1
|
Chen X, Mercedes-Camacho AY, Wilson KA, Bouchard JJ, Peng JW, Etzkorn FA. Pin1 WW Domain Ligand Library Synthesized with an Easy Solid-Phase Phosphorylating Reagent. Biochemistry 2024; 63:2803-2815. [PMID: 39377814 PMCID: PMC11542186 DOI: 10.1021/acs.biochem.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
Cell cycle regulatory enzyme Pin1 both catalyzes pSer/Thr-cis/trans-Pro isomerization and binds the same motif separately in its WW domain. To better understand the function of Pin1, a way to separate these activities is needed. An unnatural peptide library, R1CO-pSer-Pro-NHR2, was designed to identify ligands specific for the Pin1 WW domain. A new solid-phase phosphorylating reagent (SPPR) containing a phosphoramidite functional group was synthesized in one step from Wang resin. The SPPR was used in the preparation of the library by parallel synthesis. The final 315-member library was screened with our WW-domain-specific, enzyme-linked enzyme-binding assay (ELEBA). Four of the best hits were resynthesized, and the competitive dissociation constants were measured by ELEBA. NMR chemical-shift perturbations (CSP) of ligands with 15N-labeled Pin1 were used to measure Kd for the best four ligands directly, demonstrating that they were specific Pin1 WW domain ligands. Models of the ligands bound to the Pin1 WW domain were used to visualize the mode of binding in the WW domain.
Collapse
Affiliation(s)
- Xingguo
R. Chen
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | | - Kimberly A. Wilson
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Jill J. Bouchard
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Jeffrey W. Peng
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Felicia A. Etzkorn
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Born A, Soetbeer J, Henen MA, Breitgoff F, Polyhach Y, Jeschke G, Vögeli B. Ligand-specific conformational change drives interdomain allostery in Pin1. Nat Commun 2022; 13:4546. [PMID: 35927276 PMCID: PMC9352728 DOI: 10.1038/s41467-022-32340-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Pin1 is a two-domain cell regulator that isomerizes peptidyl-prolines. The catalytic domain (PPIase) and the other ligand-binding domain (WW) sample extended and compact conformations. Ligand binding changes the equilibrium of the interdomain conformations, but the conformational changes that lead to the altered domain sampling were unknown. Prior evidence has supported an interdomain allosteric mechanism. We recently introduced a magnetic resonance-based protocol that allowed us to determine the coupling of intra- and interdomain structural sampling in apo Pin1. Here, we describe ligand-specific conformational changes that occur upon binding of pCDC25c and FFpSPR. pCDC25c binding doubles the population of the extended states compared to the virtually identical populations of the apo and FFpSPR-bound forms. pCDC25c binding to the WW domain triggers conformational changes to propagate via the interdomain interface to the catalytic site, while FFpSPR binding displaces a helix in the PPIase that leads to repositioning of the PPIase catalytic loop.
Collapse
Affiliation(s)
- Alexandra Born
- University of Colorado Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Aurora, CO, USA
| | - Janne Soetbeer
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, ETH-Hönggerberg, Zürich, Switzerland
| | - Morkos A Henen
- University of Colorado Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Aurora, CO, USA.,Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Frauke Breitgoff
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, ETH-Hönggerberg, Zürich, Switzerland
| | - Yevhen Polyhach
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, ETH-Hönggerberg, Zürich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, ETH-Hönggerberg, Zürich, Switzerland
| | - Beat Vögeli
- University of Colorado Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Aurora, CO, USA.
| |
Collapse
|
3
|
Chen J. A Specific pSer/Thr-Pro Motif Generates Interdomain Communication Bifurcations of Two Modes of Pin1 in Solution Nuclear Magnetic Resonance. Biochemistry 2022; 61:1167-1180. [PMID: 35648841 DOI: 10.1021/acs.biochem.2c00255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peptides mediate the interdomain communication of Pin1 (peptidyl-prolyl cis-trans isomerase) and can regulate its conformation and biochemical functions, providing an idea for drug design using Pin1. Two template peptide sequences have been widely used in the extended or compact state of Pin1 (Cdc25C, E-Q-P-L-pT-P-V-T-D-L; Pintide, W-F-Y-pS-P-R). The way in which specific pSer/Thr-Pro peptides regulate interdomain communication to achieve the opposite state is not clear. In this study, we subdivided the sequence composition of eight types of modified peptides and investigated the interaction with Pin1 by solution nuclear magnetic resonance and molecular dynamics. Demonstrating sequence dependence on the pSer-Pro or pThr-Pro motif and different residues in anchoring the WW domain, the Pin peptide (Pintide, PintideT, Pin25C, and Pin25CT) transmits this concentration accumulation to the PPIase domain, thus exhibiting two anchoring tendencies. However, the Cdc peptide (Cdc25C, Cdc25CS, Cdctide, and CdctideS) has a low binding energy that makes it difficult for the conformation to reach a steady state. In addition, Pin1 is influenced by both compact and extended states, regulated precisely by the sequence as well as by threonine or serine. These results provide new insight into the interdomain communication of Pin1 via pSer/Thr-Pro peptide binding.
Collapse
Affiliation(s)
- Jingqiu Chen
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| |
Collapse
|
4
|
Zhu J, Wang J, Han W, Xu D. Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations. Nat Commun 2022; 13:1661. [PMID: 35351887 PMCID: PMC8964751 DOI: 10.1038/s41467-022-29331-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Protein allostery is a biological process facilitated by spatially long-range intra-protein communication, whereby ligand binding or amino acid change at a distant site affects the active site remotely. Molecular dynamics (MD) simulation provides a powerful computational approach to probe the allosteric effect. However, current MD simulations cannot reach the time scales of whole allosteric processes. The advent of deep learning made it possible to evaluate both spatially short and long-range communications for understanding allostery. For this purpose, we applied a neural relational inference model based on a graph neural network, which adopts an encoder-decoder architecture to simultaneously infer latent interactions for probing protein allosteric processes as dynamic networks of interacting residues. From the MD trajectories, this model successfully learned the long-range interactions and pathways that can mediate the allosteric communications between distant sites in the Pin1, SOD1, and MEK1 systems. Furthermore, the model can discover allostery-related interactions earlier in the MD simulation trajectories and predict relative free energy changes upon mutations more accurately than other methods.
Collapse
Affiliation(s)
- Jingxuan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Juexin Wang
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China.
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States.
| |
Collapse
|
5
|
Born A, Soetbeer J, Breitgoff F, Henen MA, Sgourakis N, Polyhach Y, Nichols PJ, Strotz D, Jeschke G, Vögeli B. Reconstruction of Coupled Intra- and Interdomain Protein Motion from Nuclear and Electron Magnetic Resonance. J Am Chem Soc 2021; 143:16055-16067. [PMID: 34579531 DOI: 10.1021/jacs.1c06289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteins composed of multiple domains allow for structural heterogeneity and interdomain dynamics that may be vital for function. Intradomain structures and dynamics can influence interdomain conformations and vice versa. However, no established structure determination method is currently available that can probe the coupling of these motions. The protein Pin1 contains separate regulatory and catalytic domains that sample "extended" and "compact" states, and ligand binding changes this equilibrium. Ligand binding and interdomain distance have been shown to impact the activity of Pin1, suggesting interdomain allostery. In order to characterize the conformational equilibrium of Pin1, we describe a novel method to model the coupling between intra- and interdomain dynamics at atomic resolution using multistate ensembles. The method uses time-averaged nuclear magnetic resonance (NMR) restraints and double electron-electron resonance (DEER) data that resolve distance distributions. While the intradomain calculation is primarily driven by exact nuclear Overhauser enhancements (eNOEs), J couplings, and residual dipolar couplings (RDCs), the relative domain distribution is driven by paramagnetic relaxation enhancement (PREs), RDCs, interdomain NOEs, and DEER. Our data support a 70:30 population of the compact and extended states in apo Pin1. A multistate ensemble describes these conformations simultaneously, with distinct conformational differences located in the interdomain interface stabilizing the compact or extended states. We also describe correlated conformations between the catalytic site and interdomain interface that may explain allostery driven by interdomain contact.
