1
|
Bever D, Wheeldon I, Da Silva N. RNA polymerase II-driven CRISPR-Cas9 system for efficient non-growth-biased metabolic engineering of Kluyveromyces marxianus. Metab Eng Commun 2022; 15:e00208. [PMID: 36249306 PMCID: PMC9558044 DOI: 10.1016/j.mec.2022.e00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
The thermotolerant yeast Kluyveromyces marxianus has gained significant attention in recent years as a promising microbial candidate for industrial biomanufacturing. Despite several contributions to the expanding molecular toolbox for gene expression and metabolic engineering of K. marxianus, there remains a need for a more efficient and versatile genome editing platform. To address this, we developed a CRISPR-based editing system that enables high efficiency marker-less gene disruptions and integrations using only 40 bp homology arms in NHEJ functional and non-functional K. marxianus strains. The use of a strong RNA polymerase II promoter allows efficient expression of gRNAs flanked by the self-cleaving RNA structures, tRNA and HDV ribozyme, from a single plasmid co-expressing a codon optimized Cas9. Implementing this system resulted in nearly 100% efficiency of gene disruptions in both NHEJ-functional and NHEJ-deficient K. marxianus strains, with donor integration efficiencies reaching 50% and 100% in the two strains, respectively. The high gRNA targeting performance also proved instrumental for selection of engineered strains with lower growth rate but improved polyketide biosynthesis by avoiding an extended outgrowth period, a common method used to enrich for edited cells but that fails to recover advantageous mutants with even slightly impaired fitness. Finally, we provide the first demonstration of simultaneous, markerless integrations at multiple loci in K. marxianus using a 2.6 kb and a 7.6 kb donor, achieving a dual integration efficiency of 25.5% in a NHEJ-deficient strain. These results highlight both the ease of use and general robustness of this system for rapid and flexible metabolic engineering in this non-conventional yeast. RNAP II-driven tRNA-gRNA-HDV ribozyme cassette built for K. marxianus genome editing. Gene integrations up to 7.6 kb were achieved with only 40 bp homology sequences. Recovery of growth-biased modifications achievable as extended outgrowth not required. Application (ZWF1 and GPD1 knockouts) increased polyketide specific titers. Expressing two unique gRNAs from one cassette enabled integrations at separate loci.
Collapse
|
2
|
Kolesnikov ES, Gushchin IY, Zhilyaev PA, Onufriev AV. Similarities and Differences between Na + and K + Distributions around DNA Obtained with Three Popular Water Models. J Chem Theory Comput 2021; 17:7246-7259. [PMID: 34633813 DOI: 10.1021/acs.jctc.1c00332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have compared distributions of sodium and potassium ions around double-stranded DNA, simulated using fixed charge SPC/E, TIP3P, and OPC water models and the Joung/Cheatham (J/C) ion parameter set, as well as the Li/Merz HFE 6-12 (L/M HFE) ion parameters for OPC water. In all the simulations, the ion distributions are in qualitative agreement with Manning's condensation theory and the Debye-Hückel theory, where expected. In agreement with experiment, binding affinity of monovalent ions to DNA does not depend on ion type in every solvent model. However, behavior of deeply bound ions, including ions bound to specific sites, depends strongly on the solvent model. In particular, the number of potassium ions in the minor groove of AT-tracts differs at least 3-fold between the solvent models tested. The number of sodium ions associated with the DNA agrees quantitatively with the experiment for the OPC water model, followed closely by TIP3P+J/C; the largest deviation from the experiment, ∼10%, is seen for SPC/E+J/C. On the other hand, SPC/E+J/C model is most consistent (67%) with the experimental potassium binding sites, followed by OPC+J/C (60%), TIP3P+J/C (53%), and OPC+L/M HFE (27%). The use of NBFIX correction with TIP3P+J/C improves its consistency with the experiment. In summary, the choice of the solvent model matters little for simulating the diffuse atmosphere of sodium and potassium ions around DNA, but ion distributions become increasingly sensitive to the solvent model near the helical axis. We offer an explanation for these trends. There is no single gold standard solvent model, although OPC water with J/C ions or TIP3P with J/C + NBFIX may offer an imperfect compromise for practical simulations of ionic atmospheres around DNA.
Collapse
Affiliation(s)
- Egor S Kolesnikov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Ivan Yu Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Petr A Zhilyaev
- Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russia
| | - Alexey V Onufriev
- Department of Computer Science, Virginia Tech, Blacksburg 24061-0131, United States.,Department of Physics, Virginia Tech, Blacksburg 24061-0131, United States.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg 24061-0131, United States
| |
Collapse
|
3
|
Messina KJ, Kierzek R, Tracey MA, Bevilacqua PC. Small Molecule Rescue and Glycosidic Conformational Analysis of the Twister Ribozyme. Biochemistry 2019; 58:4857-4868. [PMID: 31742390 PMCID: PMC6901379 DOI: 10.1021/acs.biochem.9b00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The number of self-cleaving ribozymes has increased sharply in recent years, giving rise to elaborations of the four known ribozyme catalytic strategies, α, β, γ, and δ. One such extension is utilized by the twister ribozyme, which is hypothesized to conduct δ, or general acid catalysis, via N3 of the syn adenine +1 nucleobase indirectly via buffer catalysis at biological pH and directly at lower pH. Herein, we test the δ catalysis role of A1 via chemical rescue and the catalytic relevance of the syn orientation of the nucleobase by conformational analysis. Using inhibited twister ribozyme variants with A1(N3) deaza or A1 abasic modifications, we observe >100-fold chemical rescue effects in the presence of protonatable biological small molecules such as imidazole and histidine, similar to observed rescue values previously reported for C75U/C76Δ in the HDV ribozyme. Brønsted plots for the twister variants support a model in which small molecules rescue catalytic activity via a proton transfer mechanism, suggesting that A1 in the wild type is involved in proton transfer, most likely general acid catalysis. Additionally, through glycosidic conformational analysis in an appropriate background that accommodates the bromine atom, we observe that an 8BrA1-modified twister ribozyme is up to 10-fold faster than a nonmodified A1 ribozyme, supporting crystallographic data that show that A1 is syn when conducting proton transfer. Overall, this study provides functional evidence that the nucleotide immediately downstream of the cleavage site participates directly or indirectly in general acid-base catalysis in the twister ribozyme while occupying the syn conformation.
Collapse
Affiliation(s)
- Kyle J. Messina
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Matthew A. Tracey
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Current Address: Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Philip C. Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
4
|
Kolesanova EF, Melnikova MV, Bolshakova TN, Rybalkina EY, Sivov IG. Bacteriophage MS2 As a Tool for Targeted Delivery in Solid Tumor Chemotherapy. Acta Naturae 2019; 11:98-101. [PMID: 31413886 PMCID: PMC6643345 DOI: 10.32607/20758251-2019-11-2-98-101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage MS2 was employed for targeted delivery of an apoptosis-inducing agent, Tl+, into a tumor tissue. The targeted delivery was ensured by iRGD peptide, a ligand of integrins presumably located on the surface of endotheliocytes of the tumor tissue neovasculature and certain tumor cells. The synthesized peptide was conjugated to MS2 capsid proteins. Tl+ ions from TlNO3 penetrated the phage particles and tightly bound to phage RNA. Peptide-modified MS2 preparations filled with Tl+ caused cell death in two types of cultivated human breast cancer cells and effected necrosis of these tumor xenografts in mice. Neither peptide-conjugated bacteriophage MS2 without Tl+ nor the phage filled with Tl+ but without the peptide or the same phage with the non-conjugated peptide in solution produced such effects. The preparation exhibited no acute toxicity at a therapeutic dose.
Collapse
Affiliation(s)
- E. F. Kolesanova
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10, bld. 8, Moscow, 119121, Russia
| | - M. V. Melnikova
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10, bld. 8, Moscow, 119121, Russia
| | - T. N. Bolshakova
- N.F. Gamaleya Federal Research Center of Epidemiology and Microbiology, Gamalei Str. 18, Moscow, 123098, Russia
| | - E. Yu. Rybalkina
- Institute of Carcinogenesis, Federal National Medical Research Center of Oncology, Kashirskoe sh. 23 , Moscow, 115478, Russia
| | - I. G. Sivov
- Biotechnologiya, Ltd., Efremova Str. 20, Moscow, 119048, Russia
| |
Collapse
|
5
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
6
|
Ferreira R, David F, Nielsen J. Advancing biotechnology with CRISPR/Cas9: recent applications and patent landscape. J Ind Microbiol Biotechnol 2018; 45:467-480. [PMID: 29362972 DOI: 10.1007/s10295-017-2000-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/19/2017] [Indexed: 12/24/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) is poised to become one of the key scientific discoveries of the twenty-first century. Originating from prokaryotic and archaeal immune systems to counter phage invasions, CRISPR-based applications have been tailored for manipulating a broad range of living organisms. From the different elucidated types of CRISPR mechanisms, the type II system adapted from Streptococcus pyogenes has been the most exploited as a tool for genome engineering and gene regulation. In this review, we describe the different applications of CRISPR/Cas9 technology in the industrial biotechnology field. Next, we detail the current status of the patent landscape, highlighting its exploitation through different companies, and conclude with future perspectives of this technology.
