c 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:754-761. [PMID: 29705394 DOI: 10.1016/j.bbabio.2018.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 01/07/2023]
Abstract
Transfer of electron from quinol to cytochrome c is an integral part of catalytic cycle of cytochrome bc1. It is a multi-step reaction involving: i) electron transfer from quinol bound at the catalytic Qo site to the Rieske iron-sulfur ([2Fe-2S]) cluster, ii) large-scale movement of a domain containing [2Fe-2S] cluster (ISP-HD) towards cytochrome c1, iii) reduction of cytochrome c1 by reduced [2Fe-2S] cluster, iv) reduction of cytochrome c by cytochrome c1. In this work, to examine this multi-step reaction we introduced various types of barriers for electron transfer within the chain of [2Fe-2S] cluster, cytochrome c1 and cytochrome c. The barriers included: impediment in the motion of ISP-HD, uphill electron transfer from [2Fe-2S] cluster to heme c1 of cytochrome c1, and impediment in the catalytic quinol oxidation. The barriers were introduced separately or in various combinations and their effects on enzymatic activity of cytochrome bc1 were compared. This analysis revealed significant degree of functional flexibility allowing the cofactor chains to accommodate certain structural and/or redox potential changes without losing overall electron and proton transfers capabilities. In some cases inhibitory effects compensated one another to improve/restore the function. The results support an equilibrium model in which a random oscillation of ISP-HD between the Qo site and cytochrome c1 helps maintaining redox equilibrium between all cofactors of the chain. We propose a new concept in which independence of the dynamics of the Qo site substrate and the motion of ISP-HD is one of the elements supporting this equilibrium and also is a potential factor limiting the overall catalytic rate.
Collapse
Affiliation(s)
- Arkadiusz Borek
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Robert Ekiert
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland.
| |
Collapse
|
16
|
Watson C, Niks D, Hille R, Vieira M, Schoepp-Cothenet B, Marques AT, Romão MJ, Santos-Silva T, Santini JM. Electron transfer through arsenite oxidase: Insights into Rieske interaction with cytochrome c. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2017; 1858:865-872. [PMID: 28801050 PMCID: PMC5574378 DOI: 10.1016/j.bbabio.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/05/2017] [Accepted: 08/05/2017] [Indexed: 11/25/2022]
Abstract
Arsenic is a widely distributed environmental toxin whose presence in drinking water poses a threat to >140 million people worldwide. The respiratory enzyme arsenite oxidase from various bacteria catalyses the oxidation of arsenite to arsenate and is being developed as a biosensor for arsenite. The arsenite oxidase from Rhizobium sp. str. NT-26 (a member of the Alphaproteobacteria) is a heterotetramer consisting of a large catalytic subunit (AioA), which contains a molybdenum centre and a 3Fe-4S cluster, and a small subunit (AioB) containing a Rieske 2Fe-2S cluster. Stopped-flow spectroscopy and isothermal titration calorimetry (ITC) have been used to better understand electron transfer through the redox-active centres of the enzyme, which is essential for biosensor development. Results show that oxidation of arsenite at the active site is extremely fast with a rate of >4000s-1 and reduction of the electron acceptor is rate-limiting. An AioB-F108A mutation results in increased activity with the artificial electron acceptor DCPIP and decreased activity with cytochrome c, which in the latter as demonstrated by ITC is not due to an effect on the protein-protein interaction but instead to an effect on electron transfer. These results provide further support that the AioB F108 is important in electron transfer between the Rieske subunit and cytochrome c and its absence in the arsenite oxidases from the Betaproteobacteria may explain the inability of these enzymes to use this electron acceptor.
Collapse
Affiliation(s)
- Cameron Watson
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, WC1E 6BT, United Kingdom
| | - Dimitri Niks
- Department of Biochemistry, University of California; Riverside, Riverside, CA 92521, USA
| | - Russ Hille
- Department of Biochemistry, University of California; Riverside, Riverside, CA 92521, USA
| | - Marta Vieira
- UCIBIO-Requimte, Department of Chemistry, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Portugal
| | | | - Alexandra T Marques
- UCIBIO-Requimte, Department of Chemistry, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Portugal
| | - Maria João Romão
- UCIBIO-Requimte, Department of Chemistry, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Portugal
| | - Teresa Santos-Silva
- UCIBIO-Requimte, Department of Chemistry, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Portugal
| | - Joanne M Santini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, WC1E 6BT, United Kingdom.
| |
Collapse
|
17
|
Veit S, Takeda K, Tsunoyama Y, Baymann F, Nevo R, Reich Z, Rögner M, Miki K, Rexroth S. Structural and functional characterisation of the cyanobacterial PetC3 Rieske protein family. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1879-1891. [DOI: 10.1016/j.bbabio.2016.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/12/2016] [Accepted: 09/17/2016] [Indexed: 11/30/2022]
|
18
|
Birrell JA, Laurich C, Reijerse EJ, Ogata H, Lubitz W. Importance of Hydrogen Bonding in Fine Tuning the [2Fe-2S] Cluster Redox Potential of HydC from Thermotoga maritima. Biochemistry 2016; 55:4344-55. [PMID: 27396836 DOI: 10.1021/acs.biochem.6b00341] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron-sulfur clusters form one of the largest and most diverse classes of enzyme cofactors in nature. They may serve as structural factors, form electron transfer chains between active sites and external redox partners, or form components of enzyme active sites. Their specific role is a consequence of the cluster type and the surrounding protein environment. The relative effects of these factors are not completely understood, and it is not yet possible to predict the properties of iron-sulfur clusters based on amino acid sequences or rationally tune their properties to generate proteins with new desirable functions. Here, we generate mutations in a [2Fe-2S] cluster protein, the TmHydC subunit of the trimeric [FeFe]-hydrogenase from Thermotoga maritima, to study the factors that affect its redox potential. Saturation mutagenesis of Val131 was used to tune the redox potential over a 135 mV range and revealed that cluster redox potential and electronic properties correlate with amino acid hydrophobicity and the ability to form hydrogen bonds to the cluster. Proline scanning mutagenesis between pairs of ligating cysteines was used to remove backbone amide hydrogen bonds to the cluster and decrease the redox potential by up to 132 mV, without large structural changes in most cases. However, substitution of Gly83 with proline caused a change of HydC to a [4Fe-4S] cluster protein with a redox potential of -526 mV. Together, these results confirm the importance of hydrogen bonding in tuning cluster redox potentials and demonstrate the versatility of iron-sulfur cluster protein folds at binding different types of clusters.
Collapse
Affiliation(s)
- James A Birrell
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Christoph Laurich
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Edward J Reijerse
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
19
|
Sarewicz M, Dutka M, Pietras R, Borek A, Osyczka A. Effect of H bond removal and changes in the position of the iron-sulphur head domain on the spin-lattice relaxation properties of the [2Fe-2S](2+) Rieske cluster in cytochrome bc(1). Phys Chem Chem Phys 2016; 17:25297-308. [PMID: 26355649 PMCID: PMC5716461 DOI: 10.1039/c5cp02815a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Here, comparative electron spin–lattice relaxation studies of the 2Fe–2S iron–sulphur (Fe–S) cluster embedded in a large membrane protein complex – cytochrome bc1 – are reported.