Collapse
Affiliation(s)
- Alexandra Born
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, Colorado 80045, United States
| | - Janne Soetbeer
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, ETH-Hönggerberg, Zürich CH-8093, Switzerland
| | - Frauke Breitgoff
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, ETH-Hönggerberg, Zürich CH-8093, Switzerland
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, Colorado 80045, United States.,Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nikolaos Sgourakis
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yevhen Polyhach
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, ETH-Hönggerberg, Zürich CH-8093, Switzerland
| | - Parker J Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, Colorado 80045, United States
| | - Dean Strotz
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, ETH-Hönggerberg, Zürich CH-8093, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, ETH-Hönggerberg, Zürich CH-8093, Switzerland
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, Colorado 80045, United States
| |
Collapse
|
6
|
Zhang M, Frederick TE, VanPelt J, Case DA, Peng JW. Coupled intra- and interdomain dynamics support domain cross-talk in Pin1. J Biol Chem 2020; 295:16585-16603. [PMID: 32963105 PMCID: PMC7864058 DOI: 10.1074/jbc.ra120.015849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/19/2020] [Indexed: 11/06/2022] Open
Abstract
The functional mechanisms of multidomain proteins often exploit interdomain interactions, or "cross-talk." An example is human Pin1, an essential mitotic regulator consisting of a Trp-Trp (WW) domain flexibly tethered to a peptidyl-prolyl isomerase (PPIase) domain, resulting in interdomain interactions important for Pin1 function. Substrate binding to the WW domain alters its transient contacts with the PPIase domain via means that are only partially understood. Accordingly, we have investigated Pin1 interdomain interactions using NMR paramagnetic relaxation enhancement (PRE) and molecular dynamics (MD) simulations. The PREs show that apo-Pin1 samples interdomain contacts beyond the range suggested by previous structural studies. They further show that substrate binding to the WW domain simultaneously alters interdomain separation and the internal conformation of the WW domain. A 4.5-μs all-atom MD simulation of apo-Pin1 suggests that the fluctuations of interdomain distances are correlated with fluctuations of WW domain interresidue contacts involved in substrate binding. Thus, the interdomain/WW domain conformations sampled by apo-Pin1 may already include a range of conformations appropriate for binding Pin1's numerous substrates. The proposed coupling between intra-/interdomain conformational fluctuations is a consequence of the dynamic modular architecture of Pin1. Such modular architecture is common among cell-cycle proteins; thus, the WW-PPIase domain cross-talk mechanisms of Pin1 may be relevant for their mechanisms as well.
Collapse
Affiliation(s)
- Meiling Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Thomas E Frederick
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jamie VanPelt
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Jeffrey W Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
7
|
Detection of key sites of dimer dissociation and unfolding initiation during activation of acid-stress chaperone HdeA at low pH. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140576. [PMID: 33253897 DOI: 10.1016/j.bbapap.2020.140576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022]
Abstract
HdeA is a small acid-stress chaperone protein with a unique activity profile. At physiological pH, it forms a folded, but inactive, dimer. Below pH 3.0, HdeA unfolds and dissociates into disordered monomers, utilizing exposed hydrophobic patches to bind other unfolded proteins and prevent their irreversible aggregation. In this way, HdeA has a key role in helping pathogenic bacteria survive our acidic stomach and colonize our intestines, facilitating the spread of dysentery. Despite numerous publications on the topic, there remain questions about the mechanism by which HdeA unfolding and activation are triggered. Previous studies usually assessed HdeA unfolding over pH increments that are too far apart to gain fine detail of the process of unfolding and dimer dissociation, and often employed techniques that prevented thorough evaluation of specific regions of the protein. We used a variety of heteronuclear NMR experiments to investigate changes to backbone and side chain structure and dynamics of HdeA at four pHs between 3.0 and 2.0. We found that the long loop in the dimer interface is an early site of initiation of dimer dissociation, and that a molecular "clasp" near the disulfide bond is broken open at low pH as part, or as a trigger, of unfolding; this process also results in the separation of C-terminal helices and exposure of key hydrophobic client binding sites. Our results highlight important regions of HdeA that may have previously been overlooked because they lie too close to the disulfide bond or are thought to be too dynamic in the folded state to influence unfolding processes.
Collapse
|
8
|
Chen D, Wang L, Lee TH. Post-translational Modifications of the Peptidyl-Prolyl Isomerase Pin1. Front Cell Dev Biol 2020; 8:129. [PMID: 32195254 PMCID: PMC7064559 DOI: 10.3389/fcell.2020.00129] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
The peptidyl-prolyl cis/trans isomerase (PPIase) Pin1 is a unique enzyme that only binds to Ser/Thr-Pro peptide motifs after phosphorylation and regulates the conformational changes of the bond. The Pin1-catalyzed isomerization upon phosphorylation can have profound effects on substrate biological functions, including their activity, stability, assembly, and subcellular localization, affecting its role in intracellular signaling, transcription, and cell cycle progression. The functions of Pin1 are regulated by post-translational modifications (PTMs) in many biological processes, which include phosphorylation, ubiquitination, SUMOylation and oxidation. Phosphorylation of different Pin1 sites regulates Pin1 enzymatic activity, binding ability, localization, and ubiquitination by different kinases under various cellular contexts. Moreover, SUMOylation and oxidation have been shown to downregulate Pin1 activity. Although Pin1 is tightly regulated under physiological conditions, deregulation of Pin1 PTMs contributes to the development of human diseases including cancer and Alzheimer's disease (AD). Therefore, manipulating the PTMs of Pin1 may be a promising therapeutic option for treating various human diseases. In this review, we focus on the molecular mechanisms of Pin1 regulation by PTMs and the major impact of Pin1 PTMs on the progression of cancer and AD.
Collapse
Affiliation(s)
- Dongmei Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tae Ho Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Born A, Henen MA, Vögeli B. Activity and Affinity of Pin1 Variants. MOLECULES (BASEL, SWITZERLAND) 2019; 25:molecules25010036. [PMID: 31861908 PMCID: PMC6983177 DOI: 10.3390/molecules25010036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
Pin1 is a peptidyl-prolyl isomerase responsible for isomerizing phosphorylated S/T-P motifs. Pin1 has two domains that each have a distinct ligand binding site, but only its PPIase domain has catalytic activity. Vast evidence supports interdomain allostery of Pin1, with binding of a ligand to its regulatory WW domain impacting activity in the PPIase domain. Many diverse studies have made mutations in Pin1 in order to elucidate interactions that are responsible for ligand binding, isomerase activity, and interdomain allostery. Here, we summarize these mutations and their impact on Pin1′s structure and function.
Collapse
Affiliation(s)
- Alexandra Born
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA; (A.B.); (M.A.H.)
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA; (A.B.); (M.A.H.)
- Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA; (A.B.); (M.A.H.)
- Correspondence: ; Tel.: +1-303-724-1627
| |
Collapse
|
10
|
Born A, Nichols PJ, Henen MA, Chi CN, Strotz D, Bayer P, Tate SI, Peng JW, Vögeli B. Backbone and side-chain chemical shift assignments of full-length, apo, human Pin1, a phosphoprotein regulator with interdomain allostery. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:85-89. [PMID: 30353504 PMCID: PMC9205186 DOI: 10.1007/s12104-018-9857-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/19/2018] [Indexed: 05/27/2023]
Abstract
Pin1 is a human peptidyl-prolyl cis-trans isomerase important for the regulation of phosphoproteins that are implicated in many diseases including cancer and Alzheimer's. Further biophysical study of Pin1 will elucidate the importance of the two-domain system to regulate its own activity. Here, we report near-complete backbone and side-chain 1H, 13C and 15N NMR chemical shift assignments of full-length, apo Pin1 for the purpose of studying interdomain allostery and dynamics.
Collapse
Affiliation(s)
- Alexandra Born
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA
| | - Parker J Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA
- Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, 75123, Uppsala, Sweden
| | - Dean Strotz
- Laboratory of Physical Chemistry, ETH Zürich, ETH-Hönggerberg, Zurich, Switzerland
| | - Peter Bayer
- Strukturelle und Medizinische Biochemie, Universität Duisburg-Essen, Universitätsstrasse 2-5, 45117, Essen, Germany
| | - Shin-Ichi Tate
- Department of Mathematical and Life Sciences, Hiroshima University, Hiroshima, Japan
| | - Jeffrey W Peng
- Department of Chemistry and Biochemistry & Department of Physics, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Research Center 1 South, Room 9103, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
11
|
Zhu W, Li Y, Liu M, Zhu J, Yang Y. Uncorrelated Effect of Interdomain Contact on Pin1 Isomerase Activity Reveals Positive Catalytic Cooperativity. J Phys Chem Lett 2019; 10:1272-1278. [PMID: 30821977 DOI: 10.1021/acs.jpclett.9b00052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pin1 is a two-domain peptidyl-prolyl isomerase (PPIase) associated with neurodegeneration and tumorigenesis. The two domains, a WW and a PPIase domain, are connected by a flexible linker, making Pin1 adopt various conformations ranging from compact to extended, wherein Pin1 exhibits different extents of interdomain contact. Previous studies have shown that weakening interdomain contact increases the isomerase activity of Pin1. Here, we propose an NMR chemical shift correlation-analysis-based method that will be general for two-domain proteins to gauge two-state populations of Pin1, and we report a linker-modified mutant of Pin1 with enhanced interdomain contact and increased isomerase activity, with the latter suggesting an uncorrelated effect of interdomain contact on isomerase activity. Thus, although bindings of different substrates in the WW domain impose opposite effects on interdomain contact, in both cases, it may promote isomerization, implying cooperativity between substrate binding in the WW domain and isomerization in the PPIase domain.