Collapse
Affiliation(s)
- Raphael Ferreira
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Florian David
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 412 96, Göteborg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Chakraborty D, Ghosh S. The epsilon motif of hepatitis B virusRNAexhibits a potassium‐dependent ribonucleolytic activity. FEBS J 2017; 284:1184-1203. [DOI: 10.1111/febs.14050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/21/2017] [Accepted: 02/22/2017] [Indexed: 12/01/2022]
|
8
|
Lee TS, Radak BK, Harris ME, York DM. A Two-Metal-Ion-Mediated Conformational Switching Pathway for HDV Ribozyme Activation. ACS Catal 2016; 6:1853-1869. [PMID: 27774349 DOI: 10.1021/acscatal.5b02158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA enzymes serve as a potentially powerful platform from which to design catalysts and engineer new biotechnology. A fundamental understanding of these systems provides insight to guide design. The hepatitis delta virus ribozyme (HDVr) is a small, self-cleaving RNA motif widely distributed in nature, that has served as a paradigm for understanding basic principles of RNA catalysis. Nevertheless, questions remain regarding the precise roles of divalent metal ions and key nucleotides in catalysis. In an effort to establish a reaction mechanism model consistent with available experimental data, we utilize molecular dynamics simulations to explore different conformations and metal ion binding modes along the HDVr reaction path. Building upon recent crystallographic data, our results provide a dynamic model of the HDVr reaction mechanism involving a conformational switch between multiple non-canonical G25:U20 base pair conformations in the active site. These local nucleobase dynamics play an important role in catalysis by modulating the metal binding environments of two Mg2+ ions that support catalysis at different steps of the reaction pathway. The first ion plays a structural role by inducing a base pair flip necessary to obtain the catalytic fold in which C75 moves towards to the scissile phosphate in the active site. Ejection of this ion then permits a second ion to bind elsewhere in the active site and facilitate nucleophile activation. The simulations collectively describe a mechanistic scenario that is consistent with currently available experimental data from crystallography, phosphorothioate substitutions, and chemical probing studies. Avenues for further experimental verification are suggested.
Collapse
Affiliation(s)
- Tai-Sung Lee
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Brian K. Radak
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
- Argonne National Laboratory, Argonne, Illinois 60439, United State
| | - Michael E. Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Darrin M. York
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
9
|
Abstract
Metal ions are essential cofactors for the structure and functions of nucleic acids. Yet, the early discovery in the 70s of the crucial role of Mg(2+) in stabilizing tRNA structures has occulted for a long time the importance of monovalent cations. Renewed interest in these ions was brought in the late 90s by the discovery of specific potassium metal ions in the core of a group I intron. Their importance in nucleic acid folding and catalytic activity is now well established. However, detection of K(+) and Na(+) ions is notoriously problematic and the question about their specificity is recurrent. Here we review the different methods that can be used to detect K(+) and Na(+) ions in nucleic acid structures such as X-ray crystallography, nuclear magnetic resonance or molecular dynamics simulations. We also discuss specific versus non-specific binding to different structures through various examples.
Collapse
Affiliation(s)
- Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| | - Luigi D'Ascenzo
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| | - Eric Ennifar
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| |
Collapse
|
10
|
Radak BK, Lee TS, Harris ME, York DM. Assessment of metal-assisted nucleophile activation in the hepatitis delta virus ribozyme from molecular simulation and 3D-RISM. RNA (NEW YORK, N.Y.) 2015; 21:1566-1577. [PMID: 26170378 PMCID: PMC4536318 DOI: 10.1261/rna.051466.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
The hepatitis delta virus ribozyme is an efficient catalyst of RNA 2'-O-transphosphorylation and has emerged as a key experimental system for identifying and characterizing fundamental features of RNA catalysis. Recent structural and biochemical data have led to a proposed mechanistic model whereby an active site Mg(2+) ion facilitates deprotonation of the O2' nucleophile, and a protonated cytosine residue (C75) acts as an acid to donate a proton to the O5' leaving group as noted in a previous study. This model assumes that the active site Mg(2+) ion forms an inner-sphere coordination with the O2' nucleophile and a nonbridging oxygen of the scissile phosphate. These contacts, however, are not fully resolved in the crystal structure, and biochemical data are not able to unambiguously exclude other mechanistic models. In order to explore the feasibility of this model, we exhaustively mapped the free energy surfaces with different active site ion occupancies via quantum mechanical/molecular mechanical (QM/MM) simulations. We further incorporate a three-dimensional reference interaction site model for the solvated ion atmosphere that allows these calculations to consider not only the rate associated with the chemical steps, but also the probability of observing the system in the presumed active state with the Mg(2+) ion bound. The QM/MM results predict that a pathway involving metal-assisted nucleophile activation is feasible based on the rate-controlling transition state barrier departing from the presumed metal-bound active state. However, QM/MM results for a similar pathway in the absence of Mg(2+) are not consistent with experimental data, suggesting that a structural model in which the crystallographically determined Mg(2+) is simply replaced with Na(+) is likely incorrect. It should be emphasized, however, that these results hinge upon the assumption of the validity of the presumed Mg(2+)-bound starting state, which has not yet been definitively verified experimentally, nor explored in depth computationally. Thus, further experimental and theoretical study is needed such that a consensus view of the catalytic mechanism emerges.
Collapse
Affiliation(s)
- Brian K Radak
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Tai-Sung Lee
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Darrin M York
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA
| |
Collapse
|
11
|
Li Y, Wang C, Hao J, Cheng M, Jia G, Li C. Higher-order human telomeric G-quadruplex DNA metalloenzyme catalyzed Diels–Alder reaction: an unexpected inversion of enantioselectivity modulated by K+ and NH4+ ions. Chem Commun (Camb) 2015; 51:13174-7. [DOI: 10.1039/c5cc05215g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
K+ and NH4+, bearing approximately equal ionic radius, present different allosteric activation for higher-order human telomeric G-quadruplex DNA metalloenzyme.
Collapse
Affiliation(s)
- Yinghao Li
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Changhao Wang
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Jingya Hao
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Mingpan Cheng
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Guoqing Jia
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Can Li
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
12
|
M…π(arene) interactions for M=gallium, indium and thallium: Influence upon supramolecular self-assembly and prevalence in some proteins. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Ryan OW, Skerker JM, Maurer MJ, Li X, Tsai JC, Poddar S, Lee ME, DeLoache W, Dueber JE, Arkin AP, Cate JHD. Selection of chromosomal DNA libraries using a multiplex CRISPR system. eLife 2014; 3. [PMID: 25139909 PMCID: PMC4161972 DOI: 10.7554/elife.03703] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/17/2014] [Indexed: 12/19/2022] Open
Abstract
The directed evolution of biomolecules to improve or change their activity is central to many engineering and synthetic biology efforts. However, selecting improved variants from gene libraries in living cells requires plasmid expression systems that suffer from variable copy number effects, or the use of complex marker-dependent chromosomal integration strategies. We developed quantitative gene assembly and DNA library insertion into the Saccharomyces cerevisiae genome by optimizing an efficient single-step and marker-free genome editing system using CRISPR-Cas9. With this Multiplex CRISPR (CRISPRm) system, we selected an improved cellobiose utilization pathway in diploid yeast in a single round of mutagenesis and selection, which increased cellobiose fermentation rates by over 10-fold. Mutations recovered in the best cellodextrin transporters reveal synergy between substrate binding and transporter dynamics, and demonstrate the power of CRISPRm to accelerate selection experiments and discoveries of the molecular determinants that enhance biomolecule function. DOI:http://dx.doi.org/10.7554/eLife.03703.001 Over the course of billions of years, natural evolution has produced new proteins and adapted existing ones so that they work better. Scientists have learned how to use the principles that underlie evolution to similarly engineer proteins in the laboratory. This process, known as directed evolution, is a powerful tool for improving how proteins function. Directed evolution normally involves mutating the gene that encodes the protein of interest, selecting the genes that produce the most promising proteins for another round of mutation, and repeating the process until the desired protein function is achieved. In the first step of directed evolution, a gene is usually mutated randomly in order to create a large ‘library’ of different forms of the gene. These are joined to circular pieces of DNA known as plasmids that can replicate themselves inside cells. However, the number of plasmids than can be taken up differs from cell to cell. This complicates experiments, and the ideal directed evolution experiment would have the same number of plasmids, or target genes, being delivered into each cell. Ryan et al. have developed a new method for performing directed evolution experiments that uses a recently developed technique called the CRISPR-Cas9 system. This can make direct changes to a DNA strand such as inserting or deleting specific sequences that code for proteins. Ryan et al. used the CRISPR-Cas9 system to create multiple DNA breaks simultaneously across the genome of yeast cells, and joined ‘barcoded’ DNA or DNA for intact genes to these breaks. This avoids the need to use plasmids to introduce foreign DNA into cells. Ryan et al. have named this method the Multiplex CRISPR (or CRISPRm) system. Having established CRISPRm, Ryan et al. tested whether it could be used to engineer improved proteins by attempting to modify a transporter protein called CDT-1. This protein transports the sugar cellobiose into yeast cells, where it can be converted into alcohol by fermentation. This is important for making biofuel from plants. After just one round of directed evolution using CRISPRm, Ryan et al. successfully isolated a form of the CDT-1 protein that increased the rate of fermentation over 10-fold; hence this CDT-1 variant could be used to increase biofuel production. In the future, it will be important to implement multiple selection rounds with CRISPRm, and to test how large the DNA libraries can be for directed evolution. In time, CRISPRm could find use in evolving and engineering different combinations of genes, metabolic pathways, and possibly entire genomes. DOI:http://dx.doi.org/10.7554/eLife.03703.002
Collapse
Affiliation(s)
- Owen W Ryan
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
| | - Jeffrey M Skerker
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
| | - Matthew J Maurer
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
| | - Xin Li
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
| | - Jordan C Tsai
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
| | - Snigdha Poddar
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
| | - Michael E Lee
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
| | - Will DeLoache
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
| | - John E Dueber
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
| | - Adam P Arkin
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
| | - Jamie H D Cate
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
14
|
Riccitelli N, Lupták A. HDV family of self-cleaving ribozymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 120:123-71. [PMID: 24156943 DOI: 10.1016/b978-0-12-381286-5.00004-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hepatitis delta virus (HDV) ribozymes are catalytic RNAs capable of cleaving their own sugar-phosphate backbone. The HDV virus possesses the ribozymes in both sense and antisense genomic transcripts, where they are essential for processing during replication. These ribozymes have been the subject of intense biochemical scrutiny and have yielded a wealth of mechanistic insights. In recent years, many HDV-like ribozymes have been identified in nearly all branches of life. The ribozymes are implicated in a variety of biological events, including episodic memory in mammals and retrotransposition in many eukaryotes. Detailed analysis of additional HDV-like ribozyme isolates will likely reveal many more biological functions and provide information about the evolution of this unique RNA.