Here, comparative electron spin–lattice relaxation studies of the 2Fe–2S iron–sulphur (Fe–S) cluster embedded in a large membrane protein complex – cytochrome bc1 – are reported. Structural modifications of the local environment alone (mutations S158A and Y160W removing specific H bonds between Fe–S and amino acid side chains) or in combination with changes in global protein conformation (mutations/inhibitors changing the position of the Fe–S binding domain within the protein complex) resulted in different redox potentials as well as g-, g-strain and the relaxation rates (T1–1) for the Fe–S cluster. The relaxation rates for T < 25 K were measured directly by inversion recovery, while for T > 60 K they were deduced from simulation of continuous wave EPR spectra of the cluster using a model that included anisotropy of Lorentzian broadening. In all cases, the relaxation rate involved contributions from direct, second-order Raman and Orbach processes, each dominating over different temperature ranges. The analysis of T1–1 (T) over the range 5–120 K yielded the values of the Orbach energy (EOrb), Debye temperature θD and Raman process efficiency CRam for each variant of the protein. As the Orbach energy was generally higher for mutants S158A and Y160W, compared to wild-type protein (WT), it is suggested that H bond removal influences the geometry leading to increased strength of antiferromagnetic coupling between two Fe ions of the cluster. While θD was similar for all variants (∼107 K), the efficiency of the Raman process generally depends on the spin–orbit coupling that is lower for S158A and Y160W mutants, when compared to the WT. However, in several cases CRam did not only correlate with spin–orbit coupling but was also influenced by other factors – possibly the modification of protein rigidity and therefore the vibrational modes around the Fe–S cluster that change upon the movement of the iron–sulphur head domain.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | | | | | | | | |
Collapse
|
20
|
The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part III. {[Fe2S2](Cys)3(X)} (X=Asp, Arg, His) and {[Fe2S2](Cys)2(His)2} proteins. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Ali ME, Staemmler V, Marx D. Magnetostructural dynamics of Rieske versus ferredoxin iron-sulfur cofactors. Phys Chem Chem Phys 2015; 17:6289-96. [PMID: 25648433 DOI: 10.1039/c4cp05465b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The local chemical environment of the [2Fe-2S] cofactor hosted by ferredoxin and Rieske-type proteins is fundamentally different due to the presence of distinct ligands at the two iron centers in the case of Rieske proteins, whereas they are identical in ferredoxins. This renders Rieske [2Fe-2S] cores chemically asymmetric and results in more complex vibrational spectra as compared to ferredoxin. Likewise, one would expect other properties, for instance the dynamics of the magnetic exchange coupling constant J, to be also more complex. Applying ab initio molecular dynamics using our recently introduced spin-constrained two-determinant extended broken symmetry (CEBS) approach to Rieske and ferredoxin model complexes at 300 K, we extract the molecular fluctuations and the resulting magnetostructural cross-correlations involving the antiferromagnetic exchange interaction J(t). This analysis demonstrates that the details of the magnetostructural dynamics are indeed distinctly different for Rieske and ferredoxin cofactors, while the time averages of 〈J〉 are shown to be essentially identical. In particular, the frequency window between about 200 and 350 cm(-1), is a "fingerprint region" that allows one to distinguish chemically asymmetric from symmetric cofactors and thus Rieske proteins from ferredoxins.
Collapse
Affiliation(s)
- Md Ehesan Ali
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | | | | |
Collapse
|
22
|
Barragan AM, Crofts AR, Schulten K, Solov'yov IA. Identification of ubiquinol binding motifs at the Qo-site of the cytochrome bc1 complex. J Phys Chem B 2014; 119:433-47. [PMID: 25372183 PMCID: PMC4297238 DOI: 10.1021/jp510022w] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Enzymes of the bc1 complex family power
the biosphere through their central role in respiration and photosynthesis.
These enzymes couple the oxidation of quinol molecules by cytochrome c to the transfer of protons across the membrane, to generate
a proton-motive force that drives ATP synthesis. Key for the function
of the bc1 complex is the initial redox
process that involves a bifurcated electron transfer in which the
two electrons from a quinol substrate are passed to different electron
acceptors in the bc1 complex. The electron
transfer is coupled to proton transfer. The overall mechanism of quinol
oxidation by the bc1 complex is well enough
characterized to allow exploration at the atomistic level, but details
are still highly controversial. The controversy stems from the uncertain
binding motifs of quinol at the so-called Qo active site of the bc1 complex.
Here we employ a combination of classical all atom molecular dynamics
and quantum chemical calculations to reveal the binding modes of quinol
at the Qo-site of the bc1 complex from Rhodobacter capsulatus. The calculations suggest a novel configuration of amino acid residues
responsible for quinol binding and support a mechanism for proton-coupled
electron transfer from quinol to iron–sulfur cluster through
a bridging hydrogen bond from histidine that stabilizes the reaction
complex.
Collapse
Affiliation(s)
- Angela M Barragan
- Department of Physics, University of Illinois at Urbana-Champaign , 1110 W. Green Street, Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
23
|
The iron-sulfur core in Rieske proteins is not symmetric. J Biol Inorg Chem 2014; 19:1287-93. [PMID: 25151276 DOI: 10.1007/s00775-014-1185-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
At variance with ferredoxins, Rieske-type proteins contain a chemically asymmetric iron-sulfur cluster. Nevertheless, X-ray crystallography apparently finds their [2Fe-2S] cores to be structurally symmetric or very close to symmetric (i.e. the four iron-sulfur bonds in the [2Fe-2S] core are equidistant). Using a combination of advanced density-based approaches, including finite-temperature molecular dynamics to access thermal fluctuations and free-energy profiles, in conjunction with correlated wavefunction-based methods we clearly predict an asymmetric core structure. This reveals a fundamental and intrinsic difference within the iron-sulfur clusters hosted by Rieske proteins and ferredoxins and thus opens up a new dimension for the ongoing efforts in understanding the role of Rieske-type [2Fe-2S] cluster in electron transfer processes that occur in almost all biological systems.