Collapse
Affiliation(s)
- Wenkai Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , People's Republic of China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , People's Republic of China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , People's Republic of China
| |
Collapse
|
12
|
Jinasena D, Simmons R, Gyamfi H, Fitzkee NC. Molecular Mechanism of the Pin1-Histone H1 Interaction. Biochemistry 2019; 58:788-798. [PMID: 30507159 DOI: 10.1021/acs.biochem.8b01036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pin1 is an essential peptidyl-prolyl isomerase (PPIase) that catalyzes cis-trans prolyl isomerization in proteins containing pSer/Thr-Pro motifs. It has an N-terminal WW domain that targets these motifs and a C-terminal PPIase domain that catalyzes isomerization. Recently, Pin1 was shown to modify the conformation of phosphorylated histone H1 and stabilize the chromatin-H1 interaction by increasing its residence time. This Pin1-histone H1 interaction plays a key role in pathogen response, in infection, and in cell cycle control; therefore, anti-Pin1 therapeutics are an important focus for treating infections as well as cancer. Each of the H1 histones (H1.0-H1.5) contains several potential Pin1 recognition pSer/pThr-Pro motifs. To understand the Pin1-histone H1 interaction fully, we investigated how both the isolated WW domain and full-length Pin1 interact with three H1 histone substrate peptide sequences that were previously identified as important binding partners (H1.1, H1.4, and H1.5). NMR spectroscopy was used to measure the binding affinities and the interdomain dynamics upon binding to these sequences. We observed different KD values depending on the histone binding site, suggesting that energetics play a role in guiding the Pin1-histone interaction. While interdomain interactions vary between the peptides, we find no evidence for allosteric activation for the histone H1 substrates.
Collapse
Affiliation(s)
- Dinusha Jinasena
- Department of Chemistry , Mississippi State University , Mississippi State , Mississippi 39762 , United States
| | - Robert Simmons
- Department of Chemistry , Mississippi State University , Mississippi State , Mississippi 39762 , United States
| | - Hawa Gyamfi
- Department of Chemistry , University of Waterloo , Waterloo , Ontario , Ontario N2l 3G1 , Canada
| | - Nicholas C Fitzkee
- Department of Chemistry , Mississippi State University , Mississippi State , Mississippi 39762 , United States
| |
Collapse
|
13
|
Lee YM, Liou YC. Gears-In-Motion: The Interplay of WW and PPIase Domains in Pin1. Front Oncol 2018; 8:469. [PMID: 30460195 PMCID: PMC6232885 DOI: 10.3389/fonc.2018.00469] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/04/2018] [Indexed: 01/22/2023] Open
Abstract
Pin1 belongs to the family of the peptidyl-prolyl cis-trans isomerase (PPIase), which is a class of enzymes that catalyze the cis/trans isomerization of the Proline residue. Pin1 is unique and only catalyzes the phosphorylated Serine/Threonine-Proline (S/T-P) motifs of a subset of proteins. Since the discovery of Pin1 as a key protein in cell cycle regulation, it has been implicated in numerous diseases, ranging from cancer to neurodegenerative diseases. The main features of Pin1 lies in its two main domains: the WW (two conserved tryptophan) domain and the PPIase domain. Despite extensive studies trying to understand the mechanisms of Pin1 functions, how these two domains contribute to the biological roles of Pin1 in cellular signaling requires more investigations. The WW domain of Pin1 is known to have a higher affinity to its substrate than that of the PPIase domain. Yet, the WW domain seems to prefer the trans configuration of phosphorylated S/T-P motif, while the PPIase catalyzes the cis to trans isomerasion. Such contradicting information has generated much confusion as to the actual mechanism of Pin1 function. In addition, dynamic allostery has been suggested to be important for Pin1 function. Henceforth, in this review, we will be looking at the progress made in understanding the function of Pin1, and how these understandings can aid us in overcoming the diseases implicated by Pin1 such as cancer during drug development.
Collapse
Affiliation(s)
- Yew Mun Lee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Zhang M, Case DA, Peng JW. Propagated Perturbations from a Peripheral Mutation Show Interactions Supporting WW Domain Thermostability. Structure 2018; 26:1474-1485.e5. [PMID: 30197038 DOI: 10.1016/j.str.2018.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/21/2018] [Accepted: 07/25/2018] [Indexed: 12/18/2022]
Abstract
Inter-residue interactions stabilize protein folds and facilitate allosteric communication. Predicting which interactions are crucial and understanding why remain challenging. We highlight this through studies of a single peripheral mutation (Q33E) on the surface of the Pin1 WW domain that causes an unexpected loss of thermostability. Nuclear magnetic resonance studies attribute the loss to reorganizations of electrostatic and hydrophobic interactions, resulting in propagated conformational perturbations. The propagation demonstrates the cooperative response of Pin1 WW to external perturbations, consistent with its allosteric behavior within Pin1. Microsecond molecular dynamics simulations suggest the wild-type fold relies on couplings between a surface electrostatic network and a highly conserved hydrophobic core; Q33E directly perturbs the former, thereby disrupting the latter. These couplings suggest that predictions of mutation consequences that assume dominance of a single interaction type can be limiting, and highlight challenges in predicting protein mutational landscapes.
Collapse
Affiliation(s)
- Meiling Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Jeffrey W Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA.
| |
Collapse
|
15
|
Pin1 Modulation in Physiological Status and Neurodegeneration. Any Contribution to the Pathogenesis of Type 3 Diabetes? Int J Mol Sci 2018; 19:ijms19082319. [PMID: 30096758 PMCID: PMC6121450 DOI: 10.3390/ijms19082319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/29/2022] Open
Abstract
Prolyl isomerases (Peptidylprolyl isomerase, PPIases) are enzymes that catalyze the isomerization between the cis/trans Pro conformations. Three subclasses belong to the class: FKBP (FK506 binding protein family), Cyclophilin and Parvulin family (Pin1 and Par14). Among Prolyl isomerases, Pin1 presents as distinctive feature, the ability of binding to the motif pSer/pThr-Pro that is phosphorylated by kinases. Modulation of Pin1 is implicated in cellular processes such as mitosis, differentiation and metabolism: The enzyme is dysregulated in many diverse pathological conditions, i.e., cancer progression, neurodegenerative (i.e., Alzheimer’s diseases, AD) and metabolic disorders (i.e., type 2 diabetes, T2D). Indeed, Pin1 KO mice develop a complex phenotype of premature aging, cognitive impairment in elderly mice and neuronal degeneration resembling that of the AD in humans. In addition, since the molecule modulates glucose homeostasis in the brain and peripherally, Pin1 KO mice are resistant to diet-induced obesity, insulin resistance, peripheral glucose intolerance and diabetic vascular dysfunction. In this review, we revise first critically the role of Pin1 in neuronal development and differentiation and then focus on the in vivo studies that demonstrate its pivotal role in neurodegenerative processes and glucose homeostasis. We discuss evidence that enables us to speculate about the role of Pin1 as molecular link in the pathogenesis of type 3 diabetes i.e., the clinical association of dementia/AD and T2D.
Collapse
|
16
|
Lee AL, Sapienza PJ. Thermodynamic and NMR Assessment of Ligand Cooperativity and Intersubunit Communication in Symmetric Dimers: Application to Thymidylate Synthase. Front Mol Biosci 2018; 5:47. [PMID: 29888227 PMCID: PMC5981203 DOI: 10.3389/fmolb.2018.00047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/23/2018] [Indexed: 01/17/2023] Open
Abstract
Thymidylate synthase (TS) is a homodimeric enzyme with evidence for negative regulation of one protomer while the other protomer acts on substrate, so called half-the-sites reactivity. The mechanisms by which multisubunit allosteric proteins communicate between protomers is not well understood, and the simplicity of dimeric systems has advantages for observing conformational and dynamic processes that functionally connect distance-separated active sites. This review considers progress in overcoming the inherent challenges of accurate thermodynamic and atomic-resolution characterization of interprotomer communication mechanisms in symmetric protein dimers, with TS used as an example. Isothermal titration calorimetry (ITC) is used to measure ligand binding cooperativity, even in cases where the two binding enthalpies are similar, and NMR spectroscopy is used to detect site-specific changes occurring in the two protomers. The NMR approach makes use of mixed-labeled dimers, enabling protomer-specific detection of signals in the singly ligated state. The rich informational content of the NMR signals from the singly ligated state, relative to the apo and saturated states, requires new considerations that do not arise in simple cases of 1:1 protein-ligand interactions.