Collapse
Affiliation(s)
- Nathan Riccitelli
- Department of Chemistry, University of California, Irvine, California, USA
| | | |
Collapse
|
15
|
Ganguly A, Thaplyal P, Rosta E, Bevilacqua PC, Hammes-Schiffer S. Quantum mechanical/molecular mechanical free energy simulations of the self-cleavage reaction in the hepatitis delta virus ribozyme. J Am Chem Soc 2014; 136:1483-96. [PMID: 24383543 PMCID: PMC3954522 DOI: 10.1021/ja4104217] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The
hepatitis delta virus (HDV) ribozyme catalyzes a self-cleavage
reaction using a combination of nucleobase and metal ion catalysis.
Both divalent and monovalent ions can catalyze this reaction, although
the rate is slower with monovalent ions alone. Herein, we use quantum
mechanical/molecular mechanical (QM/MM) free energy simulations to
investigate the mechanism of this ribozyme and to elucidate the roles
of the catalytic metal ion. With Mg2+ at the catalytic
site, the self-cleavage mechanism is observed to be concerted with
a phosphorane-like transition state and a free energy barrier of ∼13
kcal/mol, consistent with free energy barrier values extrapolated
from experimental studies. With Na+ at the catalytic site,
the mechanism is observed to be sequential, passing through a phosphorane
intermediate, with free energy barriers of 2–4 kcal/mol for
both steps; moreover, proton transfer from the exocyclic amine of
protonated C75 to the nonbridging oxygen of the scissile phosphate
occurs to stabilize the phosphorane intermediate in the sequential
mechanism. To explain the slower rate observed experimentally with
monovalent ions, we hypothesize that the activation of the O2′
nucleophile by deprotonation and orientation is less favorable with
Na+ ions than with Mg2+ ions. To explore this
hypothesis, we experimentally measure the pKa of O2′ by kinetic and NMR methods and find it to be
lower in the presence of divalent ions rather than only monovalent
ions. The combined theoretical and experimental results indicate that
the catalytic Mg2+ ion may play three key roles: assisting
in the activation of the O2′ nucleophile, acidifying the general
acid C75, and stabilizing the nonbridging oxygen to prevent proton
transfer to it.
Collapse
Affiliation(s)
- Abir Ganguly
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | | | | | | | | |
Collapse
|
16
|
Abstract
Global demand has driven the use of industrial strains of the yeast Saccharomyces cerevisiae for large-scale production of biofuels and renewable chemicals. However, the genetic basis of desired domestication traits is poorly understood because robust genetic tools do not exist for industrial hosts. We present an efficient, marker-free, high-throughput, and multiplexed genome editing platform for industrial strains of S. cerevisiae that uses plasmid-based expression of the CRISPR/Cas9 endonuclease and multiple ribozyme-protected single guide RNAs. With this multiplex CRISPR (CRISPRm) system, it is possible to integrate DNA libraries into the chromosome for evolution experiments, and to engineer multiple loci simultaneously. The CRISPRm tools should therefore find use in many higher-order synthetic biology applications to accelerate improvements in industrial microorganisms.
Collapse
Affiliation(s)
- Owen W Ryan
- Energy Biosciences Institute, University of California, Berkeley, California, USA
| | - Jamie H D Cate
- Energy Biosciences Institute, University of California, Berkeley, California, USA; Department of Molecular and Cell Biology, University of California, Berkeley, California, USA; Department of Chemistry, University of California, Berkeley, California, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| |
Collapse
|
17
|
Rowinska-Zyrek M, Skilandat M, Sigel RKO. Hexaamminecobalt(III) - Probing Metal Ion Binding Sites in Nucleic Acids by NMR Spectroscopy. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Abstract
The role of pH-dependent protonation equilibrium in modulating RNA dynamics and function is one of the key unanswered questions in RNA biology. Molecular dynamics (MD) simulations can provide insight into the mechanistic roles of protonated nucleotides, but it is only capable of modeling fixed protonation states and requires prior knowledge of the key residue's protonation state. Recently, we developed a framework for constant pH molecular dynamics simulations (CPHMDMSλD) of nucleic acids, where the nucleotides' protonation states are modeled as dynamic variables that are coupled to the structural dynamics of the RNA. In the present study, we demonstrate the application of CPHMDMSλD to the lead-dependent ribozyme; establishing the validity of this approach for modeling complex RNA structures. We show that CPHMDMSλD accurately predicts the direction of the pKa shifts and reproduces experimentally-measured microscopic pKa values with an average unsigned error of 1.3 pKa units. The effects of coupled titration states in RNA structures are modeled, and the importance of conformation sampling is highlighted. The general accuracy of CPHMDMSλD simulations in reproducing pH-dependent observables reported in this work demonstrates that constant pH simulations provides a powerful tool to investigate pH-dependent processes in nucleic acids.
Collapse
Affiliation(s)
- Garrett B Goh
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
19
|
Biondi E, Poudyal RR, Forgy JC, Sawyer AW, Maxwell AWR, Burke DH. Lewis acid catalysis of phosphoryl transfer from a copper(II)-NTP complex in a kinase ribozyme. Nucleic Acids Res 2013; 41:3327-38. [PMID: 23358821 PMCID: PMC3597699 DOI: 10.1093/nar/gkt039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The chemical strategies used by ribozymes to enhance reaction rates are revealed in part from their metal ion and pH requirements. We find that kinase ribozyme K28(1-77)C, in contrast with previously characterized kinase ribozymes, requires Cu2+ for optimal catalysis of thiophosphoryl transfer from GTPγS. Phosphoryl transfer from GTP is greatly reduced in the absence of Cu2+, indicating a specific catalytic role independent of any potential interactions with the GTPγS thiophosphoryl group. In-line probing and ATPγS competition both argue against direct Cu2+ binding by RNA; rather, these data establish that Cu2+ enters the active site within a Cu2+•GTPγS or Cu2+•GTP chelation complex, and that Cu2+•nucleobase interactions further enforce Cu2+ selectivity and position the metal ion for Lewis acid catalysis. Replacing Mg2+ with [Co(NH3)6]3+ significantly reduced product yield, but not kobs, indicating that the role of inner-sphere Mg2+ coordination is structural rather than catalytic. Replacing Mg2+ with alkaline earths of increasing ionic radii (Ca2+, Sr2+ and Ba2+) gave lower yields and approximately linear rates of product accumulation. Finally, we observe that reaction rates increased with pH in log-linear fashion with an apparent pKa = 8.0 ± 0.1, indicating deprotonation in the rate-limiting step.
Collapse
Affiliation(s)
- Elisa Biondi
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
20
|
Šponer J, Mládek A, Šponer JE, Svozil D, Zgarbová M, Banáš P, Jurečka P, Otyepka M. The DNA and RNA sugar-phosphate backbone emerges as the key player. An overview of quantum-chemical, structural biology and simulation studies. Phys Chem Chem Phys 2012; 14:15257-77. [PMID: 23072945 DOI: 10.1039/c2cp41987d] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Knowledge of geometrical and physico-chemical properties of the sugar-phosphate backbone substantially contributes to the comprehension of the structural dynamics, function and evolution of nucleic acids. We provide a side by side overview of structural biology/bioinformatics, quantum chemical and molecular mechanical/simulation studies of the nucleic acids backbone. We highlight main features, advantages and limitations of these techniques, with a special emphasis given to their synergy. The present status of the research is then illustrated by selected examples which include classification of DNA and RNA backbone families, benchmark structure-energy quantum chemical calculations, parameterization of the dihedral space of simulation force fields, incorporation of arsenate into DNA, sugar-phosphate backbone self-cleavage in small RNA enzymes, and intricate geometries of the backbone in recurrent RNA building blocks. Although not apparent from the current literature showing limited overlaps between the QM, simulation and bioinformatics studies of the nucleic acids backbone, there in fact should be a major cooperative interaction between these three approaches in studies of the sugar-phosphate backbone.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics, Academy Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
šponer J, Cang X, Cheatham TE. Molecular dynamics simulations of G-DNA and perspectives on the simulation of nucleic acid structures. Methods 2012; 57:25-39. [PMID: 22525788 PMCID: PMC3775459 DOI: 10.1016/j.ymeth.2012.04.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 04/04/2012] [Accepted: 04/06/2012] [Indexed: 11/29/2022] Open
Abstract
The article reviews the application of biomolecular simulation methods to understand the structure, dynamics and interactions of nucleic acids with a focus on explicit solvent molecular dynamics simulations of guanine quadruplex (G-DNA and G-RNA) molecules. While primarily dealing with these exciting and highly relevant four-stranded systems, where recent and past simulations have provided several interesting results and novel insight into G-DNA structure, the review provides some general perspectives on the applicability of the simulation techniques to nucleic acids.