Collapse
|
24
|
Shoji M, Yoshioka Y, Yamaguchi K. An efficient initial guess formation of broken-symmetry solutions by using localized natural orbitals. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.05.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Karagas NE, Jones CN, Osborn DJ, Dzierlenga AL, Oyala P, Konkle ME, Whitney EM, David Britt R, Hunsicker-Wang LM. The reduction rates of DEPC-modified mutant Thermus thermophilus Rieske proteins differ when there is a negative charge proximal to the cluster. J Biol Inorg Chem 2014; 19:1121-35. [PMID: 24916128 DOI: 10.1007/s00775-014-1167-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
Abstract
Rieske and Rieske-type proteins are electron transport proteins involved in key biological processes such as respiration, photosynthesis, and detoxification. They have a [2Fe-2S] cluster ligated by two cysteines and two histidines. A series of mutations, L135E, L135R, L135A, and Y158F, of the Rieske protein from Thermus thermophilus has been produced which probe the effects of the neighboring residues, in the second sphere, on the dynamics of cluster reduction and the reactivity of the ligating histidines. These properties were probed using titrations and modifications with diethyl pyrocarbonate (DEPC) at various pH values monitored using UV-Visible and circular dichroism spectrophotometry. These results, along with results from EPR studies, provide information on ligating histidine modification and rate of reduction of each of the mutant proteins. L135R, L135A, and Y158F react with DEPC similarly to wild type, resulting in modified protein with a reduced [2Fe-2S] cluster in <90 min, whereas L135E requires >15 h under the same conditions. Thus, the negative charge slows down the rate of reduction and provides an explanation as to why negatively charged residues are rarely, if ever, found in the equivalent position of other Rieske and Rieske-type proteins.
Collapse
Affiliation(s)
- Nicholas E Karagas
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, TX, 78212, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pietras R, Sarewicz M, Osyczka A. Molecular organization of cytochrome c2 near the binding domain of cytochrome bc1 studied by electron spin-lattice relaxation enhancement. J Phys Chem B 2014; 118:6634-43. [PMID: 24845964 PMCID: PMC4065165 DOI: 10.1021/jp503339g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Measurements
of specific interactions between proteins are challenging.
In redox systems, interactions involve surfaces near the attachment
sites of cofactors engaged in interprotein electron transfer (ET).
Here we analyzed binding of cytochrome c2 to cytochrome bc1 by measuring paramagnetic
relaxation enhancement (PRE) of spin label (SL) attached to cytochrome c2. PRE was exclusively induced by the iron atom
of heme c1 of cytochrome bc1, which guaranteed that only the configurations with
SL to heme c1 distances up to ∼30
Å were detected. Changes in PRE were used to qualitatively and
quantitatively characterize the binding. Our data suggest that at
low ionic strength and under an excess of cytochrome c2 over cytochrome bc1, several
cytochrome c2 molecules gather near the
binding domain forming a “cloud” of molecules. When
the cytochrome bc1 concentration increases,
the cloud disperses to populate additional available binding domains.
An increase in ionic strength weakens the attractive forces and the
average distance between cytochrome c2 and cytochrome bc1 increases. The spatial
arrangement of the protein complex at various ionic strengths is different.
Above 150 mM NaCl the lifetime of the complexes becomes so short that
they are undetectable. All together the results indicate that cytochrome c2 molecules, over the range of salt concentration
encompassing physiological ionic strength, do not form stable, long-lived
complexes but rather constantly collide with the surface of cytochrome bc1 and ET takes place coincidentally with one
of these collisions.
Collapse
Affiliation(s)
- Rafał Pietras
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , 30-387 Kraków, Poland
| | | | | |
Collapse
|
27
|
Degli Esposti M, Chouaia B, Comandatore F, Crotti E, Sassera D, Lievens PMJ, Daffonchio D, Bandi C. Evolution of mitochondria reconstructed from the energy metabolism of living bacteria. PLoS One 2014; 9:e96566. [PMID: 24804722 PMCID: PMC4013037 DOI: 10.1371/journal.pone.0096566] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/07/2014] [Indexed: 11/26/2022] Open
Abstract
The ancestors of mitochondria, or proto-mitochondria, played a crucial role in the evolution of eukaryotic cells and derived from symbiotic α-proteobacteria which merged with other microorganisms - the basis of the widely accepted endosymbiotic theory. However, the identity and relatives of proto-mitochondria remain elusive. Here we show that methylotrophic α-proteobacteria could be the closest living models for mitochondrial ancestors. We reached this conclusion after reconstructing the possible evolutionary pathways of the bioenergy systems of proto-mitochondria with a genomic survey of extant α-proteobacteria. Results obtained with complementary molecular and genetic analyses of diverse bioenergetic proteins converge in indicating the pathway stemming from methylotrophic bacteria as the most probable route of mitochondrial evolution. Contrary to other α-proteobacteria, methylotrophs show transition forms for the bioenergetic systems analysed. Our approach of focusing on these bioenergetic systems overcomes the phylogenetic impasse that has previously complicated the search for mitochondrial ancestors. Moreover, our results provide a new perspective for experimentally re-evolving mitochondria from extant bacteria and in the future produce synthetic mitochondria.
Collapse
Affiliation(s)
| | - Bessem Chouaia
- Department of Food, Environmental and Evolutionary Sciences, University of Milan, Milan, Italy
| | - Francesco Comandatore
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, University of Milan, Milan, Italy
| | - Elena Crotti
- Department of Food, Environmental and Evolutionary Sciences, University of Milan, Milan, Italy
| | - Davide Sassera
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, University of Milan, Milan, Italy
| | | | - Daniele Daffonchio
- Department of Food, Environmental and Evolutionary Sciences, University of Milan, Milan, Italy
| | - Claudio Bandi
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, University of Milan, Milan, Italy
| |
Collapse
|
28
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 624] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
Albers A, Demeshko S, Dechert S, Saouma CT, Mayer JM, Meyer F. Fast proton-coupled electron transfer observed for a high-fidelity structural and functional [2Fe-2S] Rieske model. J Am Chem Soc 2014; 136:3946-54. [PMID: 24506804 PMCID: PMC3985845 DOI: 10.1021/ja412449v] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Rieske cofactors
have a [2Fe–2S] cluster with unique {His2Cys2} ligation and distinct Fe subsites. The histidine
ligands are functionally relevant, since they allow for coupling of
electron and proton transfer (PCET) during quinol oxidation in respiratory
and photosynthetic ET chains. Here we present the highest fidelity
synthetic analogue for the Rieske [2Fe–2S] cluster reported
so far. This synthetic analogue 5x– emulates the heteroleptic {His2Cys2} ligation of the [2Fe–2S] core, and it also serves
as a functional model that undergoes fast concerted proton and electron
transfer (CPET) upon reaction of the mixed-valent (ferrous/ferric)
protonated 5H2– with TEMPO. The thermodynamics
of the PCET square scheme for 5x– have been determined, and three species (diferric 52–, protonated diferric 5H–, and mixed-valent 53–) have been characterized by X-ray diffraction. pKa values for 5H– and 5H2– differ by about 4 units, and the reduction
potential of 5H– is shifted anodically
by about +230 mV compared to that of 52–. While the N–H bond dissociation free energy of 5H2– (60.2 ± 0.5 kcal mol–1) and the free energy, ΔG°CPET, of its reaction with TEMPO (−6.3 kcal mol–1) are similar to values recently reported for a homoleptic {N2/N2}-coordinated [2Fe–2S] cluster, CPET
is significantly faster for 5H2– with
biomimetic {N2/S2} ligation (k = (9.5 ± 1.2) × 104 M–1 s–1, ΔH‡ = 8.7
± 1.0 kJ mol–1, ΔS‡ = −120 ± 40 J mol–1 K–1, and ΔG‡ = 43.8 ± 0.3 kJ mol–1 at 293 K). These parameters,
and the comparison with homoleptic analogues, provide important information
and new perspectives for the mechanistic understanding of the biological
Rieske cofactor.
