1
|
Wojciechowski M, Jokiel J, Kuss H, Bermúdez M, Jose J. Combination of Autodisplay and Dynamic Pharmacophore Modeling Reveals New Insights into Cyclic Nucleotide Binding in Hyperpolarization-Activated and Cyclic Nucleotide-Gated Ion Channel 4 (HCN4). ACS Pharmacol Transl Sci 2024; 7:4010-4020. [PMID: 39698292 PMCID: PMC11651207 DOI: 10.1021/acsptsci.4c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 12/20/2024]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels play a critical role in regulating neuronal and cardiac rhythmicity, with their function being modulated by cyclic nucleotide binding. Dysfunction of HCN ion channels leads to the genesis of several diseases such as arrhythmia, bradycardia, or epilepsy. This study employs a multidisciplinary approach integrating mutagenesis, ligand binding assays, and molecular dynamics (MD) simulations combined with dynamic pharmacophore studies to investigate the impact of single residue mutations within the cyclic nucleotide-binding domain (CNBD) of HCN4 channels. Utilizing an autodisplay-based ligand binding assay, surface-displayed HCN4 CNBD mutants were evaluated for their interaction with 8-Fluo-cAMP, providing insights into the ligand binding properties. While some known mutational effects could be confirmed (R669, T670), we identified L652 to be crucial for successful ligand binding. Surprisingly, C662, located in the center of the binding pocket, was discovered to play a negligible role in cAMP-binding. Both E660 and R710 were shown to substantially affect 8-Fluo-cAMP-binding, uncovering the direct ligand binding capability of the R710A mutant for the first time. Furthermore, MD simulations coupled with dynamic pharmacophore analysis offered detailed insights into dynamic ligand-protein interactions, elucidating the structural basis of ligand binding and modulation induced by single residue mutations. Here, a novel bypass mechanism of R713 that interacts with cAMP in the absence of R710 was demonstrated. These findings unveil new perspectives on cyclic nucleotide binding in HCN4 channels, providing a foundation for future studies of pathogenic HCN4 ion channel mutations.
Collapse
Affiliation(s)
- Magdalena
N. Wojciechowski
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| | - Johannes Jokiel
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| | - Hanna Kuss
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| | - Marcel Bermúdez
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| | - Joachim Jose
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| |
Collapse
|
2
|
Hashemizadeh S, Alaee E, Aghajani N, Azizi H, Semnanian S. Atorvastatin facilitates extinction and prevents reinstatement of morphine-induced conditioned place preference in rats. Biomed Pharmacother 2024; 181:117639. [PMID: 39520913 DOI: 10.1016/j.biopha.2024.117639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Opioid addiction is known as a chronic relapsing disorder associated with long-lasting molecular and cellular neuroadaptations that lead to compulsive behavior. Current pharmacotherapies target the modulation of mu-opioid receptors (MOR); however, the relapse rate remains high. In this study, we evaluated the potential effect of atorvastatin, a blood-brain barrier-permeable statin, on preventing morphine relapse through both extinction-reinstatement and abstinence-reinstatement models using conditioned place preference (CPP). Adult male Wistar rats were used to establish morphine-induced CPP (5 mg/kg), followed by extinction training and subsequent priming injection of morphine (2 mg/kg, i.p.) to induce relapse-like behavior. Extinguished rats significantly reinstated their morphine-seeking behavior. In contrast, rats that received different doses of atorvastatin (0.1, 0.5, 1 mg/kg) 1 hour before each extinction training session did not show a preference for the morphine-paired chamber. Moreover, acute atorvastatin injection (1 mg/kg, i.p.) 1 h before the reinstatement test significantly prevented reinstated morphine-seeking behavior. We found that atorvastatin 1 mg/kg attenuated morphine-seeking behaviors, and this attenuation of reinstatement was partly mediated by the upregulation of brain-derived neurotrophic factor (BDNF) in the prefrontal cortex (PFC) and hippocampus (Hipp). Furthermore, atorvastatin reversed Oprm1 upregulation (mu-opioid receptor gene) induced by relapse in the nucleus accumbens and Hipp. Moreover, treatment with atorvastatin during the extinction period alters the electrophysiological properties of the mPFC neurons following morphine priming and enhances neuronal excitability. We conclude that atorvastatin was effective in decreasing reinstatement.