Collapse
Affiliation(s)
- Andrew L Lee
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Paul J Sapienza
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
17
|
Enhanced Sampling of Interdomain Motion Using Map-Restrained Langevin Dynamics and NMR: Application to Pin1. J Mol Biol 2018; 430:2164-2180. [PMID: 29775635 DOI: 10.1016/j.jmb.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 11/20/2022]
Abstract
Many signaling proteins consist of globular domains connected by flexible linkers that allow for substantial domain motion. Because these domains often serve as complementary functional modules, the possibility of functionally important domain motions arises. To explore this possibility, we require knowledge of the ensemble of protein conformations sampled by interdomain motion. Measurements of NMR residual dipolar couplings (RDCs) of backbone HN bonds offer a per-residue characterization of interdomain dynamics, as the couplings are sensitive to domain orientation. A challenge in reaching this potential is the need to interpret the RDCs as averages over dynamic ensembles of domain conformations. Here, we address this challenge by introducing an efficient protocol for generating conformational ensembles appropriate for flexible, multi-domain proteins. The protocol uses map-restrained self-guided Langevin dynamics simulations to promote collective, interdomain motion while restraining the internal domain motion to near rigidity. Critically, the simulations retain an all-atom description for facile inclusion of site-specific NMR RDC restraints. The result is the rapid generation of conformational ensembles consistent with the RDC data. We illustrate this protocol on human Pin1, a two-domain peptidyl-prolyl isomerase relevant for cancer and Alzheimer's disease. The results include the ensemble of domain orientations sampled by Pin1, as well as those of a dysfunctional variant, I28A-Pin1. The differences between the ensembles corroborate our previous spin relaxation results that showed weakened interdomain contact in the I28A variant relative to wild type. Our protocol extends our abilities to explore the functional significance of protein domain motions.
Collapse
|
18
|
Matena A, Rehic E, Hönig D, Kamba B, Bayer P. Structure and function of the human parvulins Pin1 and Par14/17. Biol Chem 2018; 399:101-125. [PMID: 29040060 DOI: 10.1515/hsz-2017-0137] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022]
Abstract
Parvulins belong to the family of peptidyl-prolyl cis/trans isomerases (PPIases) assisting in protein folding and in regulating the function of a broad variety of proteins in all branches of life. The human representatives Pin1 and Par14/17 are directly involved in processes influencing cellular maintenance and cell fate decisions such as cell-cycle progression, metabolic pathways and ribosome biogenesis. This review on human parvulins summarizes the current knowledge of these enzymes and intends to oppose the well-studied Pin1 to its less well-examined homolog human Par14/17 with respect to structure, catalytic and cellular function.
Collapse
Affiliation(s)
- Anja Matena
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| | - Edisa Rehic
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| | - Dana Hönig
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| | - Bianca Kamba
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| |
Collapse
|
19
|
Campitelli P, Guo J, Zhou HX, Ozkan SB. Hinge-Shift Mechanism Modulates Allosteric Regulations in Human Pin1. J Phys Chem B 2018; 122:5623-5629. [PMID: 29361231 DOI: 10.1021/acs.jpcb.7b11971] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allostery, which is regulation from distant sites, plays a major role in biology. While traditional allostery is described in terms of conformational change upon ligand binding as an underlying principle, it is possible to have allosteric regulations without significant conformational change through modulating the conformational dynamics by altering the local effective elastic modulus of the protein upon ligand binding. Pin1 utilizes this dynamic allostery to regulate its function. It is a modular protein containing a WW domain and a larger peptidyl prolyl isomerase domain (PPIase) that isomerizes phosphoserine/threonine-proline (pS/TP) motifs. The WW domain serves as a docking module, whereas catalysis solely takes place within the PPIase domain. Here, we analyze the change in the dynamic flexibility profile of the PPIase domain upon ligand binding to the WW domain. Substrate binding to the WW domain induces the formation of a new rigid hinge site around the interface of the two domains and loosens the flexibility of a rigid site existing in the Apo form around the catalytic site. This hinge-shift mechanism enhances the dynamic coupling of the catalytic positions with the PPIase domain, where the rest of the domain can cooperatively respond to the local conformational changes around the catalytic site, leading to an increase in catalytic efficiency.
Collapse
Affiliation(s)
- Paul Campitelli
- Department of Physics and Center for Biological Physics , Arizona State University , Tempe , Arizona 85287 , United States
| | - Jingjing Guo
- School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , China
| | - Huan-Xiang Zhou
- Department of Chemistry and Department of Physics , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - S Banu Ozkan
- Department of Physics and Center for Biological Physics , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
20
|
Mahoney BJ, Zhang M, Zintsmaster JS, Peng JW. Extended Impact of Pin1 Catalytic Loop Phosphorylation Revealed by S71E Phosphomimetic. J Mol Biol 2018; 430:710-721. [PMID: 29317221 DOI: 10.1016/j.jmb.2017.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/19/2017] [Accepted: 12/31/2017] [Indexed: 11/24/2022]
Abstract
Pin1 is a two-domain human protein that catalyzes the cis-trans isomerization of phospho-Ser/Thr-Pro (pS/T-P) motifs in numerous cell-cycle regulatory proteins. These pS/T-P motifs bind to Pin1's peptidyl-prolyl isomerase (PPIase) domain in a catalytic pocket, between an extended catalytic loop and the PPIase domain core. Previous studies showed that post-translational phosphorylation of S71 in the catalytic loop decreases substrate binding affinity and isomerase activity. To define the origins for these effects, we investigated a phosphomimetic Pin1 mutant, S71E-Pin1, using solution NMR. We find that S71E perturbs not only its host loop but also the nearby PPIase core. The perturbations identify a local network of hydrogen bonds and salt bridges that is more extended than previously thought, and includes interactions between the catalytic loop and the α2/α3 turn in the PPIase core. Explicit-solvent molecular dynamics simulations and phylogenetic analysis suggest that these interactions act as conserved "latches" between the loop and PPIase core that enhance binding of phosphorylated substrates, as they are absent in PPIases lacking pS/T-P specificity. Our results suggest that S71 is a hub residue within an electrostatic network primed for phosphorylation, and may illustrate a common mechanism of phosphorylation-mediated allostery.
Collapse
Affiliation(s)
- Brendan J Mahoney
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, United States
| | - Meiling Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, United States
| | - John S Zintsmaster
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, United States
| | - Jeffrey W Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, United States.
| |
Collapse
|
21
|
Wang J, Kawasaki R, Uewaki JI, Rashid AUR, Tochio N, Tate SI. Dynamic Allostery Modulates Catalytic Activity by Modifying the Hydrogen Bonding Network in the Catalytic Site of Human Pin1. Molecules 2017; 22:molecules22060992. [PMID: 28617332 PMCID: PMC6152768 DOI: 10.3390/molecules22060992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 02/01/2023] Open
Abstract
Allosteric communication among domains in modular proteins consisting of flexibly linked domains with complimentary roles remains poorly understood. To understand how complementary domains communicate, we have studied human Pin1, a representative modular protein with two domains mutually tethered by a flexible linker: a WW domain for substrate recognition and a peptidyl-prolyl isomerase (PPIase) domain. Previous studies of Pin1 showed that physical contact between the domains causes dynamic allostery by reducing conformation dynamics in the catalytic domain, which compensates for the entropy costs of substrate binding to the catalytic site and thus increases catalytic activity. In this study, the S138A mutant PPIase domain, a mutation that mimics the structural impact of the interdomain contact, was demonstrated to display dynamic allostery by rigidification of the α2-α3 loop that harbors the key catalytic residue C113. The reduced dynamics of the α2-α3 loop stabilizes the C113-H59 hydrogen bond in the hydrogen-bonding network of the catalytic site. The stabilized hydrogen bond between C113 and H59 retards initiation of isomerization, which explains the reduced isomerization rate by ~20% caused by the S138A mutation. These results provide new insight into the interdomain allosteric communication of Pin1.