Collapse
Affiliation(s)
- Antonia Albers
- Institute of Inorganic Chemistry, Georg-August-University Göttingen , Tammannstrasse 4, D-37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Faiella M, Roy A, Sommer D, Ghirlanda G. De novo design of functional proteins: Toward artificial hydrogenases. Biopolymers 2013; 100:558-71. [DOI: 10.1002/bip.22420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/08/2013] [Accepted: 09/18/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Marina Faiella
- Department of Chemistry and Biochemistry; Arizona State University; Tempe AZ
| | - Anindya Roy
- Department of Chemistry and Biochemistry; Arizona State University; Tempe AZ
| | - Dayn Sommer
- Department of Chemistry and Biochemistry; Arizona State University; Tempe AZ
| | - Giovanna Ghirlanda
- Department of Chemistry and Biochemistry; Arizona State University; Tempe AZ
| |
Collapse
|
31
|
Crofts AR, Hong S, Wilson C, Burton R, Victoria D, Harrison C, Schulten K. The mechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc1 complex. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:1362-77. [PMID: 23396004 PMCID: PMC3995752 DOI: 10.1016/j.bbabio.2013.01.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/12/2012] [Accepted: 01/18/2013] [Indexed: 01/04/2023]
Abstract
1. Recent results suggest that the major flux is carried by a monomeric function, not by an intermonomer electron flow. 2. The bifurcated reaction at the Qo-site involves sequential partial processes, - a rate limiting first electron transfer generating a semiquinone (SQ) intermediate, and a rapid second electron transfer in which the SQ is oxidized by the low potential chain. 3. The rate constant for the first step in a strongly endergonic, proton-first-then-electron mechanism, is given by a Marcus-Brønsted treatment in which a rapid electron transfer is convoluted with a weak occupancy of the proton configuration needed for electron transfer. 4. A rapid second electron transfer pulls the overall reaction over. Mutation of Glu-295 of cyt b shows it to be a key player. 5. In more crippled mutants, electron transfer is severely inhibited and the bell-shaped pH dependence of wildtype is replaced by a dependence on a single pK at ~8.5 favoring electron transfer. Loss of a pK ~6.5 is explained by a change in the rate limiting step from the first to the second electron transfer; the pK ~8.5 may reflect dissociation of QH. 6. A rate constant (<10(3)s(-1)) for oxidation of SQ in the distal domain by heme bL has been determined, which precludes mechanisms for normal flux in which SQ is constrained there. 7. Glu-295 catalyzes proton exit through H(+) transfer from QH, and rotational displacement to deliver the H(+) to exit channel(s). This opens a volume into which Q(-) can move closer to the heme to speed electron transfer. 8. A kinetic model accounts well for the observations, but leaves open the question of gating mechanisms. For the first step we suggest a molecular "escapement"; for the second a molecular ballet choreographed through coulombic interactions. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Antony R Crofts
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Warelow TP, Oke M, Schoepp-Cothenet B, Dahl JU, Bruselat N, Sivalingam GN, Leimkühler S, Thalassinos K, Kappler U, Naismith JH, Santini JM. The respiratory arsenite oxidase: structure and the role of residues surrounding the rieske cluster. PLoS One 2013; 8:e72535. [PMID: 24023621 PMCID: PMC3758308 DOI: 10.1371/journal.pone.0072535] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022] Open
Abstract
The arsenite oxidase (Aio) from the facultative autotrophic Alphaproteobacterium Rhizobium sp. NT-26 is a bioenergetic enzyme involved in the oxidation of arsenite to arsenate. The enzyme from the distantly related heterotroph, Alcaligenes faecalis, which is thought to oxidise arsenite for detoxification, consists of a large α subunit (AioA) with bis-molybdopterin guanine dinucleotide at its active site and a 3Fe-4S cluster, and a small β subunit (AioB) which contains a Rieske 2Fe-2S cluster. The successful heterologous expression of the NT-26 Aio in Escherichia coli has resulted in the solution of its crystal structure. The NT-26 Aio, a heterotetramer, shares high overall similarity to the heterodimeric arsenite oxidase from A. faecalis but there are striking differences in the structure surrounding the Rieske 2Fe-2S cluster which we demonstrate explains the difference in the observed redox potentials (+225 mV vs. +130/160 mV, respectively). A combination of site-directed mutagenesis and electron paramagnetic resonance was used to explore the differences observed in the structure and redox properties of the Rieske cluster. In the NT-26 AioB the substitution of a serine (S126 in NT-26) for a threonine as in the A. faecalis AioB explains a -20 mV decrease in redox potential. The disulphide bridge in the A. faecalis AioB which is conserved in other betaproteobacterial AioB subunits and the Rieske subunit of the cytochrome bc 1 complex is absent in the NT-26 AioB subunit. The introduction of a disulphide bridge had no effect on Aio activity or protein stability but resulted in a decrease in the redox potential of the cluster. These results are in conflict with previous data on the betaproteobacterial AioB subunit and the Rieske of the bc 1 complex where removal of the disulphide bridge had no effect on the redox potential of the former but a decrease in cluster stability was observed in the latter.
Collapse
Affiliation(s)
- Thomas P. Warelow
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Muse Oke
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, United Kingdom
| | - Barbara Schoepp-Cothenet
- Laboratoire de Bioénergétique et Ingénierie des Protéines, BIP/CNRS, UMR7281, AMU, Marseille, France
| | - Jan U. Dahl
- Universität Potsdam, Institut für Biochemie and Biologie, Potsdam, Germany
| | - Nicole Bruselat
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Ganesh N. Sivalingam
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Silke Leimkühler
- Universität Potsdam, Institut für Biochemie and Biologie, Potsdam, Germany
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - James H. Naismith
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, United Kingdom
| | - Joanne M. Santini
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
33
|
Cheng VWT, Tran QM, Boroumand N, Rothery RA, Maklashina E, Cecchini G, Weiner JH. A conserved lysine residue controls iron-sulfur cluster redox chemistry in Escherichia coli fumarate reductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1141-7. [PMID: 23711795 DOI: 10.1016/j.bbabio.2013.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 11/16/2022]
Abstract
The Escherichia coli respiratory complex II paralogs succinate dehydrogenase (SdhCDAB) and fumarate reductase (FrdABCD) catalyze interconversion of succinate and fumarate coupled to quinone reduction or oxidation, respectively. Based on structural comparison of the two enzymes, equivalent residues at the interface between the highly homologous soluble domains and the divergent membrane anchor domains were targeted for study. This included the residue pair SdhB-R205 and FrdB-S203, as well as the conserved SdhB-K230 and FrdB-K228 pair. The close proximity of these residues to the [3Fe-4S] cluster and the quinone binding pocket provided an excellent opportunity to investigate factors controlling the reduction potential of the [3Fe-4S] cluster, the directionality of electron transfer and catalysis, and the architecture and chemistry of the quinone binding sites. Our results indicate that both SdhB-R205 and SdhB-K230 play important roles in fine tuning the reduction potential of both the [3Fe-4S] cluster and the heme. In FrdABCD, mutation of FrdB-S203 did not alter the reduction potential of the [3Fe-4S] cluster, but removal of the basic residue at FrdB-K228 caused a significant downward shift (>100mV) in potential. The latter residue is also indispensable for quinone binding and enzyme activity. The differences observed for the FrdB-K228 and Sdh-K230 variants can be attributed to the different locations of the quinone binding site in the two paralogs. Although this residue is absolutely conserved, they have diverged to achieve different functions in Frd and Sdh.