Collapse
Affiliation(s)
- Shiva Hashemizadeh
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Elham Alaee
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Niloofar Aghajani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran; Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saeed Semnanian
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM, Tehran, Iran; Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Porro A, Saponaro A, Castelli R, Introini B, Hafez Alkotob A, Ranjbari G, Enke U, Kusch J, Benndorf K, Santoro B, DiFrancesco D, Thiel G, Moroni A. A high affinity switch for cAMP in the HCN pacemaker channels. Nat Commun 2024; 15:843. [PMID: 38287019 PMCID: PMC10825183 DOI: 10.1038/s41467-024-45136-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Binding of cAMP to Hyperpolarization activated cyclic nucleotide gated (HCN) channels facilitates pore opening. It is unclear why the isolated cyclic nucleotide binding domain (CNBD) displays in vitro lower affinity for cAMP than the full-length channel in patch experiments. Here we show that HCN are endowed with an affinity switch for cAMP. Alpha helices D and E, downstream of the cyclic nucleotide binding domain (CNBD), bind to and stabilize the holo CNBD in a high affinity state. These helices increase by 30-fold cAMP efficacy and affinity measured in patch clamp and ITC, respectively. We further show that helices D and E regulate affinity by interacting with helix C of the CNBD, similarly to the regulatory protein TRIP8b. Our results uncover an intramolecular mechanism whereby changes in binding affinity, rather than changes in cAMP concentration, can modulate HCN channels, adding another layer to the complex regulation of their activity.
Collapse
Affiliation(s)
| | - Andrea Saponaro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy
| | | | - Bianca Introini
- Department of Biosciences, University of Milan, Milano, Italy
| | | | - Golnaz Ranjbari
- Department of Biosciences, University of Milan, Milano, Italy
| | - Uta Enke
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Bina Santoro
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, USA
| | | | - Gerhard Thiel
- Department of Biology, TU-Darmstadt, Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milano, Italy.
- Institute of Biophysics Milan, Consiglio Nazionale delle Ricerche, Milano, Italy.
| |
Collapse
|
4
|
Alaee E, Pachenari N, Khani F, Semnanian S, Shojaei A, Azizi H. Enhancement of neuronal excitability in the medial prefrontal cortex following prenatal morphine exposure. Brain Res Bull 2023; 204:110803. [PMID: 37913849 DOI: 10.1016/j.brainresbull.2023.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
The clinical use and abuse of opioids during human pregnancy have been widely reported. Several studies have demonstrated that opioids cross the placenta in rats during late gestation, and prenatal morphine exposure has been shown to have negative outcomes in cognitive function. The medial prefrontal cortex (mPFC) is believed to play a crucial role in cognitive processes, motivation, and emotion, integrating neural information from several brain areas and sending converted information to other structures. Dysfunctions in this area have been observed in numerous psychiatric and neurological disorders, including addiction. This current study aimed to compare the electrophysiological properties of mPFC neurons in rat offspring prenatally exposed to morphine. Pregnant rats were injected with morphine or saline twice a day from gestational days 11-18. Whole-cell patch-clamp recordings were performed in male offspring on postnatal days 14-18. All recordings were obtained in current-clamp configuration from mPFC pyramidal neurons to assess their electrophysiological properties. The results revealed that prenatal exposure to morphine shifted the resting membrane potential (RMP) to less negative voltages and increased input resistance and duration of action potentials. However, the amplitude, rise slope, and afterhyperpolarization (AHP) amplitude of the first elicited action potentials were significantly decreased in rats prenatally exposed to morphine. Moreover, the sag voltage ratio was significantly decreased in the prenatal morphine group. Our results suggest that the changes observed in the electrophysiological properties of mPFC neurons indicate an elevation in neuronal excitability following prenatal exposure to morphine.