Collapse
Affiliation(s)
- Jing Wang
- Department of Mathematical and Life Sciences, School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Ryosuke Kawasaki
- Department of Mathematical and Life Sciences, School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Jun-Ichi Uewaki
- Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Arif U R Rashid
- Department of Mathematical and Life Sciences, School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Naoya Tochio
- Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Shin-Ichi Tate
- Department of Mathematical and Life Sciences, School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
- Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| |
Collapse
|
22
|
Fine-tuning the extent and dynamics of binding cleft opening as a potential general regulatory mechanism in parvulin-type peptidyl prolyl isomerases. Sci Rep 2017; 7:44504. [PMID: 28300139 PMCID: PMC5353683 DOI: 10.1038/srep44504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/06/2017] [Indexed: 11/23/2022] Open
Abstract
Parvulins or rotamases form a distinct group within peptidyl prolyl cis-trans isomerases. Their exact mode of action as well as the role of conserved residues in the family are still not unambiguously resolved. Using backbone S2 order parameters and NOEs as restraints, we have generated dynamic structural ensembles of three distinct parvulins, SaPrsA, TbPin1 and CsPinA. The resulting ensembles are in good agreement with the experimental data but reveal important differences between the three enzymes. The largest difference can be attributed to the extent of the opening of the substrate binding cleft, along which motional mode the three molecules occupy distinct regions. Comparison with a wide range of other available parvulin structures highlights structural divergence along the bottom of the binding cleft acting as a hinge during the opening-closing motion. In the prototype WW-domain containing parvulin, Pin1, this region is also important in forming contacts with the WW domain known to modulate enzymatic activity of the catalytic domain. We hypothesize that modulation of the extent and dynamics of the identified ‘breathing motion’ might be one of the factors responsible for functional differences in the distinct parvulin subfamilies.
Collapse
|
23
|
Vöhringer-Martinez E, Dörner C. Conformational Substrate Selection Contributes to the Enzymatic Catalytic Reaction Mechanism of Pin1. J Phys Chem B 2016; 120:12444-12453. [DOI: 10.1021/acs.jpcb.6b09187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Esteban Vöhringer-Martinez
- Departamento de Físico-Química,
Facultad de Ciencias Químicas, Universidad de Concepción, 4030000 Concepción, Chile
| | - Ciro Dörner
- Departamento de Físico-Química,
Facultad de Ciencias Químicas, Universidad de Concepción, 4030000 Concepción, Chile
| |
Collapse
|
24
|
The Dynamic Basis for Signal Propagation in Human Pin1-WW. Structure 2016; 24:1464-75. [PMID: 27499442 DOI: 10.1016/j.str.2016.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 12/23/2022]
Abstract
Allostery is the structural manifestation of information transduction in biomolecules. Its hallmark is conformational change induced by perturbations at a distal site. An increasing body of evidence demonstrates the presence of allostery in very flexible and even disordered proteins, encouraging a thermodynamic description of this phenomenon. Still, resolving such processes at atomic resolution is difficult. Here we establish a protocol to determine atomistic thermodynamic models of such systems using high-resolution solution state nuclear magnetic resonance data and extensive molecular simulations. Using this methodology, we study information transduction in the WW domain of a key cell-cycle regulator Pin1. Pin1 binds promiscuously to phospho-Ser/Thr-Pro motifs, however, disparate structural and dynamic responses have been reported upon binding different ligands. Our model consists of two topologically distinct states whose relative population may be specifically skewed by an incoming ligand. This model provides a canonical basis for the understanding of multi-functionality in Pin1.
Collapse
|
25
|
Molecular Mechanism of Pin1–Tau Recognition and Catalysis. J Mol Biol 2016; 428:1760-75. [DOI: 10.1016/j.jmb.2016.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 02/06/2023]
|
26
|
Abstract
The functions of many proteins are regulated through allostery, whereby effector binding at a distal site changes the functional activity (e.g., substrate binding affinity or catalytic efficiency) at the active site. Most allosteric studies have focused on thermodynamic properties, in particular, substrate binding affinity. Changes in substrate binding affinity by allosteric effectors have generally been thought to be mediated by conformational transitions of the proteins or, alternatively, by changes in the broadness of the free energy basin of the protein conformational state without shifting the basin minimum position. When effector binding changes the free energy landscape of a protein in conformational space, the change affects not only thermodynamic properties but also dynamic properties, including the amplitudes of motions on different time scales and rates of conformational transitions. Here we assess the roles of conformational dynamics in allosteric regulation. Two cases are highlighted where NMR spectroscopy and molecular dynamics simulation have been used as complementary approaches to identify residues possibly involved in allosteric communication. Perspectives on contentious issues, for example, the relationship between picosecond-nanosecond local and microsecond-millisecond conformational exchange dynamics, are presented.
Collapse
Affiliation(s)
- Jingjing Guo
- School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, People's Republic of China
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
27
|
Lisi GP, Loria JP. Using NMR spectroscopy to elucidate the role of molecular motions in enzyme function. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 92-93:1-17. [PMID: 26952190 PMCID: PMC4785347 DOI: 10.1016/j.pnmrs.2015.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 05/04/2023]
Abstract
Conformational motions play an essential role in enzyme function, often facilitating the formation of enzyme-substrate complexes and/or product release. Although considerable debate remains regarding the role of molecular motions in the conversion of enzymatic substrates to products, numerous examples have found motions to be crucial for optimization of enzyme scaffolds, effective substrate binding, and product dissociation. Conformational fluctuations are often rate-limiting to enzyme catalysis, primarily through product release, with the chemical reaction occurring much more quickly. As a result, the direct involvement of motions at various stages along the enzyme reaction coordinate remains largely unknown and untested. In the following review, we describe the use of solution NMR techniques designed to probe various timescales of molecular motions and detail examples in which motions play a role in propagating catalytic effects from the active site and directly participate in essential aspects of enzyme function.
Collapse
Affiliation(s)
- George P Lisi
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - J Patrick Loria
- Department of Chemistry, Yale University, New Haven, CT 06520, United States; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States.
| |
Collapse
|
28
|
Ng CA, Oehme DP, Kato Y, Tanokura M, Brownlee RTC. Binding of an RNA pol II Ligand to the WW Domain of Pin1 Using Molecular Dynamics Docking Simulations. J Chem Theory Comput 2015; 5:2886-97. [PMID: 26631800 DOI: 10.1021/ct900190n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel docking protocol using a long, all atom molecular dynamics (MD) simulation, in an explicit solvent medium, without using any distance constraints is presented. This MD docking protocol is able to dock ligands, based on the C-terminal domain (CTD) of RNA polymerase II, into the tryptophan-tryptophan (WW) domain of Pin1. In this docking process, a significant loop-bending event occurs in order to encircle the ligand into its solvent exposed binding site, which cannot be simulated using current protocols. The simulations were validated structurally and energetically against an X-ray structure to confirm correct sampling of conformational space. Based on these simulations, and justification of the starting structure as a valid intermediate structure, a potential molecular basis for binding was predicted as well as confirming the key residues involved in the formation of the final strong and stable Pin1 WW domain-ligand complex.
Collapse
Affiliation(s)
- Chai Ann Ng
- Department of Chemistry, La Trobe University, VIC 3086, Australia, and Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Daniel P Oehme
- Department of Chemistry, La Trobe University, VIC 3086, Australia, and Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yusuke Kato
- Department of Chemistry, La Trobe University, VIC 3086, Australia, and Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Tanokura
- Department of Chemistry, La Trobe University, VIC 3086, Australia, and Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Robert T C Brownlee
- Department of Chemistry, La Trobe University, VIC 3086, Australia, and Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
29
|
Pre-Anchoring of Pin1 to Unphosphorylated c-Myc in a Fuzzy Complex Regulates c-Myc Activity. Structure 2015; 23:2267-2279. [PMID: 26655473 DOI: 10.1016/j.str.2015.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/27/2022]
Abstract
Hierarchic phosphorylation and concomitant Pin1-mediated proline isomerization of the oncoprotein c-Myc controls its cellular stability and activity. However, the molecular basis for Pin1 recognition and catalysis of c-Myc and other multisite, disordered substrates in cell regulation and disease is unclear. By nuclear magnetic resonance, surface plasmon resonance, and molecular modeling, we show that Pin1 subdomains jointly pre-anchor unphosphorylated c-Myc1-88 in the Pin1 interdomain cleft in a disordered, or "fuzzy", complex at the herein named Myc Box 0 (MB0) conserved region N-terminal to the highly conserved Myc Box I (MBI). Ser62 phosphorylation in MBI intensifies previously transient MBI-Pin1 interactions in c-Myc1-88 binding, and increasingly engages Pin1PPIase and its catalytic region with maintained MB0 interactions. In cellular assays, MB0 mutated c-Myc shows decreased Pin1 interaction, increased protein half-life, but lowered rates of Myc-driven transcription and cell proliferation. We propose that dynamic Pin1 recognition of MB0 contributes to the regulation of c-Myc activity in cells.