Collapse
Affiliation(s)
- Victor W T Cheng
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Berry EA, De Bari H, Huang LS. Unanswered questions about the structure of cytochrome bc1 complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1258-77. [PMID: 23624176 DOI: 10.1016/j.bbabio.2013.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/13/2013] [Accepted: 04/16/2013] [Indexed: 11/25/2022]
Abstract
X-ray crystal structures of bc1 complexes obtained over the last 15 years have provided a firm structural basis for our understanding of the complex. For the most part there is good agreement between structures from different species, different crystal forms, and with different inhibitors bound. In this review we focus on some of the remaining unexplained differences, either between the structures themselves or the interpretations of the structural observations. These include the structural basis for the motion of the Rieske iron-sulfur protein in response to inhibitors, a possible conformational change involving tyrosine132 of cytochrome (cyt) b, the presence of cis-peptides at the beginnings of transmembrane helices C, E, and H, the structural insight into the function of the so-called "Core proteins", different modelings of the retained signal peptide, orientation of the low-potential heme b, and chirality of the Met ligand to heme c1. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Edward A Berry
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | |
Collapse
|
35
|
Defining a direction: electron transfer and catalysis in Escherichia coli complex II enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:668-78. [PMID: 23396003 DOI: 10.1016/j.bbabio.2013.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 11/24/2022]
Abstract
There are two homologous membrane-bound enzymes in Escherichia coli that catalyze reversible conversion between succinate/fumarate and quinone/quinol. Succinate:ubiquinone reductase (SQR) is a component of aerobic respiratory chains, whereas quinol:fumarate reductase (QFR) utilizes menaquinol to reduce fumarate in a final step of anaerobic respiration. Although, both protein complexes are capable of supporting bacterial growth on either minimal succinate or fumarate media, the enzymes are more proficient in their physiological directions. Here we evaluate factors that may underlie this catalytic bias. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
|
36
|
Victoria D, Burton R, Crofts AR. Role of the -PEWY-glutamate in catalysis at the Q(o)-site of the Cyt bc(1) complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:365-86. [PMID: 23123515 DOI: 10.1016/j.bbabio.2012.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/09/2023]
Abstract
We re-examine the pH dependence of partial processes of ubihydroquinone (QH(2)) turnover in Glu-295 mutants in Rhodobacter sphaeroides to clarify the mechanistic role. In more crippled mutants, the bell-shaped pH profile of wildtype was replaced by dependence on a single pK at ~8.5 favoring electron transfer. Loss of the pK at 6.5 reflects a change in the rate-limiting step from the first to the second electron transfer. Over the range of pH 6-8, no major pH dependence of formation of the initial reaction complex was seen, and the rates of bypass reactions were similar to the wildtype. Occupancy of the Q(o)-site by semiquinone (SQ) was similar in the wildtype and the Glu→Trp mutant. Since heme b(L) is initially oxidized in the latter, the bifurcated reaction can still occur, allowing estimation of an empirical rate constant <10(3)s(-1) for reduction of heme b(L) by SQ from the domain distal from heme b(L), a value 1000-fold smaller than that expected from distance. If the pK ~8.5 in mutant strains is due to deprotonation of the neutral semiquinone, with Q(•-) as electron donor to heme b(L), then in wildtype this low value would preclude mechanisms for normal flux in which semiquinone is constrained to this domain. A kinetic model in which Glu-295 catalyzes H(+) transfer from QH•, and delivery of the H(+) to exit channel(s) by rotational displacement, and facilitates rapid electron transfer from SQ to heme b(L) by allowing Q(•-) to move closer to the heme, accounts well for the observations.
Collapse
Affiliation(s)
- Doreen Victoria
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
37
|
Galardon E, Roger T, Deschamps P, Roussel P, Tomas A, Artaud I. Synthesis of a FeIISH Complex Stabilized by an Intramolecular N–H···S Hydrogen Bond, Which Acts as a H2S Donor. Inorg Chem 2012; 51:10068-70. [DOI: 10.1021/ic300952d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Erwan Galardon
- Laboratoire de Chimie et Biochimie
Pharmacologique et Toxicologique, UMR 8601 CNRS, Université Paris Descartes, PRES
Paris cité, 45 rue des Saints Pères, 75270 Paris Cedex
06, France
| | - Thomas Roger
- Laboratoire de Chimie et Biochimie
Pharmacologique et Toxicologique, UMR 8601 CNRS, Université Paris Descartes, PRES
Paris cité, 45 rue des Saints Pères, 75270 Paris Cedex
06, France
| | - Patrick Deschamps
- Laboratoire
de Crystallographie
et RMN Biologiques, UMR 8015 CNRS, Université Paris Descartes, PRES Paris cité, 4 avenue de
l’Observatoire, 75270 Paris Cedex 06, France
| | - Pascal Roussel
- Unité de Catalyse et Chimie
du Solide (UCCS), UMR 8012 CNRS, École Nationale Supérieure de Chimie de Lille, BP 90108, 59652
Villeneuve d’Ascq Cedex, France
| | - Alain Tomas
- Laboratoire
de Crystallographie
et RMN Biologiques, UMR 8015 CNRS, Université Paris Descartes, PRES Paris cité, 4 avenue de
l’Observatoire, 75270 Paris Cedex 06, France
| | - Isabelle Artaud
- Laboratoire de Chimie et Biochimie
Pharmacologique et Toxicologique, UMR 8601 CNRS, Université Paris Descartes, PRES
Paris cité, 45 rue des Saints Pères, 75270 Paris Cedex
06, France
| |
Collapse
|
38
|
El Khoury Y, Hellwig P. A combined far-infrared spectroscopic and electrochemical approach for the study of iron-sulfur proteins. Chemphyschem 2011; 12:2669-74. [PMID: 21887734 DOI: 10.1002/cphc.201100165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/15/2011] [Indexed: 11/11/2022]
Abstract
Herein, we present the development of a far-infrared spectroscopic approach for studying metalloenzyme active sites in a redox-dependent manner. An electrochemical cell with 5 mm path and based on silicon windows was found to be appropriate for the measurement of aqueous solutions down to 200 cm(-1) . The cell was probed with the infrared redox signature of the metal-ligand vibrations of different iron-sulfur proteins. Each Fe-S cluster type was found to show a specific spectral signature. As a common feature, a downshift of the frequency of the Fe-S vibrations was seen upon reduction, in line with the increase of the Fe-S bond. This downshift was found to be fully reversible. Electrochemically induced FTIR difference spectroscopy in the far infrared is now possible, opening new perspectives on the understanding of metalloproteins in function of the redox state.