Collapse
Affiliation(s)
- Elham Alaee
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Pachenari
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Fatemeh Khani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Biology, Pathobiology and Gene Therapy of CNG Channel-Related Retinopathies. Biomedicines 2023; 11:biomedicines11020269. [PMID: 36830806 PMCID: PMC9953513 DOI: 10.3390/biomedicines11020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The visual process begins with the absorption of photons by photopigments of cone and rod photoreceptors in the retina. In this process, the signal is first amplified by a cyclic guanosine monophosphate (cGMP)-based signaling cascade and then converted into an electrical signal by cyclic nucleotide-gated (CNG) channels. CNG channels are purely ligand-gated channels whose activity can be controlled by cGMP, which induces a depolarizing Na+/Ca2+ current upon binding to the channel. Structurally, CNG channels belong to the superfamily of pore-loop cation channels and share structural similarities with hyperpolarization-activated cyclic nucleotide (HCN) and voltage-gated potassium (KCN) channels. Cone and rod photoreceptors express distinct CNG channels encoded by homologous genes. Mutations in the genes encoding the rod CNG channel (CNGA1 and CNGB1) result in retinitis-pigmentosa-type blindness. Mutations in the genes encoding the cone CNG channel (CNGA3 and CNGB3) lead to achromatopsia. Here, we review the molecular properties of CNG channels and describe their physiological and pathophysiological roles in the retina. Moreover, we summarize recent activities in the field of gene therapy aimed at developing the first gene therapies for CNG channelopathies.
Collapse
|
6
|
Yüksel S, Bonus M, Schwabe T, Pfleger C, Zimmer T, Enke U, Saß I, Gohlke H, Benndorf K, Kusch J. Uncoupling of Voltage- and Ligand-Induced Activation in HCN2 Channels by Glycine Inserts. Front Physiol 2022; 13:895324. [PMID: 36091400 PMCID: PMC9452628 DOI: 10.3389/fphys.2022.895324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetramers that generate electrical rhythmicity in special brain neurons and cardiomyocytes. The channels are activated by membrane hyperpolarization. The binding of cAMP to the four available cyclic nucleotide-binding domains (CNBD) enhances channel activation. We analyzed in the present study the mechanism of how the effect of cAMP binding is transmitted to the pore domain. Our strategy was to uncouple the C-linker (CL) from the channel core by inserting one to five glycine residues between the S6 gate and the A′-helix (constructs 1G to 5G). We quantified in full-length HCN2 channels the resulting functional effects of the inserted glycines by current activation as well as the structural dynamics and statics using molecular dynamics simulations and Constraint Network Analysis. We show functionally that already in 1G the cAMP effect on activation is lost and that with the exception of 3G and 5G the concentration-activation relationships are shifted to depolarized voltages with respect to HCN2. The strongest effect was found for 4G. Accordingly, the activation kinetics were accelerated by all constructs, again with the strongest effect in 4G. The simulations reveal that the average residue mobility of the CL and CNBD domains is increased in all constructs and that the junction between the S6 and A′-helix is turned into a flexible hinge, resulting in a destabilized gate in all constructs. Moreover, for 3G and 4G, there is a stronger downward displacement of the CL-CNBD than in HCN2 and the other constructs, resulting in an increased kink angle between S6 and A′-helix, which in turn loosens contacts between the S4-helix and the CL. This is suggested to promote a downward movement of the S4-helix, similar to the effect of hyperpolarization. In addition, exclusively in 4G, the selectivity filter in the upper pore region and parts of the S4-helix are destabilized. The results provide new insights into the intricate activation of HCN2 channels.