Collapse
Affiliation(s)
- Jiří šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Xiaohui Cang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Thomas E. Cheatham
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Hall 201, 2000 East 30 South, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
22
|
Holmstrom ED, Fiore JL, Nesbitt DJ. Thermodynamic origins of monovalent facilitated RNA folding. Biochemistry 2012; 51:3732-43. [PMID: 22448852 DOI: 10.1021/bi201420a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cations have long been associated with formation of native RNA structure and are commonly thought to stabilize the formation of tertiary contacts by favorably interacting with the electrostatic potential of the RNA, giving rise to an "ion atmosphere". A significant amount of information regarding the thermodynamics of structural transitions in the presence of an ion atmosphere has accumulated and suggests stabilization is dominated by entropic terms. This work provides an analysis of how RNA-cation interactions affect the entropy and enthalpy associated with an RNA tertiary transition. Specifically, temperature-dependent single-molecule fluorescence resonance energy transfer studies have been exploited to determine the free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) of folding for an isolated tetraloop-receptor tertiary interaction as a function of Na(+) concentration. Somewhat unexpectedly, increasing the Na(+) concentration changes the folding enthalpy from a strongly exothermic process [e.g., ΔH° = -26(2) kcal/mol at 180 mM] to a weakly exothermic process [e.g., ΔH° = -4(1) kcal/mol at 630 mM]. As a direct corollary, it is the strong increase in folding entropy [Δ(ΔS°) > 0] that compensates for this loss of exothermicity for the achievement of more favorable folding [Δ(ΔG°) < 0] at higher Na(+) concentrations. In conjunction with corresponding measurements of the thermodynamics of the transition state barrier, these data provide a detailed description of the folding pathway associated with the GAAA tetraloop-receptor interaction as a function of Na(+) concentration. The results support a potentially universal mechanism for monovalent facilitated RNA folding, whereby an increasing monovalent concentration stabilizes tertiary structure by reducing the entropic penalty for folding.
Collapse
Affiliation(s)
- Erik D Holmstrom
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, USA
| | | | | |
Collapse
|
23
|
Réblová K, Šponer JE, Špačková N, Beššeová I, Šponer J. A-minor tertiary interactions in RNA kink-turns. Molecular dynamics and quantum chemical analysis. J Phys Chem B 2011; 115:13897-910. [PMID: 21999672 DOI: 10.1021/jp2065584] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The RNA kink-turn is an important recurrent RNA motif, an internal loop with characteristic consensus sequence forming highly conserved three-dimensional structure. Functional arrangement of RNA kink-turns shows a sharp bend in the phosphodiester backbone. Among other signature interactions, kink-turns form A-minor interaction between their two stems. Most kink-turns possess extended A-minor I (A-I) interaction where adenine of the second A•G base pair of the NC-stem interacts with the first canonical pair of the C-stem (i.e., the receptor pair) via trans-sugar-edge/sugar-edge (tSS) and cis-sugar-edge/sugar-edge (cSS) interactions. The remaining kink-turns have less compact A-minor 0 (A-0) interaction with just one tSS contact. We show that kink-turns with A-I in ribosomal X-ray structures keep G═C receptor base pair during evolution while the inverted pair (C═G) is not realized. In contrast, kink-turns with A-0 in the observed structures alternate G═C and C═G base pairs in sequences. We carried out an extended set (~5 μs) of explicit-solvent molecular dynamics simulations of kink-turns to rationalize this structural/evolutionary pattern. The simulations were done using a net-neutral Na(+) cation atmosphere (with ~0.25 M cation concentration) supplemented by simulations with either excess salt KCl atmosphere or inclusion of Mg(2+). The results do not seem to depend on the treatment of ions. The simulations started with X-ray structures of several kink-turns while we tested the response of the simulated system to base substitutions, modest structural perturbations and constraints. The trends seen in the simulations reveal that the A-I/G═C arrangement is preferred over all three other structures. The A-I/C═G triple appears structurally entirely unstable, consistent with the covariation patterns seen during the evolution. The A-0 arrangements tend to shift toward the A-I pattern in simulations, which suggests that formation of the A-0 interaction is likely supported by the surrounding protein and RNA molecules. A-0 may also be stabilized by additional kink-turn nucleotides not belonging to the kink-turn consensus, as shown for the kink-turn from ribosomal Helix 15. Quantum-chemical calculations on all four A-minor triples suggest that there is a different balance of electrostatic and dispersion stabilization in the A-I/G═C and A-I/C═G triples, which may explain different behavior of these otherwise isosteric triples in the context of kink-turns.
Collapse
Affiliation(s)
- Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
24
|
He Y, Lu Y. Metal-ion-dependent folding of a uranyl-specific DNAzyme: insight into function from fluorescence resonance energy transfer studies. Chemistry 2011; 17:13732-42. [PMID: 22052817 DOI: 10.1002/chem.201100352] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 07/25/2011] [Indexed: 01/28/2023]
Abstract
Fluorescence resonance energy transfer (FRET) has been used to study the global folding of an uranyl (UO(2)(2+))-specific 39E DNAzyme in the presence of Mg(2+), Zn(2+), Pb(2+), or UO(2)(2+). At pH 5.5 and physiological ionic strength (100 mM Na(+)), two of the three stems in this DNAzyme folded into a compact structure in the presence of Mg(2+) or Zn(2+). However, no folding occurred in the presence of Pb(2+) or UO(2)(2+); this is analogous to the "lock-and-key" catalysis mode first observed in the Pb(2+)-specific 8-17 DNAzyme. However, Mg(2+) and Zn(2+) exert different effects on the 8-17 and 39E DNAzymes. Whereas Mg(2+) or Zn(2+)-dependent folding promoted 8-17 DNAzyme activity, the 39E DNAzyme folding induced by Mg(2+) or Zn(2+) inhibited UO(2)(2+)-specific activity. Group IIA series of metal ions (Mg(2+), Ca(2+), Sr(2+)) also caused global folding of the 39E DNAzyme, for which the apparent binding affinity between these metal ions and the DNAzyme decreases as the ionic radius of the metal ions increases. Because the ionic radius of Sr(2+) (1.12 Å) is comparable to that of Pb(2+) (1.20 Å), but contrary to Pb(2+), Sr(2+) induces the DNAzyme to fold under identical conditions, ionic size alone cannot account for the unique folding behaviors induced by Pb(2+) and UO(2)(2+). Under low ionic strength (30 mM Na(+)), all four metal ions (Mg(2+), Zn(2+), Pb(2+), and UO(2)(2+)), caused 39E DNAzyme folding, suggesting that metal ions can neutralize the negative charge of DNA-backbone phosphates in addition to playing specific catalytic roles. Mg(2+) at low (<2 mM) concentration promoted UO(2)(2+)-specific activity, whereas Mg(2+) at high (>2 mM) concentration inhibited the UO(2)(2+)-specific activity. Therefore, the lock-and-key mode of DNAzymes depends on ionic strength, and the 39E DNAzyme is in the lock-and-key mode only at ionic strengths of 100 mM or greater.
Collapse
Affiliation(s)
- Ying He
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
25
|
Golden BL. Two distinct catalytic strategies in the hepatitis δ virus ribozyme cleavage reaction. Biochemistry 2011; 50:9424-33. [PMID: 22003985 DOI: 10.1021/bi201157t] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme and related RNAs are widely dispersed in nature. This RNA is a small nucleolytic ribozyme that self-cleaves to generate products with a 2',3'-cyclic phosphate and a free 5'-hydroxyl. Although small ribozymes are dependent on divalent metal ions under biologically relevant buffer conditions, they function in the absence of divalent metal ions at high ionic strengths. This characteristic suggests that a functional group within the covalent structure of small ribozymes is facilitating catalysis. Structural and mechanistic analyses have demonstrated that the HDV ribozyme active site contains a cytosine with a perturbed pK(a) that serves as a general acid to protonate the leaving group. The reaction of the HDV ribozyme in monovalent cations alone never approaches the velocity of the Mg(2+)-dependent reaction, and there is significant biochemical evidence that a Mg(2+) ion participates directly in catalysis. A recent crystal structure of the HDV ribozyme revealed that there is a metal binding pocket in the HDV ribozyme active site. Modeling of the cleavage site into the structure suggested that this metal ion can interact directly with the scissile phosphate and the nucleophile. In this manner, the Mg(2+) ion can serve as a Lewis acid, facilitating deprotonation of the nucleophile and stabilizing the conformation of the cleavage site for in-line attack of the nucleophile at the scissile phosphate. This catalytic strategy had previously been observed only in much larger ribozymes. Thus, in contrast to most large and small ribozymes, the HDV ribozyme uses two distinct catalytic strategies in its cleavage reaction.
Collapse
Affiliation(s)
- Barbara L Golden
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063, United States.
| |
Collapse
|
26
|
Veeraraghavan N, Ganguly A, Golden BL, Bevilacqua PC, Hammes-Schiffer S. Mechanistic strategies in the HDV ribozyme: chelated and diffuse metal ion interactions and active site protonation. J Phys Chem B 2011; 115:8346-57. [PMID: 21644800 PMCID: PMC3144556 DOI: 10.1021/jp203202e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The crystal structure of the precleaved form of the hepatitis delta virus (HDV) ribozyme reveals two G•U wobbles near the active site: a rare reverse G•U wobble involving a syn G base, and a standard G•U wobble at the cleavage site. The catalytic mechanism for this ribozyme has been proposed to involve a Mg(2+) ion bound to the reverse G•U wobble, as well as a protonated C75 base. We carried out molecular dynamics simulations to analyze metal ion interaction with the reverse and standard G•U wobbles and to investigate the impact of C75 protonation on the structure and motions of the ribozyme. We identified two types of Mg(2+) ions associated with the ribozyme, chelated and diffuse, at the reverse and standard G•U wobbles, respectively, which appear to contribute to catalysis and stability, respectively. These two metal ion sites exhibit relatively independent behavior. Protonation of C75 was observed to locally organize the active site in a manner that facilitates the catalytic mechanism, in which C75(+) acts as a general acid and Mg(2+) as a Lewis acid. The simulations also indicated that the overall structure and thermal motions of the ribozyme are not significantly influenced by the catalytic Mg(2+) interaction or C75 protonation. This analysis suggests that the reaction pathway of the ribozyme is dominated by small local motions at the active site rather than large-scale global conformational changes. These results are consistent with a wealth of experimental data.