Collapse
|
30
|
Wang X, Mahoney BJ, Zhang M, Zintsmaster JS, Peng JW. Negative Regulation of Peptidyl-Prolyl Isomerase Activity by Interdomain Contact in Human Pin1. Structure 2015; 23:2224-2233. [PMID: 26602185 DOI: 10.1016/j.str.2015.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 01/10/2023]
Abstract
Pin1 is a modular peptidyl-prolyl isomerase specific for phosphorylated Ser/Thr-Pro (pS/T-P) motifs, typically within intrinsically disordered regions of signaling proteins. Pin1 consists of two flexibly linked domains: an N-terminal WW domain for substrate binding and a larger C-terminal peptidyl-prolyl isomerase (PPIase) domain. Previous studies showed that binding of phosphopeptide substrates to Pin1 could alter Pin1 interdomain contact, strengthening or weakening it depending on the substrate sequence. Thus, substrate-induced changes in interdomain contact may act as a trigger within the Pin1 mechanism. Here, we investigate this possibility via nuclear magnetic resonance studies of several Pin1 mutants. Our findings provide new mechanistic insights for those substrates that reduce interdomain contact. Specifically, the reduced interdomain contact can allosterically enhance PPIase activity relative to that when the contact is sustained. These findings suggest Pin1 interdomain contact can negatively regulate its activity.
Collapse
Affiliation(s)
- Xingsheng Wang
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Brendan J Mahoney
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Meiling Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - John S Zintsmaster
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Jeffrey W Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA.
| |
Collapse
|
31
|
Schelhorn C, Martín-Malpartida P, Suñol D, Macias MJ. Structural Analysis of the Pin1-CPEB1 interaction and its potential role in CPEB1 degradation. Sci Rep 2015; 5:14990. [PMID: 26456073 PMCID: PMC4601027 DOI: 10.1038/srep14990] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/10/2015] [Indexed: 12/21/2022] Open
Abstract
The Cytoplasmic Polyadenylation Element Binding proteins are RNA binding proteins involved in the translational regulation of mRNA. During cell cycle progression, CPEB1 is labeled for degradation by phosphorylation-dependent ubiquitination by the SCF(β-TrCP) ligase. The peptidyl-prolyl isomerase Pin1 plays a key role in CPEB1 degradation. Conditioned by the cell cycle stage, CPEB1 and Pin1 interactions occur in a phosphorylation-independent or -dependent manner. CPEB1 contains six potential phosphorylatable Pin1 binding sites. Using a set of biophysical techniques, we discovered that the pS210 site is unique, since it displays binding activity not only to the WW domain but also to the prolyl-isomerase domain of Pin1. The NMR structure of the Pin1 WW-CPEB1 pS210 (PDB ID: 2n1o) reveals that the pSerPro motif is bound in trans configuration through contacts with amino acids located in the first turn of the WW domain and the conserved tryptophan in the β3-strand. NMR relaxation analyses of Pin1 suggest that inter-domain flexibility is conferred by the modulation of the interaction with peptides containing the pS210 site, which is essential for degradation.
Collapse
Affiliation(s)
- Constanze Schelhorn
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Pau Martín-Malpartida
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, 08028, Spain
| | - David Suñol
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, 08028, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
32
|
Guo J, Zhou HX. Dynamically Driven Protein Allostery Exhibits Disparate Responses for Fast and Slow Motions. Biophys J 2015; 108:2771-4. [DOI: 10.1016/j.bpj.2015.04.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/13/2015] [Accepted: 04/24/2015] [Indexed: 12/29/2022] Open
|
33
|
Abstract
Signaling proteins often sequester complementary functional sites in separate domains. How do the different domains communicate with one another? An attractive system to address this question is the mitotic regulator, human Pin1 (Lu et al. 1996). Pin-1 consists of two tethered domains: a WW domain for substrate binding, and a catalytic domain for peptidyl-prolyl isomerase (PPIase) activity. Pin1 accelerates the cis-trans isomerization of phospho-Ser/Thr-Pro (pS/T-P) motifs within proteins regulating the cell cycle and neuronal development. The early x-ray (Ranganathan et al. 1997; Verdecia et al. 2000) and solution NMR studies (Bayer et al. 2003; Jacobs et al. 2003) of Pin1 indicated inter- and intradomain motion. We became interested in exploring how such motions might affect interdomain communication, using NMR. Our accumulated results indicate substrate binding to Pin1 WW domain changes the intra/inter domain mobility, thereby altering substrate activity in the distal PPIase domain catalytic site. Thus, Pin1 shows evidence of dynamic allostery, in the sense of Cooper and Dryden (Cooper and Dryden 1984). We highlight our results supporting this conclusion, and summarize them via a simple speculative model of conformational selection.
Collapse
|
34
|
Guo J, Pang X, Zhou HX. Two pathways mediate interdomain allosteric regulation in pin1. Structure 2014; 23:237-247. [PMID: 25543254 DOI: 10.1016/j.str.2014.11.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/24/2014] [Accepted: 11/14/2014] [Indexed: 01/27/2023]
Abstract
Allostery is an essential means for regulating biomolecular functions and provides unique opportunities for drug design, yet our ability to elucidate allosteric mechanisms remains limited. Here, based on extensive molecular dynamics simulations, we present an atomistic picture of the pathways mediating the allosteric regulation of the PPIase domain of Pin1 by its WW domain. Two pathways jointly propagate the action of substrate-WW binding to produce closure and rigidification of three PPIase catalytic-site loops. One pathway preexists in the apo protein, but remains dormant until substrate-WW binding completes the second. The reduction in conformational entropy and preorganization of the catalytic-site loops observed here may explain why substrate-WW binding enhances ligand affinity and catalytic activity of the PPIase domain and suggest a combination drug therapy for Pin1-related diseases. Whereas the traditional view of allostery has emphasized conformational transition, our study identifies a distinct role of conformational dynamics in eliciting allostery.
Collapse
Affiliation(s)
- Jingjing Guo
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; Department of Chemistry, School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiaodong Pang
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
35
|
Schiene-Fischer C. Multidomain Peptidyl Prolyl cis/trans Isomerases. Biochim Biophys Acta Gen Subj 2014; 1850:2005-16. [PMID: 25445709 DOI: 10.1016/j.bbagen.2014.11.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Peptidyl prolyl cis/trans isomerases (PPIases) assist the folding and restructuring of client proteins by catalysis of the slow rotational motion of peptide bonds preceding a proline residue. Catalysis is performed by relatively small, distinct protein domains of 10 to 18kDa for all PPIase families. PPIases are involved in a wide variety of physiological and pathophysiological processes like signal transduction, cell differentiation, apoptosis as well as viral, bacterial and parasitic infection. SCOPE OF REVIEW There are multidomain PPIases consisting of one to up to four catalytic domains of the respective PPIase family supplemented by N- or C-terminal extensions. This review examines the biochemical and functional properties of the members of the PPIase class of enzymes which contain additional protein domains with defined biochemical functions. MAJOR CONCLUSIONS The versatile domain architecture of multidomain PPIases is important for the control of enzyme specificity and organelle-specific targeting, the establishment of molecular connections and hence the coordination of PPIase functions across the cellular network. GENERAL SIGNIFICANCE Accessory domains covalently linked to a PPIase domain supply an additional layer of control to the catalysis of prolyl isomerization in specific client proteins. Understanding these control mechanisms will provide new insights into the physiological mode of action of the multidomain PPIases and their ability to form therapeutic targets. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Cordelia Schiene-Fischer
- Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany.
| |
Collapse
|
36
|
Di Martino GP, Masetti M, Cavalli A, Recanatini M. Mechanistic insights into Pin1 peptidyl-prolyl cis-trans isomerization from umbrella sampling simulations. Proteins 2014; 82:2943-56. [PMID: 25066180 DOI: 10.1002/prot.24650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/25/2014] [Accepted: 07/15/2014] [Indexed: 12/22/2022]
Abstract
The peptidyl-proyl isomerase Pin1 plays a key role in the regulation of phospho(p)-Ser/Thr-Pro proteins, acting as a molecular timer of the cell cycle. After recognition of these motifs, Pin1 catalyzes the rapid cis-trans isomerization of proline amide bonds of substrates, contributing to maintain the equilibrium between the two conformations. Although a great interest has arisen on this enzyme, its catalytic mechanism has long been debated. Here, the cis-trans isomerization of a model peptide system was investigated by means of umbrella sampling simulations in the Pin1-bound and unbound states. We obtained free energy barriers consistent with experimental data, and identified several enzymatic features directly linked to the acceleration of the prolyl bond isomerization. In particular, an enhanced autocatalysis, the stabilization of perturbed ground state conformations, and the substrate binding in a procatalytic conformation were found as main contributions to explain the lowering of the isomerization free energy barrier.