Collapse
Affiliation(s)
- Sezin Yüksel
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Michele Bonus
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Tina Schwabe
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Christopher Pfleger
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Thomas Zimmer
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Uta Enke
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Inga Saß
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
- *Correspondence: Holger Gohlke, ; Klaus Benndorf, ; Jana Kusch,
| | - Klaus Benndorf
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
- *Correspondence: Holger Gohlke, ; Klaus Benndorf, ; Jana Kusch,
| | - Jana Kusch
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
- *Correspondence: Holger Gohlke, ; Klaus Benndorf, ; Jana Kusch,
| |
Collapse
|
7
|
Ng LCT, Li YX, Van Petegem F, Accili EA. Altered cyclic nucleotide-binding and pore opening in a diseased human HCN4 channel. Biophys J 2022; 121:1166-1183. [PMID: 35219649 PMCID: PMC9034293 DOI: 10.1016/j.bpj.2022.02.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/20/2021] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
A growing number of nonsynonymous mutations in the human HCN4 channel gene, the major component of the funny channel of the sinoatrial node, are associated with disease but how they impact channel structure and function, and, thus, how they result in disease, is not clear for any of them. Here, we study the S672R mutation, in the cyclic nucleotide-binding domain of the channel, which has been associated with an inherited bradycardia in an Italian family. This may be the best studied of all known mutations, yet the underlying molecular and atomistic mechanisms remain unclear and controversial. We combine measurements of binding by isothermal titration calorimetry to a naturally occurring tetramer of the HCN4 C-terminal region with a mathematical model to show that weaker binding of cAMP to the mutant channel contributes to a lower level of facilitation of channel opening at submicromolar ligand concentrations but that, in general, facilitation occurs over a range that is similar between the mutant and wild-type because of enhanced opening of the mutant channel when liganded. We also show that the binding affinity for cGMP, which produces the same maximum facilitation of HCN4 opening as cAMP, is weaker in the mutant HCN4 channel but that, for both wild-type and mutant, high-affinity binding of cGMP occurs in a range of concentrations below 1 μM. Thus, binding of cGMP to the HCN4 channel may be relevant normally in vivo and reduced binding of cGMP, as well as cAMP, to the mutant channel may contribute to the reduced resting heart rate observed in the affected family.
Collapse
Affiliation(s)
- Leo C T Ng
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Yue Xian Li
- Department of Mathematics, University of British Columbia, Vancouver, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Eric A Accili
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
8
|
Regulation of sinoatrial funny channels by cyclic nucleotides: From adrenaline and I K2 to direct binding of ligands to protein subunits. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:12-21. [PMID: 34237319 DOI: 10.1016/j.pbiomolbio.2021.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022]
Abstract
The funny current, and the HCN channels that form it, are affected by the direct binding of cyclic nucleotides. Binding of these second messengers causes a depolarizing shift of the activation curve, which leads to greater availability of current at physiological membrane voltages. This review outlines a brief history on this regulation and provides some evidence that other cyclic nucleotides, especially cGMP, may be important for the regulation of the funny channel in the heart. Current understanding of the molecular mechanism of cyclic nucleotide regulation is also presented, which includes the notions that full and partial agonism occur as a consequence of negatively cooperative binding. Knowledge gaps, including a potential role of cyclic nucleotide-regulation of the funny current under pathophysiological conditions, are included. The work highlighted here is in dedication to Dario DiFrancesco on his retirement.
Collapse
|
9
|
Tanwar M, Kateriya S, Nair D, Jose M. Optogenetic modulation of real-time nanoscale dynamics of HCN channels using photoactivated adenylyl cyclases. RSC Chem Biol 2021; 2:863-875. [PMID: 34458814 PMCID: PMC8341789 DOI: 10.1039/d0cb00124d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Adenosine 3',5'-cyclic monophosphate (cAMP) is a key second messenger that activates several signal transduction pathways in eukaryotic cells. Alteration of basal levels of cAMP is known to activate protein kinases, regulate phosphodiesterases and modulate the activity of ion channels such as Hyper polarization-activated cyclic nucleotide gated channels (HCN). Recent advances in optogenetics have resulted in the availability of novel genetically encoded molecules with the capability to alter cytoplasmic profiles of cAMP with unprecedented spatial and temporal precision. Using single molecule based super-resolution microscopy and different optogenetic modulators of cellular cAMP in both live and fixed cells, we illustrate a novel paradigm to report alteration in nanoscale confinement of ectopically expressed HCN channels. We characterized the efficacy of cAMP generation using ensemble photoactivation of different optogenetic modulators. Then we demonstrate that local modulation of cAMP alters the exchange of membrane bound HCN channels with its nanoenvironment. Additionally, using high density single particle tracking in combination with both acute and chronic optogenetic elevation of cAMP in the cytoplasm, we show that HCN channels are confined to sub 100 nm sized functional domains on the plasma membrane. The nanoscale properties of these domains along with the exchange kinetics of HCN channels in and out of these molecular zones are altered upon temporal changes in the cytoplasmic cAMP. Using HCN2 point mutants and a truncated construct of HCN2 with altered sensitivity to cAMP, we confirmed these alterations in lateral organization of HCN2 to be specific to cAMP binding. Thus, combining these advanced non-invasive paradigms, we report a cAMP dependent ensemble and single particle behavior of HCN channels mediated by its cyclic nucleotide binding domain, opening innovative ways to dissect biochemical pathways at the nanoscale and real-time in living cells.