Collapse
Affiliation(s)
- Narayanan Veeraraghavan
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | | | | | |
Collapse
|
27
|
Veeraraghavan N, Ganguly A, Chen JH, Bevilacqua PC, Hammes-Schiffer S, Golden BL. Metal binding motif in the active site of the HDV ribozyme binds divalent and monovalent ions. Biochemistry 2011; 50:2672-82. [PMID: 21348498 PMCID: PMC3068245 DOI: 10.1021/bi2000164] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme uses both metal ion and nucleobase catalysis in its cleavage mechanism. A reverse G·U wobble was observed in a recent crystal structure of the precleaved state. This unusual base pair positions a Mg(2+) ion to participate in catalysis. Herein, we used molecular dynamics (MD) and X-ray crystallography to characterize the conformation and metal binding characteristics of this base pair in product and precleaved forms. Beginning with a crystal structure of the product form, we observed formation of the reverse G·U wobble during MD trajectories. We also demonstrated that this base pair is compatible with the diffraction data for the product-bound state. During MD trajectories of the product form, Na(+) ions interacted with the reverse G·U wobble in the RNA active site, and a Mg(2+) ion, introduced in certain trajectories, remained bound at this site. Beginning with a crystal structure of the precleaved form, the reverse G·U wobble with bound Mg(2+) remained intact during MD simulations. When we removed Mg(2+) from the starting precleaved structure, Na(+) ions interacted with the reverse G·U wobble. In support of the computational results, we observed competition between Na(+) and Mg(2+) in the precleaved ribozyme crystallographically. Nonlinear Poisson-Boltzmann calculations revealed a negatively charged patch near the reverse G·U wobble. This anionic pocket likely serves to bind metal ions and to help shift the pK(a) of the catalytic nucleobase, C75. Thus, the reverse G·U wobble motif serves to organize two catalytic elements, a metal ion and catalytic nucleobase, within the active site of the HDV ribozyme.
Collapse
Affiliation(s)
- Narayanan Veeraraghavan
- Huck Institutes of Life Sciences, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Abir Ganguly
- Department of Chemistry, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jui-Hui Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907
| | - Philip C. Bevilacqua
- Huck Institutes of Life Sciences, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802,Department of Chemistry, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802,To whom correspondence should be addressed. B.L.G.: telephone (765) 496-6165; fax (765) 494-7897; . S.H.-S. telephone (814) 865-6442; fax (814) 865-2927; . P.C.B. telephone (814) 863-3812; fax (814) 865-2927.
| | - Sharon Hammes-Schiffer
- Department of Chemistry, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802,To whom correspondence should be addressed. B.L.G.: telephone (765) 496-6165; fax (765) 494-7897; . S.H.-S. telephone (814) 865-6442; fax (814) 865-2927; . P.C.B. telephone (814) 863-3812; fax (814) 865-2927.
| | - Barbara L. Golden
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907,To whom correspondence should be addressed. B.L.G.: telephone (765) 496-6165; fax (765) 494-7897; . S.H.-S. telephone (814) 865-6442; fax (814) 865-2927; . P.C.B. telephone (814) 863-3812; fax (814) 865-2927.
| |
Collapse
|
28
|
Klawuhn K, Jansen JA, Souchek J, Soukup GA, Soukup JK. Analysis of metal ion dependence in glmS ribozyme self-cleavage and coenzyme binding. Chembiochem 2011; 11:2567-71. [PMID: 21108273 DOI: 10.1002/cbic.201000544] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The bacterial glmS ribozyme is mechanistically unique among both riboswitches and RNA catalysts. Its self-cleavage activity is the basis of riboswitch regulation of glucosamine-6-phosphate (GlcN6P) production, and catalysis requires GlcN6P as a coenzyme. Previous work has shown that the coenzyme amine of GlcN6P is essential for glmS ribozyme self-cleavage, as is its protonation state. Metal ions are also essential within the glmS ribozyme core for both structure and function of the ribozyme. Although metal ions do not directly promote catalysis, we show that metal ion identity and the varying physicochemical properties of metal ions have an impact on the rate of glmS ribozyme self-cleavage. Specifically, these studies demonstrate that metal ion identity influences the overall apparent pK(a) of ribozyme self-cleavage, and metal ion binding largely reflects phosphate oxygen affinity. Results suggest that metal ions take alternative roles in supporting the mechanism of catalysis.
Collapse
Affiliation(s)
- Kevin Klawuhn
- Department of Chemistry, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | | | | | | | | |
Collapse
|
29
|
Brooks KM, Hampel KJ. Rapid steps in the glmS ribozyme catalytic pathway: cation and ligand requirements. Biochemistry 2011; 50:2424-33. [PMID: 21395279 DOI: 10.1021/bi101842u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The glmS ribozyme is a conserved riboswitch found in numerous Gram-positive bacteria and responds to the cellular concentrations of glucosamine 6-phosphate (GlcN6P). GlcN6P binding promotes site-specific self-cleavage in the 5' UTR of the glmS mRNA, resulting in downregulation of gene expression. The glmS ribozyme has previously been shown to lack strong cation specificity when the rate-limiting folding step of the cleavage reaction pathway is measured. This does not provide data regarding cation and ligand specificities of the glmS ribozyme during the rapid ligand binding chemical catalysis events. Prefolding of the ribozyme in Mg(2+)-containing buffers effectively isolates the rapid ligand binding and catalytic events (k(obs) > 60 min(-1)) from rate-limiting folding (k(obs) < 4 min(-1)). Here we employ this experimental design to assay the cations and ligand requirements for rapid ligand binding and catalysis. We show that molar concentrations of monovalent cations are also capable of inducing the formation of the native GlcN6P binding structure but are unable to promote ligand binding and catalysis rates of >4 min(-1). Our data show that the sole obligatory role for divalent cations, for which there is crystallographic evidence, is coordination of the phosphate moiety of GlcN6P in the ligand-binding pocket. In further support of this hypothesis, our data show that a nonphosphorylated analogue of GlcN6P, glucosamine, is unable to promote rapid ligand binding and catalysis in the presence of divalent cations. Folding of the ribozyme is, therefore, relatively independent of cation identity, but the rapid initiation of catalysis upon the addition of ligand is stricter.
Collapse
Affiliation(s)
- Krista M Brooks
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, Stafford Hall, 95 Carrigan Drive, University of Vermont, Burlington, Vermont 05401, United States
| | | |
Collapse
|
30
|
Johnson-Buck AE, McDowell SE, Walter NG. Metal ions: supporting actors in the playbook of small ribozymes. Met Ions Life Sci 2011; 9:175-96. [PMID: 22010272 DOI: 10.1039/9781849732512-00175] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since the 1980s, several small RNA motifs capable of chemical catalysis have been discovered. These small ribozymes, composed of between approximately 40 and 200 nucleotides, have been found to play vital roles in the replication of subviral and viral pathogens, as well as in gene regulation in prokaryotes, and have recently been discovered in noncoding eukaryotic RNAs. All of the known natural small ribozymes - the hairpin, hammerhead, hepatitis delta virus, Varkud satellite, and glmS ribozymes--catalyze the same self-cleavage reaction as RNase A, resulting in two products, one bearing a 2'-3' cyclic phosphate and the other a 5'-hydroxyl group. Although originally thought to be obligate metalloenzymes like the group I and II self-splicing introns, the small ribozymes are now known to support catalysis in a wide variety of cations that appear to be only indirectly involved in catalysis. Nevertheless, under physiologic conditions, metal ions are essential for the proper folding and function of the small ribozymes, the most effective of these being magnesium. Metal ions contribute to catalysis in the small ribozymes primarily by stabilizing the catalytically active conformation, but in some cases also by activating RNA functional groups for catalysis, directly participating in catalytic acid-base chemistry, and perhaps by neutralizing the developing negative charge of the transition state. Although interactions between the small ribozymes and cations are relatively nonspecific, ribozyme activity is quite sensitive to the types and concentrations of metal ions present in solution, suggesting a close evolutionary relationship between cellular metal ion homeostasis and cation requirements of catalytic RNAs, and perhaps RNA in general.