Collapse
Affiliation(s)
- Youssef El Khoury
- Institut de Chimie, UMR, Laboratoire de spectroscopie vibrationnelle et électrochimie des biomolécules Université de Strasbourg, France
| | | |
Collapse
|
39
|
Cramer WA, Hasan SS, Yamashita E. The Q cycle of cytochrome bc complexes: a structure perspective. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:788-802. [PMID: 21352799 PMCID: PMC3101715 DOI: 10.1016/j.bbabio.2011.02.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/08/2011] [Accepted: 02/13/2011] [Indexed: 12/01/2022]
Abstract
Aspects of the crystal structures of the hetero-oligomeric cytochrome bc(1) and b(6)f ("bc") complexes relevant to their electron/proton transfer function and the associated redox reactions of the lipophilic quinones are discussed. Differences between the b(6)f and bc(1) complexes are emphasized. The cytochrome bc(1) and b(6)f dimeric complexes diverge in structure from a core of subunits that coordinate redox groups consisting of two bis-histidine coordinated hemes, a heme b(n) and b(p) on the electrochemically negative (n) and positive (p) sides of the complex, the high potential [2Fe-2S] cluster and c-type heme at the p-side aqueous interface and aqueous phase, respectively, and quinone/quinol binding sites on the n- and p-sides of the complex. The bc(1) and b(6)f complexes diverge in subunit composition and structure away from this core. b(6)f Also contains additional prosthetic groups including a c-type heme c(n) on the n-side, and a chlorophyll a and β-carotene. Common structure aspects; functions of the symmetric dimer. (I) Quinone exchange with the bilayer. An inter-monomer protein-free cavity of approximately 30Å along the membrane normal×25Å (central inter-monomer distance)×15Å (depth in the center), is common to both bc(1) and b(6)f complexes, providing a niche in which the lipophilic quinone/quinol (Q/QH(2)) can be exchanged with the membrane bilayer. (II) Electron transfer. The dimeric structure and the proximity of the two hemes b(p) on the electrochemically positive side of the complex in the two monomer units allow the possibility of two alternate routes of electron transfer across the complex from heme b(p) to b(n): intra-monomer and inter-monomer involving electron cross-over between the two hemes b(p). A structure-based summary of inter-heme distances in seven bc complexes, representing mitochondrial, chromatophore, cyanobacterial, and algal sources, indicates that, based on the distance parameter, the intra-monomer pathway would be favored kinetically. (III) Separation of quinone binding sites. A consequence of the dimer structure and the position of the Q/QH(2) binding sites is that the p-side QH(2) oxidation and n-side Q reduction sites are each well separated. Therefore, in the event of an overlap in residence time by QH(2) or Q molecules at the two oxidation or reduction sites, their spatial separation would result in minimal steric interference between extended Q or QH(2) isoprenoid chains. (IV) Trans-membrane QH(2)/Q transfer. (i) n/p-side QH(2)/Q transfer may be hindered by lipid acyl chains; (ii) the shorter less hindered inter-monomer pathway across the complex would not pass through the center of the cavity, as inferred from the n-side antimycin site on one monomer and the p-side stigmatellin site on the other residing on the same surface of the complex. (V) Narrow p-side portal for QH(2)/Q passage. The [2Fe-2S] cluster that serves as oxidant, and whose histidine ligand serves as a H(+) acceptor in the oxidation of QH(2), is connected to the inter-monomer cavity by a narrow extended portal, which is also occupied in the b(6)f complex by the 20 carbon phytyl chain of the bound chlorophyll.
Collapse
Affiliation(s)
- William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
40
|
Lee DW, Selamoglu N, Lanciano P, Cooley JW, Forquer I, Kramer DM, Daldal F. Loss of a conserved tyrosine residue of cytochrome b induces reactive oxygen species production by cytochrome bc1. J Biol Chem 2011; 286:18139-48. [PMID: 21454570 DOI: 10.1074/jbc.m110.214460] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Production of reactive oxygen species (ROS) induces oxidative damages, decreases cellular energy conversion efficiencies, and induces metabolic diseases in humans. During respiration, cytochrome bc(1) efficiently oxidizes hydroquinone to quinone, but how it performs this reaction without any leak of electrons to O(2) to yield ROS is not understood. Using the bacterial enzyme, here we show that a conserved Tyr residue of the cytochrome b subunit of cytochrome bc(1) is critical for this process. Substitution of this residue with other amino acids decreases cytochrome bc(1) activity and enhances ROS production. Moreover, the Tyr to Cys mutation cross-links together the cytochrome b and iron-sulfur subunits and renders the bacterial enzyme sensitive to O(2) by oxidative disruption of its catalytic [2Fe-2S] cluster. Hence, this Tyr residue is essential in controlling unproductive encounters between O(2) and catalytic intermediates at the quinol oxidation site of cytochrome bc(1) to prevent ROS generation. Remarkably, the same Tyr to Cys mutation is encountered in humans with mitochondrial disorders and in Plasmodium species that are resistant to the anti-malarial drug atovaquone. These findings illustrate the harmful consequences of this mutation in human diseases.
Collapse
Affiliation(s)
- Dong-Woo Lee
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Jing B, Li QZ, Gong BA, Liu ZB, Li WZ, Cheng JB, Sun JZ. The prominent enhancing effect and mechanism of the methyl group in the X···Y (X=O, S, H3CO, H3CS, (H3C)2O, (H3C)2S; Y=HCN, HNC) hydrogen-bonded complex. Mol Phys 2011. [DOI: 10.1080/00268976.2011.554899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Iron-sulfur world in aerobic and hyperthermoacidophilic archaea Sulfolobus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010. [PMID: 20885930 PMCID: PMC2946596 DOI: 10.1155/2010/842639] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/26/2010] [Indexed: 11/18/2022]
Abstract
The general importance of the Fe-S cluster prosthetic groups in biology is primarily attributable to specific features of iron and sulfur chemistry, and the assembly and interplay of the Fe-S cluster core with the surrounding protein is the key to in-depth understanding of the underlying mechanisms. In the aerobic and thermoacidophilic archaea, zinc-containing ferredoxin is abundant in the cytoplasm, functioning as a key electron carrier, and many Fe-S enzymes are produced to participate in the central metabolic and energetic pathways. De novo formation of intracellular Fe-S clusters does not occur spontaneously but most likely requires the operation of a SufBCD complex of the SUF machinery, which is the only Fe-S cluster biosynthesis system conserved in these archaea. In this paper, a brief introduction to the buildup and maintenance of the intracellular Fe-S world in aerobic and hyperthermoacidophilic crenarchaeotes, mainly Sulfolobus, is given in the biochemical, genetic, and evolutionary context.