Collapse
Affiliation(s)
- Giovanni Paolo Di Martino
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | | | | | | |
Collapse
|
37
|
Vöhringer-Martinez E, Verstraelen T, Ayers PW. The Influence of Ser-154, Cys-113, and the Phosphorylated Threonine Residue on the Catalytic Reaction Mechanism of Pin1. J Phys Chem B 2014; 118:9871-80. [DOI: 10.1021/jp505638w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Esteban Vöhringer-Martinez
- Departamento
de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, 4030000 Concepción, Chile
| | - Toon Verstraelen
- Center
for Molecular Modeling (CMM), Ghent University, 9000 Ghent, Belgium (Member of the QCMM Ghent−Brussels
Alliance)
| | - Paul W. Ayers
- Department
of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario L8 S4L8, Canada
| |
Collapse
|
38
|
Abstract
Nuclear magnetic resonance (NMR) is a powerful technique capable of monitoring a wide range of motions in proteins on a per residue basis. A variety of (2)H relaxation experiments have been developed for monitoring side-chain methyl group motions on the picosecond-nanosecond timescale. These experiments enable determination of the order parameter, S (2) axis, which reports on the rigidity of the C-CH3 bond for side-chain methyl groups. The application of a commonly used subset of these experiments is described in this chapter. It is intended to serve as a practical guide to investigators interested in monitoring side-chain motions.
Collapse
Affiliation(s)
- Chad M Petit
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
39
|
Wilson KA, Bouchard JJ, Peng JW. Interdomain interactions support interdomain communication in human Pin1. Biochemistry 2013; 52:6968-81. [PMID: 24020391 PMCID: PMC3794440 DOI: 10.1021/bi401057x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
Pin1 is an essential mitotic regulator
consisting of a peptidyl–prolyl
isomerase (PPIase) domain flexibly tethered to a smaller Trp–Trp
(WW) binding domain. Communication between these domains is important
for Pin1 in vivo activity; however, the atomic basis for this communication
has remained elusive. Our previous nuclear magnetic resonance (NMR)
studies of Pin1 functional dynamics suggested that weak interdomain
contacts within Pin1 enable allosteric communication between the domain
interface and the distal active site of the PPIase domain.1,2 A necessary condition for this hypothesis is that the intrinsic
properties of the PPIase domain should be sensitive to interdomain
contact. Here, we test this sensitivity by generating a Pin1 mutant,
I28A, which weakens the wild-type interdomain contact while maintaining
the overall folds of the two domains. Using NMR, we show that I28A
leads to altered substrate binding affinity and isomerase activity.
Moreover, I28A causes long-range perturbations to conformational flexibility
in both domains, for both the apo and substrate-complexed states of
the protein. These results show that the distribution of conformations
sampled by the PPIase domain is sensitive to interdomain contact and
strengthen the hypothesis that such contact supports interdomain allosteric
communication in Pin1. Other modular systems may exploit interdomain
interactions in a similar manner.
Collapse
Affiliation(s)
- Kimberly A Wilson
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | |
Collapse
|
40
|
Matena A, Sinnen C, van den Boom J, Wilms C, Dybowski JN, Maltaner R, Mueller JW, Link NM, Hoffmann D, Bayer P. Transient domain interactions enhance the affinity of the mitotic regulator Pin1 toward phosphorylated peptide ligands. Structure 2013; 21:1769-77. [PMID: 23972472 DOI: 10.1016/j.str.2013.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/27/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022]
Abstract
The mitotic regulator Pin1 plays an important role in protein quality control and age-related medical conditions such as Alzheimer disease and Parkinson disease. Although its cellular role has been thoroughly investigated during the past decade, the molecular mechanisms underlying its function remain elusive. We provide evidence for interactions between the two domains of Pin1. Several residues displayed unequivocal peak splits in nuclear magnetic resonance spectra, indicative of two different conformational states in equilibrium. Pareto analysis of paramagnetic relaxation enhancement data demonstrates that the two domains approach each other upon addition of a nonpeptidic ligand. Titration experiments with phosphorylated peptides monitored by fluorescence anisotropy and chemical shift perturbation indicate that domain interactions increase Pin1's affinity toward peptide ligands. We propose this interplay of the domains and ligands to be a general mechanism for a large class of two-domain proteins.
Collapse
Affiliation(s)
- Anja Matena
- Research Group Structural and Medicinal Biochemistry, ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
NMR spectroscopy on domain dynamics in biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:58-117. [DOI: 10.1016/j.pbiomolbio.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
|
42
|
Liu X, Shepherd TR, Murray AM, Xu Z, Fuentes EJ. The structure of the Tiam1 PDZ domain/ phospho-syndecan1 complex reveals a ligand conformation that modulates protein dynamics. Structure 2013; 21:342-54. [PMID: 23395182 DOI: 10.1016/j.str.2013.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/12/2012] [Accepted: 01/03/2013] [Indexed: 11/30/2022]
Abstract
PDZ (PSD-95/Dlg/ZO-1) domains are protein-protein interaction modules often regulated by ligand phosphorylation. Here, we investigated the specificity, structure, and dynamics of Tiam1 PDZ domain/ligand interactions. We show that the PDZ domain specifically binds syndecan1 (SDC1), phosphorylated SDC1 (pSDC1), and SDC3 but not other syndecan isoforms. The crystal structure of the PDZ/SDC1 complex indicates that syndecan affinity is derived from amino acids beyond the four C-terminal residues. Remarkably, the crystal structure of the PDZ/pSDC1 complex reveals a binding pocket that accommodates the phosphoryl group. Methyl relaxation experiments of PDZ/SCD1 and PDZ/pSDC1 complexes reveal that PDZ-phosphoryl interactions dampen dynamic motions in a distal region of the PDZ domain by decoupling them from the ligand-binding site. Our data are consistent with a selection model by which specificity and phosphorylation regulate PDZ/syndecan interactions and signaling events. Importantly, our relaxation data demonstrate that PDZ/phospho-ligand interactions regulate protein dynamics and their coupling to distal sites.
Collapse
Affiliation(s)
- Xu Liu
- Department of Biochemistry, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
43
|
Xu GG, Slebodnick C, Etzkorn FA. Cyclohexyl ketone inhibitors of Pin1 dock in a trans-diaxial cyclohexane conformation. PLoS One 2012; 7:e44226. [PMID: 23028504 PMCID: PMC3446931 DOI: 10.1371/journal.pone.0044226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/03/2012] [Indexed: 01/12/2023] Open
Abstract
Cyclohexyl ketone substrate analogue inhibitors (Ac–pSer-Ψ[C = OCH]-Pip–tryptamine) of Pin1, the cell cycle regulatory peptidyl-prolyl isomerase (PPIase), were designed and synthesized as potential electrophilic acceptors for the Pin1 active site Cys113 nucleophile to test a proposed nucleophilic addition-isomerization mechanism. Because they were weak inhibitors, models of all three stereoisomers were docked into the active site of Pin1. Each isomer consistently minimized to a trans-diaxial cyclohexane conformation. From this, we hypothesize that Pin1 stretches substrates into a trans-pyrrolidine conformation to lower the barrier to isomerization. Our reduced amide inhibitor of Pin1 adopted a similar trans-pyrrolidine conformation in the crystal structure. The molecular model of 1, which mimics the l-Ser-l-Pro stereochemistry, in the Pin1 active site showed a distance of 4.4 Å, and an angle of 31° between Cys113-S and the ketone carbon. The computational models suggest that the mechanism of Pin1 PPIase is not likely to proceed through nucleophilic addition.