Collapse
Affiliation(s)
- Alexander E Johnson-Buck
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA.
| | | | | |
Collapse
|
31
|
Pereira MJB, Behera V, Walter NG. Nondenaturing purification of co-transcriptionally folded RNA avoids common folding heterogeneity. PLoS One 2010; 5:e12953. [PMID: 20886091 PMCID: PMC2944885 DOI: 10.1371/journal.pone.0012953] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 08/31/2010] [Indexed: 11/18/2022] Open
Abstract
Due to the energetic frustration of RNA folding, tertiary structured RNA is typically characterized by a rugged folding free energy landscape where deep kinetic barriers separate numerous misfolded states from one or more native states. While most in vitro studies of RNA rely on (re)folding chemically and/or enzymatically synthesized RNA in its entirety, which frequently leads into kinetic traps, nature reduces the complexity of the RNA folding problem by segmental, co-transcriptional folding starting from the 5' end. We here have developed a simplified, general, nondenaturing purification protocol for RNA to ask whether avoiding denaturation of a co-transcriptionally folded RNA can reduce commonly observed in vitro folding heterogeneity. Our protocol bypasses the need for large-scale auxiliary protein purification and expensive chromatographic equipment and involves rapid affinity capture with magnetic beads and removal of chemical heterogeneity by cleavage of the target RNA from the beads using the ligand-induced glmS ribozyme. For two disparate model systems, the Varkud satellite (VS) and hepatitis delta virus (HDV) ribozymes, we achieve >95% conformational purity within one hour of enzymatic transcription, without the need for any folding chaperones. We further demonstrate that in vitro refolding introduces severe conformational heterogeneity into the natively-purified VS ribozyme but not into the compact, double-nested pseudoknot fold of the HDV ribozyme. We conclude that conformational heterogeneity in complex RNAs can be avoided by co-transcriptional folding followed by nondenaturing purification, providing rapid access to chemically and conformationally pure RNA for biologically relevant biochemical and biophysical studies.
Collapse
Affiliation(s)
- Miguel J. B. Pereira
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Vivek Behera
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nils G. Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
32
|
Mazumdar D, Nagraj N, Kim HK, Meng X, Brown AK, Sun Q, Li W, Lu Y. Activity, folding and Z-DNA formation of the 8-17 DNAzyme in the presence of monovalent ions. J Am Chem Soc 2010; 131:5506-15. [PMID: 19326878 DOI: 10.1021/ja8082939] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effect of monovalent ions on both the reactivity and global folding of the 8-17 DNAzyme is investigated, and the results are compared with those of the hammerhead ribozyme, which has similar size and secondary structure. In contrast to the hammerhead ribozyme, the 8-17 DNAzyme activity is not detectable in the presence of 4 M K(+), Rb(+), or Cs(+) or in the presence of 80 mM, [Co(NH(3))(6)](3+). Only 4 M Li(+), NH(4)(+) and, to a lesser extent, Na(+) conferred detectable activity. The observed rate constants (k(obs) approximately 10(-3) min(-1) for Li(+) and NH(4)(+)) are approximately 1000-fold lower than that in the presence of 10 mM Mg(2+), and approximately 200,000-fold slower than that in the presence of 100 microM Pb(2+). Since the hammerhead ribozyme displays monovalent ion-dependent activity that is often within approximately 10-fold of divalent metal ion-dependent activity, these results suggest that the 8-17 DNAzyme, obtained by in vitro selections, has evolved to have a more stringent divalent metal ion requirement for high activity as compared to the naturally occurring ribozymes, making the 8-17 DNAzyme an excellent choice as a Pb(2+) sensor with high selectivity. In contrast to the activity data, folding was observed in the presence of all the monovalent ions investigated, although those monovalent ions that do not support DNAzyme activity have weaker binding affinity (K(d) approximately 0.35 M for Rb(+) and Cs(+)), while those that confer DNAzyme activity possess stronger affinity (K(d) approximately 0.22 M for Li(+), Na(+) and NH(4)(+)). In addition, a correlation between metal ion charge density, binding affinity and enzyme activity was found among mono- and divalent metal ions except Pb(2+); higher charge density resulted in stronger affinity and higher activity, suggesting that the observed folding and activity is at least partially due to electrostatic interactions between ions and the DNAzyme. Finally, circular dichroism (CD) study has revealed Z-DNA formation with the monovalent metal ions, Zn(2+) and Mg(2+); the K(d) values obtained using CD were in the same range as those obtained from folding studies using FRET. However, Z-DNA formation was not observed with Pb(2+). These results indicate that Pb(2+)-dependent function follows a different mechanism from the monovalent metal ions and other divalent metal ions; in the presence of latter metal ions, metal-ion dependent folding and structural changes, including formation of Z-DNA, play an important role in the catalytic function of the 8-17 DNAzyme.
Collapse
Affiliation(s)
- Debapriya Mazumdar
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Veeraraghavan N, Bevilacqua PC, Hammes-Schiffer S. Long-distance communication in the HDV ribozyme: insights from molecular dynamics and experiments. J Mol Biol 2010; 402:278-91. [PMID: 20643139 DOI: 10.1016/j.jmb.2010.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 11/18/2022]
Abstract
The hepatitis delta virus ribozyme is a small, self-cleaving RNA with a compact tertiary structure and buried active site that is important in the life cycle of the virus. The ribozyme's function in nature is to cleave an internal phosphodiester bond and linearize concatemers during rolling circle replication. Crystal structures of the ribozyme have been solved in both pre-cleaved and post-cleaved (product) forms and reveal an intricate network of interactions that conspire to catalyze bond cleavage. In addition, extensive biochemical studies have been performed to work out a mechanism for bond cleavage in which C75 and a magnesium ion catalyze the reaction by general acid-base chemistry. One issue that has remained unclear in this ribozyme and in other ribozymes is the nature of long-distance communication between peripheral regions of the RNA and the buried active site. We performed molecular dynamics simulations on the hepatitis delta virus ribozyme in the product form and assessed communication between a distal structural portion of the ribozyme-the protonated C41 base triple-and the active site containing the critical C75. We varied the ionization state of C41 in both the wild type and a C41 double mutant variant and determined the impact on the active site. In all four cases, effects at the active site observed in the simulations agree with experimental studies on ribozyme activity. Overall, these studies indicate that small functional RNAs have the potential to communicate interactions over long distances and that wild-type RNAs may have evolved ways to prevent such interactions from interfering with catalysis.
Collapse
Affiliation(s)
- Narayanan Veeraraghavan
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
34
|
Gong B, Chen JH, Bevilacqua PC, Golden BL, Carey PR. Competition between Co(NH(3)(6)3+ and inner sphere Mg2+ ions in the HDV ribozyme. Biochemistry 2010; 48:11961-70. [PMID: 19888753 DOI: 10.1021/bi901091v] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Divalent cations play critical structural and functional roles in many RNAs. While the hepatitis delta virus (HDV) ribozyme can undergo self-cleavage in the presence of molar concentrations of monovalent cations, divalent cations such as Mg(2+) are required for efficient catalysis under physiological conditions. Moreover, the cleavage reaction can be inhibited with Co(NH(3))(6)(3+), an analogue of Mg(H(2)O)(6)(2+). Here, the binding of Mg(2+) and Co(NH(3))(6)(3+) to the HDV ribozyme is studied by Raman microscopic analysis of crystals. Raman difference spectra acquired at different metal ion conditions reveal changes in the ribozyme. When Mg(2+) alone is introduced to the ribozyme, inner sphere coordination of Mg(H(2)O)(x)(2+) (x </= 5) to nonbridging PO(2)(-) oxygen and changes in base stretches and phosphodiester group conformation are observed. In addition, binding of Mg(2+) induces deprotonation of a cytosine assigned to the general acid C75, consistent with solution studies. When Co(NH(3))(6)(3+) alone is introduced, deprotonation of C75 is again observed, as are distinctive changes in base vibrational ring modes and phosphodiester backbone conformation. In contrast to Mg(2+) binding, Co(NH(3))(6)(3+) binding does not perturb PO(2)(-) group vibrations, consistent with its ability to make only outer sphere contacts. Surprisingly, competitive binding studies reveal that Co(NH(3))(6)(3+) ions displace some inner sphere-coordinated magnesium species, including ions coordinated to PO(2)(-) groups or the N7 of a guanine, likely G1 at the active site. These observations contrast with the tenet that Co(NH(3))(6)(3+) ions displace only outer sphere magnesium ions. Overall, our data support two classes of inner sphere Mg(2+)-PO(2)(-) binding sites: sites that Co(NH(3))(6)(3+) can displace and others it cannot.
Collapse
Affiliation(s)
- Bo Gong
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
35
|
Ditzler MA, Otyepka M, Šponer J, Walter NG. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in. Acc Chem Res 2010; 43:40-7. [PMID: 19754142 PMCID: PMC2808146 DOI: 10.1021/ar900093g] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Structure and dynamics are both critical to RNA’s vital functions in biology. Numerous techniques can elucidate the structural dynamics of RNA, but computational approaches based on experimental data arguably hold the promise of providing the most detail. In this Account, we highlight areas wherein molecular dynamics (MD) and quantum mechanical (QM) techniques are applied to RNA, particularly in relation to complementary experimental studies.
We have expanded on atomic-resolution crystal structures of RNAs in functionally relevant states by applying explicit solvent MD simulations to explore their dynamics and conformational changes on the submicrosecond time scale. MD relies on simplified atomistic, pairwise additive interaction potentials (force fields). Because of limited sampling, due to the finite accessible simulation time scale and the approximated force field, high-quality starting structures are required. Despite their imperfection, we find that currently available force fields empower MD to provide meaningful and predictive information on RNA dynamics around a crystallographically defined energy minimum. The performance of force fields can be estimated by precise QM calculations on small model systems. Such calculations agree reasonably well with the Cornell et al. AMBER force field, particularly for stacking and hydrogen-bonding interactions. A final verification of any force field is accomplished by simulations of complex nucleic acid structures. The performance of the Cornell et al. AMBER force field generally corresponds well with and augments experimental data, but one notable exception could be the capping loops of double-helical stems. In addition, the performance of pairwise additive force fields is obviously unsatisfactory for inclusion of divalent cations, because their interactions lead to major polarization and charge-transfer effects neglected by the force field. Neglect of polarization also limits, albeit to a lesser extent, the description accuracy of other contributions, such as interactions with monovalent ions, conformational flexibility of the anionic sugar−phosphate backbone, hydrogen bonding, and solute polarization by solvent. Still, despite limitations, MD simulations are a valid tool for analyzing the structural dynamics of existing experimental structures. Careful analysis of MD simulations can identify problematic aspects of an experimental RNA structure, unveil structural characteristics masked by experimental constraints, reveal functionally significant stochastic fluctuations, evaluate the structural role of base ionization, and predict structurally and potentially functionally important details of the solvent behavior, including the presence of tightly bound water molecules. Moreover, combining classical MD simulations with QM calculations in hybrid QM/MM approaches helps in the assessment of the plausibility of chemical mechanisms of catalytic RNAs (ribozymes). In contrast, the reliable prediction of structure from sequence information is beyond the applicability of MD tools. The ultimate utility of computational studies in understanding RNA function thus requires that the results are neither blindly accepted nor flatly rejected, but rather considered in the context of all available experimental data, with great care given to assessing limitations through the available starting structures, force field approximations, and sampling limitations. The examples given in this Account showcase how the judicious use of basic MD simulations has already served as a powerful tool to help evaluate the role of structural dynamics in biological function of RNA.