Collapse
|
43
|
El Khoury Y, Trivella A, Gross J, Hellwig P. Probing the Hydrogen Bonding Structure in the Rieske Protein. Chemphyschem 2010; 11:3313-9. [DOI: 10.1002/cphc.201000331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Kounosu A, Hasegawa K, Iwasaki T, Kumasaka T. Crystallization and preliminary X-ray diffraction studies of hyperthermophilic archaeal Rieske-type ferredoxin (ARF) from Sulfolobus solfataricus P1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:842-5. [PMID: 20606288 DOI: 10.1107/s1744309110019263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 05/21/2010] [Indexed: 11/10/2022]
Abstract
The hyperthermophilic archaeal Rieske-type [2Fe-2S] ferredoxin (ARF) from Sulfolobus solfataricus P1 contains a low-potential Rieske-type [2Fe-2S] cluster that has served as a tractable model for ligand-substitution studies on this protein family. Recombinant ARF harbouring a pET30a vector-derived N-terminal extension region plus a hexahistidine tag has been heterologously overproduced in Escherichia coli, purified and crystallized by the hanging-drop vapour-diffusion method using 0.05 M sodium acetate, 0.05 M HEPES, 2 M ammonium sulfate pH 5.5. The crystals diffracted to 1.85 A resolution and belonged to the tetragonal space group P4(3)2(1)2, with unit-cell parameters a = 60.72, c = 83.31 A. The asymmetric unit contains one protein molecule.
Collapse
Affiliation(s)
- Asako Kounosu
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | | | | | | |
Collapse
|
45
|
Duval S, Santini JM, Nitschke W, Hille R, Schoepp-Cothenet B. The small subunit AroB of arsenite oxidase: lessons on the [2Fe-2S] Rieske protein superfamily. J Biol Chem 2010; 285:20442-51. [PMID: 20421651 DOI: 10.1074/jbc.m110.113811] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here, we describe the characterization of the [2Fe-2S] clusters of arsenite oxidases from Rhizobium sp. NT-26 and Ralstonia sp. 22. Both reduced Rieske proteins feature EPR signals similar to their homologs from Rieske-cyt b complexes, with g values at 2.027, 1.88, and 1.77. Redox titrations in a range of pH values showed that both [2Fe-2S] centers have constant E(m) values up to pH 8 at approximately +210 mV. Above this pH value, the E(m) values of both centers are pH-dependent, similar to what is observed for the Rieske-cyt b complexes. The redox properties of these two proteins, together with the low E(m) value (+160 mV) of the Alcaligenes faecalis arsenite oxidase Rieske (confirmed herein), are in line with the structural determinants observed in the primary sequences, which have previously been deduced from the study of Rieske-cyt b complexes. Since the published E(m) value of the Chloroflexus aurantiacus Rieske (+100 mV) is in conflict with this sequence analysis, we re-analyzed membrane samples of this organism and obtain a new value (+200 mV). Arsenite oxidase activity was affected by quinols and quinol analogs, which is similar to what is found with the Rieske-cyt b complexes. Together, these results show that the Rieske protein of arsenite oxidase shares numerous properties with its counterpart in the Rieske-cyt b complex. However, two cysteine residues, strictly conserved in the Rieske-cyt b-Rieske and considered to be crucial for its function, are not conserved in the arsenite oxidase counterpart. We discuss the role of these residues.
Collapse
Affiliation(s)
- Simon Duval
- Laboratoire de Bioénergétique et Ingénierie des Protéines UPR 9036, Institut de Biologie Structurale et Microbiologie, CNRS, F-13402 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
46
|
Behnke CA, Le Trong I, Godden JW, Merritt EA, Teller DC, Bajorath J, Stenkamp RE. Atomic resolution studies of carbonic anhydrase II. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:616-27. [PMID: 20445237 DOI: 10.1107/s0907444910006554] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 02/19/2010] [Indexed: 11/10/2022]
Abstract
Carbonic anhydrase has been well studied structurally and functionally owing to its importance in respiration. A large number of X-ray crystallographic structures of carbonic anhydrase and its inhibitor complexes have been determined, some at atomic resolution. Structure determination of a sulfonamide-containing inhibitor complex has been carried out and the structure was refined at 0.9 A resolution with anisotropic atomic displacement parameters to an R value of 0.141. The structure is similar to those of other carbonic anhydrase complexes, with the inhibitor providing a fourth nonprotein ligand to the active-site zinc. Comparison of this structure with 13 other atomic resolution (higher than 1.25 A) isomorphous carbonic anhydrase structures provides a view of the structural similarity and variability in a series of crystal structures. At the center of the protein the structures superpose very well. The metal complexes superpose (with only two exceptions) with standard deviations of 0.01 A in some zinc-protein and zinc-ligand bond lengths. In contrast, regions of structural variability are found on the protein surface, possibly owing to flexibility and disorder in the individual structures, differences in the chemical and crystalline environments or the different approaches used by different investigators to model weak or complicated electron-density maps. These findings suggest that care must be taken in interpreting structural details on protein surfaces on the basis of individual X-ray structures, even if atomic resolution data are available.
Collapse
Affiliation(s)
- Craig A Behnke
- Department of Biochemistry, University of Washington, Box 357430, Seattle, WA 98195-7430, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH. A profile of ring-hydroxylating oxygenases that degrade aromatic pollutants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 206:65-94. [PMID: 20652669 DOI: 10.1007/978-1-4419-6260-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Numerous aromatic compounds are pollutants to which exposure exists or is possible, and are of concern because they are mutagenic, carcinogenic, or display other toxic characteristics. Depending on the types of dioxygenation reactions of which microorganisms are capable, they utilize ring-hydroxylating oxygenases (RHOs) to initiate the degradation and detoxification of such aromatic compound pollutants. Gene families encoding for RHOs appear to be most common in bacteria. Oxygenases are important in degrading both natural and synthetic aromatic compounds and are particularly important for their role in degrading toxic pollutants; for this reason, it is useful for environmental scientists and others to understand more of their characteristics and capabilities. It is the purpose of this review to address RHOs and to describe much of their known character, starting with a review as to how RHOs are classified. A comprehensive phylogenetic analysis has revealed that all RHOs are, in some measure, related, presumably by divergent evolution from a common ancestor, and this is reflected in how they are classified. After we describe RHO classification schemes, we address the relationship between RHO structure and function. Structural differences affect substrate specificity and product formation. In the alpha subunit of the known terminal oxygenase of RHOs, there is a catalytic domain with a mononuclear iron center that serves as a substrate-binding site and a Rieske domain that retains a [2Fe-2S] cluster that acts as an entity of electron transfer for the mononuclear iron center. Oxygen activation and substrate dihydroxylation occurring at the catalytic domain are dependent on the binding of substrate at the active site and the redox state of the Rieske center. The electron transfer from NADH to the catalytic pocket of RHO and catalyzing mechanism of RHOs is depicted in our review and is based on the results of recent studies. Electron transfer involving the RHO system typically involves four steps: NADH-ferredoxin reductase receives two electrons from NADH; ferredoxin binds with NADH-ferredoxin reductase and accepts electron from it; the reduced ferredoxin dissociates from NADH-ferredoxin reductase and shuttles the electron to the Rieske domain of the terminal oxygenase; the Rieske cluster donates electrons to O2 through the mononuclear iron. On the basis of crystal structure studies, it has been proposed that the broad specificity of the RHOs results from the large size and specific topology of its hydrophobic substrate-binding pocket. Several amino acids that determine the substrate specificity and enantioselectivity of RHOs have been identified through sequence comparison and site-directed mutagenesis at the active site. Exploiting the crystal structure data and the available active site information, engineered RHO enzymes have been and can be designed to improve their capacity to degrade environmental pollutants. Such attempts to enhance degradation capabilities of RHOs have been made. Dioxygenases have been modified to improve the degradation capacities toward PCBs, PAHs, dioxins, and some other aromatic hydrocarbons. We hope that the results of this review and future research on enhancing RHOs will promote their expanded usage and effectiveness for successfully degrading environmental aromatic pollutants.