Collapse
Affiliation(s)
- Meenakshi Tanwar
- Centre for Neuroscience, Indian Institute of Science Bangalore-560012 India
| | - Suneel Kateriya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University New Delhi-110067 India
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science Bangalore-560012 India
| | - Mini Jose
- Centre for Neuroscience, Indian Institute of Science Bangalore-560012 India
| |
Collapse
|
10
|
ANO7: Insights into topology, function, and potential applications as a biomarker and immunotherapy target. Tissue Cell 2021; 72:101546. [PMID: 33940566 DOI: 10.1016/j.tice.2021.101546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/21/2021] [Accepted: 04/11/2021] [Indexed: 01/01/2023]
Abstract
Anoctamin 7 (ANO7) is a member of the transmembrane protein TMEM16 family. It has a conservative topology similar to other members in this family, such as the typical eight-transmembrane domain, but it also has unique features. Although the ion channel role of ANO7 has been well accepted, evolutionary analyses and relevant studies suggest that ANO7 may be a multi-facet protein in function. Studies have shown that ANO7 may also function as a scramblase. ANO7 is highly expressed in prostate cancer as well as normal prostate tissues. A considerable amount of evidence has confirmed that ANO7 is associated with human physiology and pathology, particularly with the development of prostate cancer, which makes ANO7 a good candidate as a diagnostic and prognostic biomarker. In addition, ANO7 may be a potential target for prostate cancer immunotherapy. Antibody-based or T cell-mediated immunotherapies against prostate cancer by targeting ANO7 have been highly anticipated. ANO7 may also correlate with several other types of cancers or diseases, where further studies are warranted.
Collapse
|
11
|
Pfleger C, Kusch J, Kondapuram M, Schwabe T, Sattler C, Benndorf K, Gohlke H. Allosteric signaling in C-linker and cyclic nucleotide-binding domain of HCN2 channels. Biophys J 2021; 120:950-963. [PMID: 33515603 DOI: 10.1016/j.bpj.2021.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/04/2021] [Accepted: 01/19/2021] [Indexed: 12/22/2022] Open
Abstract
Opening of hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels is controlled by membrane hyperpolarization and binding of cyclic nucleotides to the tetrameric cyclic nucleotide-binding domain (CNBD), attached to the C-linker (CL) disk. Confocal patch-clamp fluorometry revealed pronounced cooperativity of ligand binding among protomers. However, by which pathways allosteric signal transmission occurs remained elusive. Here, we investigate how changes in the structural dynamics of the CL-CNBD of mouse HCN2 upon cAMP binding relate to inter- and intrasubunit signal transmission. Applying a rigidity-theory-based approach, we identify two intersubunit and one intrasubunit pathways that differ in allosteric coupling strength between cAMP-binding sites or toward the CL. These predictions agree with results from electrophysiological and patch-clamp fluorometry experiments. Our results map out distinct routes within the CL-CNBD that modulate different cAMP-binding responses in HCN2 channels. They signify that functionally relevant submodules may exist within and across structurally discernable subunits in HCN channels.