Collapse
Affiliation(s)
- Mark A. Ditzler
- Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
| | - Michal Otyepka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. Svobody 26, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Jiřì Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
| |
Collapse
|
36
|
Joung IS, Cheatham TE. Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters. J Phys Chem B 2009; 113:13279-90. [PMID: 19757835 PMCID: PMC2755304 DOI: 10.1021/jp902584c] [Citation(s) in RCA: 416] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamic and energetic properties of the alkali and halide ions were calculated using molecular dynamics (MD) and free energy simulations with various different water and ion force fields including our recently developed water-model-specific ion parameters. The properties calculated were activity coefficients, diffusion coefficients, residence times of atomic pairs, association constants, and solubility. Through calculation of these properties, we can assess the validity and range of applicability of the simple pair potential models and better understand their limitations. Due to extreme computational demands, the activity coefficients were only calculated for a subset of the models. The results qualitatively agree with experiment. Calculated diffusion coefficients and residence times between cation-anion, water-cation, and water-anion showed differences depending on the choice of water and ion force field used. The calculated solubilities of the alkali-halide salts were generally lower than the true solubility of the salts. However, for both the TIP4P(EW) and SPC/E water-model-specific ion parameters, solubility was reasonably well-reproduced. Finally, the correlations among the various properties led to the following conclusions: (1) The reliability of the ion force fields is significantly affected by the specific choice of water model. (2) Ion-ion interactions are very important to accurately simulate the properties, especially solubility. (3) The SPC/E and TIP4P(EW) water-model-specific ion force fields are preferred for simulation in high salt environments compared to the other ion force fields.
Collapse
Affiliation(s)
- In Suk Joung
- Department of Bioengineering, College of Engineering, Department of Medicinal Chemistry, College of Pharmacy, and Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
37
|
Banáš P, Jurečka P, Walter NG, Šponer J, Otyepka M. Theoretical studies of RNA catalysis: hybrid QM/MM methods and their comparison with MD and QM. Methods 2009; 49:202-16. [PMID: 19398008 PMCID: PMC2753711 DOI: 10.1016/j.ymeth.2009.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/07/2009] [Accepted: 04/07/2009] [Indexed: 11/28/2022] Open
Abstract
Hybrid QM/MM methods combine the rigor of quantum mechanical (QM) calculations with the low computational cost of empirical molecular mechanical (MM) treatment allowing to capture dynamic properties to probe critical atomistic details of enzyme reactions. Catalysis by RNA enzymes (ribozymes) has only recently begun to be addressed with QM/MM approaches and is thus still a field under development. This review surveys methodology as well as recent advances in QM/MM applications to RNA mechanisms, including those of the HDV, hairpin, and hammerhead ribozymes, as well as the ribosome. We compare and correlate QM/MM results with those from QM and/or molecular dynamics (MD) simulations, and discuss scope and limitations with a critical eye on current shortcomings in available methodologies and computer resources. We thus hope to foster mutual appreciation and facilitate collaboration between experimentalists and theorists to jointly advance our understanding of RNA catalysis at an atomistic level.
Collapse
Affiliation(s)
- Pavel Banáš
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. Svobody 26, 771 46 Olomouc, Czech Republic
| | - Petr Jurečka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. Svobody 26, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| | - Jiří Šponer
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. Svobody 26, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. Svobody 26, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
38
|
Abstract
Self-cleaving hammerhead, hairpin, hepatitis delta virus, and glmS ribozymes comprise a family of small catalytic RNA motifs that catalyze the same reversible phosphodiester cleavage reaction, but each motif adopts a unique structure and displays a unique array of biochemical properties. Recent structural, biochemical, and biophysical studies of these self-cleaving RNAs have begun to reveal how active site nucleotides exploit general acid-base catalysis, electrostatic stabilization, substrate destabilization, and positioning and orientation to reduce the free energy barrier to catalysis. Insights into the variety of catalytic strategies available to these model RNA enzymes are likely to have important implications for understanding more complex RNA-catalyzed reactions fundamental to RNA processing and protein synthesis.
Collapse
Affiliation(s)
- Martha J Fedor
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
39
|
Ditzler MA, Sponer J, Walter NG. Molecular dynamics suggest multifunctionality of an adenine imino group in acid-base catalysis of the hairpin ribozyme. RNA (NEW YORK, N.Y.) 2009; 15:560-75. [PMID: 19223444 PMCID: PMC2661834 DOI: 10.1261/rna.1416709] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Despite numerous structural and biochemical investigations, the catalytic mechanism of hairpin ribozyme self-cleavage remains elusive. To gain insight into the coupling of active site dynamics with activity of this small catalytic RNA, we analyzed a total of approximately 300 ns of molecular dynamics (MD) simulations. Our simulations predict improved global stability for an in vitro selected "gain of function" mutation, which is validated by native gel electrophoretic mobility shift assay. We observe that active site nucleobases and water molecules stabilize a geometry favorable to catalysis through a dynamic hydrogen bonding network. Simulations in which A38 is unprotonated show its N1 move into close proximity of the active site 2'-OH, indicating that A38 may act as a general base during cleavage, a role that has generally been discounted due to the longer distances observed in crystal structures involving inactivating substrate analogs. By contrast, simulations in which N1 of A38 is protonated place N1 in close proximity to the 5'-oxygen leaving group, which supports the proposal that A38 serves as a general acid. In analogy to protein enzymes, we discuss a plausible mechanism in which A38 acts bifunctionally and shuttles a proton directly from the 2'-OH to the 5'-oxygen. Furthermore, our simulations suggest an important role for protonation of N1 of A38 in promoting a favorable geometry similar to that observed in transition-state analog crystal structures, and support previously proposed roles of A38, G8, and long residency water molecules in transition-state stabilization.
Collapse
|
40
|
Chen JH, Gong B, Bevilacqua PC, Carey PR, Golden BL. A catalytic metal ion interacts with the cleavage Site G.U wobble in the HDV ribozyme. Biochemistry 2009; 48:1498-507. [PMID: 19178151 DOI: 10.1021/bi8020108] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HDV ribozyme self-cleaves by a chemical mechanism involving general acid-base catalysis to generate 2',3'-cyclic phosphate and 5'-hydroxyl termini. Biochemical studies from several laboratories have implicated C75 as the general acid and hydrated magnesium as the general base. We have previously shown that C75 has a pK(a) shifted >2 pH units toward neutrality [Gong, B., Chen, J. H., Chase, E., Chadalavada, D. M., Yajima, R., Golden, B. L., Bevilacqua, P. C., and Carey, P. R. (2007) J. Am. Chem. Soc. 129, 13335-13342], while in crystal structures, it is well-positioned for proton transfer. However, no evidence for a hydrated magnesium poised to serve as a general base in the reaction has been observed in high-resolution crystal structures of various reaction states and mutants. Herein, we use solution kinetic experiments and parallel Raman crystallographic studies to examine the effects of pH on the rate and Mg(2+) binding properties of wild-type and 7-deazaguanosine mutants of the HDV ribozyme. These data suggest that a previously unobserved hydrated magnesium ion interacts with N7 of the cleavage site G.U wobble base pair. Integrating this metal ion binding site with the available crystal structures provides a new three-dimensional model for the active site of the ribozyme that accommodates all available biochemical data and appears competent for catalysis. The position of this metal is consistent with a role of a magnesium-bound hydroxide as a general base as dictated by biochemical data.
Collapse
Affiliation(s)
- Jui-Hui Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
41
|
Bashan A, Yonath A. The linkage between ribosomal crystallography, metal ions, heteropolytungstates and functional flexibility. J Mol Struct 2008; 890:289-294. [PMID: 19915655 PMCID: PMC2757297 DOI: 10.1016/j.molstruc.2008.03.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Crystallography of ribosomes, the universal cell nucleoprotein assemblies facilitating the translation of the genetic-code into proteins, met with severe problems owing to their large size, complex structure, inherent flexibility and high conformational variability. For the case of the small ribosomal subunit, which caused extreme difficulties, post crystallization treatment by minute amounts of a heteropolytungstate cluster allowed structure determination at atomic resolution. This cluster played a dual role in ribosomal crystallography: providing anomalous phasing power and dramatically increased the resolution, by stabilization of a selected functional conformation. Thus, four out of the fourteen clusters that bind to each of the crystallized small subunits are attached to a specific ribosomal protein in a fashion that may control a significant component of the subunit internal flexibility, by "gluing" symmetrical related subunits. Here we highlight basic issues in the relationship between metal ions and macromolecules and present common traits controlling in the interactions between polymetalates and various macromolecules, which may be extended towards the exploitation of polymetalates for therapeutical treatment.