Collapse
Affiliation(s)
- Ri-He Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kuznetsov AM, Zueva EM, Masliy AN, Krishtalik LI. Redox potential of the Rieske iron-sulfur protein quantum-chemical and electrostatic study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:347-59. [PMID: 20026009 DOI: 10.1016/j.bbabio.2009.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 12/04/2009] [Accepted: 12/08/2009] [Indexed: 11/15/2022]
Abstract
Quantum-chemical study of structures, energies, and effective partial charge distribution for several models of the Rieske protein redox center is performed in terms of the B3LYP density functional method in combination with the broken symmetry approach using three different atomic basis sets. The structure of the redox complex optimized in vacuum differs markedly from that inside the protein. This means that the protein matrix imposes some stress on the active site resulting in distortion of its structure. The redox potentials calculated for the real active site structure are in a substantially better agreement with the experiment than those calculated for the idealized structure. This shows an important role of the active site distortion in tuning its redox potential. The reference absolute electrode potential of the standard hydrogen electrode is used that accounts for the correction caused by the water surface potential. Electrostatic calculations are performed in the framework of the polarizable solute model. Two dielectric permittivities of the protein are employed: the optical permittivity for calculation of the intraprotein electric field, and the static permittivity for calculation of the dielectric response energy. Only this approach results in a reasonable agreement of the calculated and experimental redox potentials.
Collapse
Affiliation(s)
- Andrey M Kuznetsov
- Kazan State Technological University, ul. K. Marksa 68, 420015, Kazan, Russia.
| | | | | | | |
Collapse
|
49
|
Lhee S, Kolling DRJ, Nair SK, Dikanov SA, Crofts AR. Modifications of protein environment of the [2Fe-2S] cluster of the bc1 complex: effects on the biophysical properties of the rieske iron-sulfur protein and on the kinetics of the complex. J Biol Chem 2009; 285:9233-48. [PMID: 20023300 DOI: 10.1074/jbc.m109.043505] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rate-determining step in the overall turnover of the bc(1) complex is electron transfer from ubiquinol to the Rieske iron-sulfur protein (ISP) at the Q(o)-site. Structures of the ISP from Rhodobacter sphaeroides show that serine 154 and tyrosine 156 form H-bonds to S-1 of the [2Fe-2S] cluster and to the sulfur atom of the cysteine liganding Fe-1 of the cluster, respectively. These are responsible in part for the high potential (E(m)(,7) approximately 300 mV) and low pK(a) (7.6) of the ISP, which determine the overall reaction rate of the bc(1) complex. We have made site-directed mutations at these residues, measured thermodynamic properties using protein film voltammetry to evaluate the E(m) and pK(a) values of ISPs, explored the local proton environment through two-dimensional electron spin echo envelope modulation, and characterized function in strains S154T, S154C, S154A, Y156F, and Y156W. Alterations in reaction rate were investigated under conditions in which concentration of one substrate (ubiquinol or ISP(ox)) was saturating and the other was varied, allowing calculation of kinetic terms and relative affinities. These studies confirm that H-bonds to the cluster or its ligands are important determinants of the electrochemical characteristics of the ISP, likely through electron affinity of the interacting atom and the geometry of the H-bonding neighborhood. The calculated parameters were used in a detailed Marcus-Brønsted analysis of the dependence of rate on driving force and pH. The proton-first-then-electron model proposed accounts naturally for the effects of mutation on the overall reaction.
Collapse
Affiliation(s)
- Sangmoon Lhee
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
50
|
Konkle ME, Muellner SK, Schwander AL, Dicus MM, Pokhrel R, Britt RD, Taylor AB, Hunsicker-Wang LM. Effects of pH on the Rieske protein from Thermus thermophilus: a spectroscopic and structural analysis. Biochemistry 2009; 48:9848-57. [PMID: 19772300 DOI: 10.1021/bi901126u] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Rieske protein from Thermus thermophilus (TtRp) and a truncated version of the protein (truncTtRp), produced to achieve a low-pH crystallization condition, have been characterized using UV-visible and circular dichroism spectroscopies. TtRp and truncTtRp undergo a change in the UV-visible spectra with increasing pH. The LMCT band at 458 nm shifts to 436 nm and increases in intensity. The increase at 436 nm versus pH can be fit using the sum of two Henderson-Hasselbalch equations, yielding two pK(a) values for the oxidized protein. For TtRp, pK(ox1) = 7.48 +/- 0.12 and pK(ox2) = 10.07 +/- 0.17. For truncTtRp, pK(ox1) = 7.87 +/- 0.17 and pK(ox2) = 9.84 +/- 0.42. The shift to shorter wavelength and the increase in intensity for the LMCT band with increasing pH are consistent with deprotonation of the histidine ligands. A pH titration of truncTtRp monitored by circular dichroism also showed pH-dependent changes at 315 and 340 nm. At 340 nm, the fit gives pK(ox1) = 7.14 +/- 0.26 and pK(ox2) = 9.32 +/- 0.36. The change at 315 nm is best fit for a single deprotonation event, giving pK(ox1) = 7.82 +/- 0.10. The lower wavelength region of the CD spectra was unaffected by pH, indicating that the overall fold of the protein remains unchanged, which is consistent with crystallographic results of truncTtRp. The structure of truncTtRp crystallized at pH 6.2 is very similar to TtRp at pH 8.5 and contains only subtle changes localized at the [2Fe-2S] cluster. These titration and structural results further elucidate the histidine ligand characteristics and are consistent with important roles for these amino acids.
Collapse
Affiliation(s)
- Mary E Konkle
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, USA
| | | | | | | | | | | | | | | |
Collapse
|