Collapse
Affiliation(s)
| | | | - Felicia A. Etzkorn
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
44
|
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful tool for investigating the dynamics of biomolecules since it provides a description of motion that is comprehensive, site-specific, and relatively non-invasive. In particular, the study of protein dynamics has benefited from sustained methodological advances in NMR that have expanded the scope and time scales of accessible motion. Yet, many of these advances may not be well known to the more general physical chemistry community. Accordingly, this Perspective provides a glimpse of some of the more powerful methods in liquid state NMR that are helping reshape our understanding of functional motions of proteins.
Collapse
Affiliation(s)
- J W Peng
- Department of Chemistry and Biochemistry & Department of Physics University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
45
|
Velazquez HA, Hamelberg D. Conformational Selection in the Recognition of Phosphorylated Substrates by the Catalytic Domain of Human Pin1. Biochemistry 2011; 50:9605-15. [DOI: 10.1021/bi2009954] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hector A. Velazquez
- Department of Chemistry and Center
for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Donald Hamelberg
- Department of Chemistry and Center
for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| |
Collapse
|
46
|
Namanja AT, Wang XJ, Xu B, Mercedes-Camacho AY, Wilson KA, Etzkorn FA, Peng JW. Stereospecific gating of functional motions in Pin1. Proc Natl Acad Sci U S A 2011; 108:12289-94. [PMID: 21746900 PMCID: PMC3145719 DOI: 10.1073/pnas.1019382108] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pin1 is a modular enzyme that accelerates the cis-trans isomerization of phosphorylated-Ser/Thr-Pro (pS/T-P) motifs found in numerous signaling proteins regulating cell growth and neuronal survival. We have used NMR to investigate the interaction of Pin1 with three related ligands that include a pS-P substrate peptide, and two pS-P substrate analogue inhibitors locked in the cis and trans conformations. Specifically, we compared the ligand binding modes and binding-induced changes in Pin1 side-chain flexibility. The cis and trans binding modes differ, and produce different mobility in Pin1. The cis-locked inhibitor and substrate produced a loss of side-chain flexibility along an internal conduit of conserved hydrophobic residues, connecting the domain interface with the isomerase active site. The trans-locked inhibitor produces a weaker conduit response. Thus, the conduit response is stereoselective. We further show interactions between the peptidyl-prolyl isomerase and Trp-Trp (WW) domains amplify the conduit response, and alter binding properties at the remote peptidyl-prolyl isomerase active site. These results suggest that specific input conformations can gate dynamic changes that support intraprotein communication. Such gating may help control the propagation of chemical signals by Pin1, and other modular signaling proteins.
Collapse
Affiliation(s)
- Andrew T. Namanja
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556
| | | | - Bailing Xu
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061
| | | | - Kimberly A. Wilson
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556
| | | | - Jeffrey W. Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556
| |
Collapse
|
47
|
Whitley MJ, Lee AL. Exploring the role of structure and dynamics in the function of chymotrypsin inhibitor 2. Proteins 2011; 79:916-24. [PMID: 21287622 PMCID: PMC3075870 DOI: 10.1002/prot.22930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 10/16/2010] [Accepted: 10/25/2010] [Indexed: 11/11/2022]
Abstract
Increasing awareness of the possible role of internal dynamics in protein function has led to the development of new methods for experimentally characterizing protein dynamics across multiple time scales, especially using NMR spectroscopy. A few analyses of the conformational dynamics of proteins ranging from nonallosteric single domains to multidomain allosteric enzymes are now available; however, demonstrating a connection between dynamics and function remains difficult on account of the comparative lack of studies examining both changes in dynamics and changes in function in response to the same perturbations. In previous work, we characterized changes in structure and dynamics on the ps–ns time scale resulting from hydrophobic core mutations in chymotrypsin inhibitor 2 and found that there are moderate, persistent global changes in dynamics in the absence of gross structural changes (Whitley et al., Biochemistry 2008;47:8566–8576). Here, we assay those and additional mutants for inhibitory ability toward the serine proteases elastase and chymotrypsin to determine the effects of mutation on function. Results indicate that core mutation has only a subtle effect on CI2 function. Using chemical shifts, we also studied the effect of complex formation on CI2 structure and found that perturbations are greatest at the complex interface but also propagate toward CI2's hydrophobic core. The structure–dynamics–function data set completed here suggests that dynamics plays a limited role in the function of this small model system, although we do observe a correlation between nanosecond-scale reactive loop motions and inhibitory ability for mutations at one key position in the hydrophobic core.
Collapse
Affiliation(s)
- Matthew J. Whitley
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Andrew L. Lee
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Division of Medicinal Chemistry & Natural Products, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
48
|
Multi-Timescale Dynamics Study of FKBP12 Along the Rapamycin–mTOR Binding Coordinate. J Mol Biol 2011; 405:378-94. [DOI: 10.1016/j.jmb.2010.10.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/12/2010] [Accepted: 10/20/2010] [Indexed: 01/11/2023]
|
49
|
Morcos F, Chatterjee S, McClendon CL, Brenner PR, López-Rendón R, Zintsmaster J, Ercsey-Ravasz M, Sweet CR, Jacobson MP, Peng JW, Izaguirre JA. Modeling conformational ensembles of slow functional motions in Pin1-WW. PLoS Comput Biol 2010; 6:e1001015. [PMID: 21152000 PMCID: PMC2996313 DOI: 10.1371/journal.pcbi.1001015] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 10/27/2010] [Indexed: 11/19/2022] Open
Abstract
Protein-protein interactions are often mediated by flexible loops that experience conformational dynamics on the microsecond to millisecond time scales. NMR relaxation studies can map these dynamics. However, defining the network of inter-converting conformers that underlie the relaxation data remains generally challenging. Here, we combine NMR relaxation experiments with simulation to visualize networks of inter-converting conformers. We demonstrate our approach with the apo Pin1-WW domain, for which NMR has revealed conformational dynamics of a flexible loop in the millisecond range. We sample and cluster the free energy landscape using Markov State Models (MSM) with major and minor exchange states with high correlation with the NMR relaxation data and low NOE violations. These MSM are hierarchical ensembles of slowly interconverting, metastable macrostates and rapidly interconverting microstates. We found a low population state that consists primarily of holo-like conformations and is a "hub" visited by most pathways between macrostates. These results suggest that conformational equilibria between holo-like and alternative conformers pre-exist in the intrinsic dynamics of apo Pin1-WW. Analysis using MutInf, a mutual information method for quantifying correlated motions, reveals that WW dynamics not only play a role in substrate recognition, but also may help couple the substrate binding site on the WW domain to the one on the catalytic domain. Our work represents an important step towards building networks of inter-converting conformational states and is generally applicable.
Collapse
Affiliation(s)
- Faruck Morcos
- Interdisciplinary Center for Network Science and Applications, Notre Dame, Indiana, United States of America
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Santanu Chatterjee
- Interdisciplinary Center for Network Science and Applications, Notre Dame, Indiana, United States of America
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Christopher L. McClendon
- Graduate Group in Biophysics and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Paul R. Brenner
- Center for Research Computing, University of Notre Dame, Notre Dame, Indiana, United States of America
| | | | - John Zintsmaster
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Maria Ercsey-Ravasz
- Interdisciplinary Center for Network Science and Applications, Notre Dame, Indiana, United States of America
- Department of Physics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Christopher R. Sweet
- Interdisciplinary Center for Network Science and Applications, Notre Dame, Indiana, United States of America
- Center for Research Computing, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Matthew P. Jacobson
- Graduate Group in Biophysics and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Jeffrey W. Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jesús A. Izaguirre
- Interdisciplinary Center for Network Science and Applications, Notre Dame, Indiana, United States of America
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
50
|
Tzeng SR, Kalodimos CG. Protein dynamics and allostery: an NMR view. Curr Opin Struct Biol 2010; 21:62-7. [PMID: 21109422 DOI: 10.1016/j.sbi.2010.10.007] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 10/24/2010] [Indexed: 11/19/2022]
Abstract
Allostery, the process by which distant sites within a protein system are energetically coupled, is an efficient and ubiquitous mechanism for activity regulation. A purely mechanical view of allostery invoking only structural changes has developed over the decades as the classical view of the phenomenon. However, a fast growing list of examples illustrate the intimate link between internal motions over a wide range of time scales and function in protein-ligand interactions. Proteins respond to perturbations by redistributing their motions and they use fluctuating conformational states for binding and conformational entropy as a carrier of allosteric energy to modulate association with ligands. In several cases allosteric interactions proceed with minimal or no structural changes. We discuss emerging paradigms for the central role of protein dynamics in allostery.
Collapse
Affiliation(s)
- Shiou-Ru Tzeng
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|