Collapse
Affiliation(s)
- Anat Bashan
- Department of Structural Biology, Weizmann Inst., 76100 Rehovot, Israel
| | | |
Collapse
|
42
|
Cerrone-Szakal AL, Siegfried NA, Bevilacqua PC. Mechanistic characterization of the HDV genomic ribozyme: solvent isotope effects and proton inventories in the absence of divalent metal ions support C75 as the general acid. J Am Chem Soc 2008; 130:14504-20. [PMID: 18842044 DOI: 10.1021/ja801816k] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme uses the nucleobase C75 and a hydrated Mg(2+) ion as the general acid-base catalysts in phosphodiester bond cleavage at physiological salt. A mechanistic framework has been advanced that involves one Mg(2+)-independent and two Mg(2+)-dependent channels. The rate-pH profile for wild-type (WT) ribozyme in the Mg(2+)-free channel is inverted relative to the fully Mg(2+)-dependent channel, with each having a near-neutral pKa. Inversion of the rate-pH profile was used as the crux of a mechanistic argument that C75 serves as general acid both in the presence and absence of Mg(2+). However, subsequent studies on a double mutant (DM) ribozyme suggested that the pKa observed for WT in the absence of Mg(2+) arises from ionization of C41, a structural nucleobase. To investigate this further, we acquired rate-pH/pD profiles and proton inventories for WT and DM in the absence of Mg(2+). Corrections were made for effects of ionic strength on hydrogen ion activity and pH meter readings. Results are accommodated by a model wherein the Mg(2+)-free pKa observed for WT arises from ionization of C75, and DM reactivity is compromised by protonation of C41. The Brønsted base appears to be water or hydroxide ion depending on pH. The observed pKa's are related to salt-dependent pH titrations of a model oligonucleotide, as well as electrostatic calculations, which support the local environment for C75 in the absence of Mg(2+) being similar to that in the presence of Mg(2+) and impervious to bulk ions. Accordingly, the catalytic role of C75 as the general acid does not appear to depend on divalent ions or the identity of the Brønsted base.
Collapse
Affiliation(s)
- Andrea L Cerrone-Szakal
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
43
|
Cerrone-Szakal AL, Chadalavada DM, Golden BL, Bevilacqua PC. Mechanistic characterization of the HDV genomic ribozyme: the cleavage site base pair plays a structural role in facilitating catalysis. RNA (NEW YORK, N.Y.) 2008; 14:1746-60. [PMID: 18658121 PMCID: PMC2525964 DOI: 10.1261/rna.1140308] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme occurs in the genomic and antigenomic strands of the HDV RNA and within mammalian transcriptomes. Previous kinetic studies suggested that a wobble pair (G*U or A(+)*C) is preferred at the cleavage site; however, the reasons for this are unclear. We conducted sequence comparisons, which indicated that while G*U is the most prevalent combination at the cleavage site, G-C occurs to a significant extent in genomic HDV isolates, and G*U, G-C, and A-U pairs are present in mammalian ribozymes. We analyzed the folding of genomic HDV ribozymes by free energy minimization and found that variants with purine-pyrimidine combinations at the cleavage site are predicted to form native structures while pyrimidine-purine combinations misfold, consistent with earlier kinetic data and sequence comparisons. To test whether the cleavage site base pair contributes to catalysis, we characterized the pH and Mg(2+)-dependence of reaction kinetics of fast-folding genomic HDV ribozymes with cleavage site base pair purine-pyrimidine combinations: G*U, A-U, G-C, and A(+)*C. Rates for these native-folding ribozymes displayed highly similar pH and Mg(2+) concentration dependencies, with the exception of the A(+)*C ribozyme, which deviated at high pH. None of the four ribozymes underwent miscleavage. These observations support the A(+)*C ribozyme as being more active with a wobble pair at the cleavage site than with no base pair at all. Overall, the data support a model in which the cleavage site base pair provides a structural role in catalysis and does not need to be a wobble pair.
Collapse
Affiliation(s)
- Andrea L Cerrone-Szakal
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
44
|
Banás P, Rulísek L, Hánosová V, Svozil D, Walter NG, Sponer J, Otyepka M. General base catalysis for cleavage by the active-site cytosine of the hepatitis delta virus ribozyme: QM/MM calculations establish chemical feasibility. J Phys Chem B 2008; 112:11177-87. [PMID: 18686993 DOI: 10.1021/jp802592z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hepatitis delta virus (HDV) ribozyme is an RNA motif embedded in human pathogenic HDV RNA. Previous experimental studies have established that the active-site nucleotide C75 is essential for self-cleavage of the ribozyme, although its exact catalytic role in the process remains debated. Structural data from X-ray crystallography generally indicate that C75 acts as the general base that initiates catalysis by deprotonating the 2'-OH nucleophile at the cleavage site, while a hydrated magnesium ion likely protonates the 5'-oxygen leaving group. In contrast, some mechanistic studies support the role of C75 acting as general acid and thus being protonated before the reaction. We report combined quantum chemical/molecular mechanical calculations for the C75 general base pathway, utilizing the available structural data for the wild type HDV genomic ribozyme as a starting point. Several starting configurations differing in magnesium ion placement were considered and both one-dimensional and two-dimensional potential energy surface scans were used to explore plausible reaction paths. Our calculations show that C75 is readily capable of acting as the general base, in concert with the hydrated magnesium ion as the general acid. We identify a most likely position for the magnesium ion, which also suggests it acts as a Lewis acid. The calculated energy barrier of the proposed mechanism, approximately 20 kcal/mol, would lower the reaction barrier by approximately 15 kcal/mol compared with the uncatalyzed reaction and is in good agreement with experimental data.
Collapse
Affiliation(s)
- Pavel Banás
- Department of Physical Chemistry and Center for Biomolecules and Complex Molecular Systems, Palacky University, tr. Svobody 26, 771 46, Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
45
|
Joung IS, Cheatham, TE. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 2008; 112:9020-41. [PMID: 18593145 PMCID: PMC2652252 DOI: 10.1021/jp8001614] [Citation(s) in RCA: 2529] [Impact Index Per Article: 148.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 04/30/2008] [Indexed: 12/11/2022]
Abstract
Alkali (Li(+), Na(+), K(+), Rb(+), and Cs(+)) and halide (F(-), Cl(-), Br(-), and I(-)) ions play an important role in many biological phenomena, roles that range from stabilization of biomolecular structure, to influence on biomolecular dynamics, to key physiological influence on homeostasis and signaling. To properly model ionic interaction and stability in atomistic simulations of biomolecular structure, dynamics, folding, catalysis, and function, an accurate model or representation of the monovalent ions is critically necessary. A good model needs to simultaneously reproduce many properties of ions, including their structure, dynamics, solvation, and moreover both the interactions of these ions with each other in the crystal and in solution and the interactions of ions with other molecules. At present, the best force fields for biomolecules employ a simple additive, nonpolarizable, and pairwise potential for atomic interaction. In this work, we describe our efforts to build better models of the monovalent ions within the pairwise Coulombic and 6-12 Lennard-Jones framework, where the models are tuned to balance crystal and solution properties in Ewald simulations with specific choices of well-known water models. Although it has been clearly demonstrated that truly accurate treatments of ions will require inclusion of nonadditivity and polarizability (particularly with the anions) and ultimately even a quantum mechanical treatment, our goal was to simply push the limits of the additive treatments to see if a balanced model could be created. The applied methodology is general and can be extended to other ions and to polarizable force-field models. Our starting point centered on observations from long simulations of biomolecules in salt solution with the AMBER force fields where salt crystals formed well below their solubility limit. The likely cause of the artifact in the AMBER parameters relates to the naive mixing of the Smith and Dang chloride parameters with AMBER-adapted Aqvist cation parameters. To provide a more appropriate balance, we reoptimized the parameters of the Lennard-Jones potential for the ions and specific choices of water models. To validate and optimize the parameters, we calculated hydration free energies of the solvated ions and also lattice energies (LE) and lattice constants (LC) of alkali halide salt crystals. This is the first effort that systematically scans across the Lennard-Jones space (well depth and radius) while balancing ion properties like LE and LC across all pair combinations of the alkali ions and halide ions. The optimization across the entire monovalent series avoids systematic deviations. The ion parameters developed, optimized, and characterized were targeted for use with some of the most commonly used rigid and nonpolarizable water models, specifically TIP3P, TIP4P EW, and SPC/E. In addition to well reproducing the solution and crystal properties, the new ion parameters well reproduce binding energies of the ions to water and the radii of the first hydration shells.
Collapse
Affiliation(s)
| | - Thomas E. Cheatham,
- To whom correspondence should be addressed: Phone: (801) 587-9652. Fax: (801) 585-9119. E-mail:
| |
Collapse
|
46
|
Serganov A, Patel DJ. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat Rev Genet 2007; 8:776-90. [PMID: 17846637 PMCID: PMC4689321 DOI: 10.1038/nrg2172] [Citation(s) in RCA: 313] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although various functions of RNA are carried out in conjunction with proteins, some catalytic RNAs, or ribozymes, which contribute to a range of cellular processes, require little or no assistance from proteins. Furthermore, the discovery of metabolite-sensing riboswitches and other types of RNA sensors has revealed RNA-based mechanisms that cells use to regulate gene expression in response to internal and external changes. Structural studies have shown how these RNAs can carry out a range of functions. In addition, the contribution of ribozymes and riboswitches to gene expression is being revealed as far more widespread than was previously appreciated. These findings have implications for understanding how cellular functions might have evolved from RNA-based origins.
Collapse
Affiliation(s)
- Alexander Serganov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | |
Collapse
|