Collapse
Affiliation(s)
- Christopher Pfleger
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jana Kusch
- Institute of Physiology II, Jena University Hospital, Jena, Germany
| | | | - Tina Schwabe
- Institute of Physiology II, Jena University Hospital, Jena, Germany
| | | | - Klaus Benndorf
- Institute of Physiology II, Jena University Hospital, Jena, Germany
| | - Holger Gohlke
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; John von Neumann Institute for Computing, Jülich Supercomputing Centre, and Institute of Biological Information Processing (IBI-7, Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
12
|
Porro A, Binda A, Pisoni M, Donadoni C, Rivolta I, Saponaro A. Rational design of a mutation to investigate the role of the brain protein TRIP8b in limiting the cAMP response of HCN channels in neurons. J Gen Physiol 2020; 152:e202012596. [PMID: 32633755 PMCID: PMC7478871 DOI: 10.1085/jgp.202012596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/02/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023] Open
Abstract
TRIP8b (tetratricopeptide repeat-containing Rab8b-interacting protein) is the neuronal regulatory subunit of HCN channels, a family of voltage-dependent cation channels also modulated by direct cAMP binding. TRIP8b interacts with the C-terminal region of HCN channels and controls both channel trafficking and gating. The association of HCN channels with TRIP8b is required for the correct expression and subcellular targeting of the channel protein in vivo. TRIP8b controls HCN gating by interacting with the cyclic nucleotide-binding domain (CNBD) and competing for cAMP binding. Detailed structural knowledge of the complex between TRIP8b and CNBD was used as a starting point to engineer a mutant channel, whose gating is controlled by cAMP, but not by TRIP8b, while leaving TRIP8b-dependent regulation of channel trafficking unaltered. We found two-point mutations (N/A and C/D) in the loop connecting the CNBD to the C-linker (N-bundle loop) that, when combined, strongly reduce the binding of TRIP8b to CNBD, leaving cAMP affinity unaltered both in isolated CNBD and in the full-length protein. Proof-of-principle experiments performed in cultured cortical neurons confirm that the mutant channel provides a genetic tool for dissecting the two effects of TRIP8b (gating versus trafficking). This will allow the study of the functional role of the TRIP8b antagonism of cAMP binding, a thus far poorly investigated aspect of HCN physiology in neurons.
Collapse
Affiliation(s)
| | - Anna Binda
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Chiara Donadoni
- Department of Biosciences, University of Milano, Milano, Italy
| | - Ilaria Rivolta
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Andrea Saponaro
- Department of Biosciences, University of Milano, Milano, Italy
| |
Collapse
|
13
|
Leypold T, Bonus M, Spiegelhalter F, Schwede F, Schwabe T, Gohlke H, Kusch J. N 6-modified cAMP derivatives that activate protein kinase A also act as full agonists of murine HCN2 channels. J Biol Chem 2019; 294:17978-17987. [PMID: 31615893 DOI: 10.1074/jbc.ra119.010246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/15/2019] [Indexed: 11/06/2022] Open
Abstract
cAMP acts as a second messenger in many cellular processes. Three protein types mainly mediate cAMP-induced effects: PKA, exchange protein directly activated by cAMP (Epac), and cyclic nucleotide-modulated channels (cyclic nucleotide-gated or hyperpolarization-activated and cyclic nucleotide-modulated (HCN) channels). Discrimination among these cAMP signaling pathways requires specific targeting of only one protein. Previously, cAMP modifications at position N 6 of the adenine ring (PKA) and position 2'-OH of the ribose (Epac) have been used to produce target-selective compounds. However, cyclic nucleotide-modulated ion channels were usually outside of the scope of these previous studies. These channels are widely distributed, so possible channel cross-activation by PKA- or Epac-selective agonists warrants serious consideration. Here we demonstrate the agonistic effects of three PKA-selective cAMP derivatives, N 6-phenyladenosine-3',5'-cyclic monophosphate (N 6-Phe-cAMP), N 6-benzyladenosine-3',5'-cyclic monophosphate (N 6-Bn-cAMP), and N 6-benzoyl-adenosine-3',5'-cyclic monophosphate (N 6-Bnz-cAMP), on murine HCN2 pacemaker channels. Electrophysiological characterization in Xenopus oocytes revealed that these derivatives differ in apparent affinities depending on the modification type but that their efficacy and effects on HCN2 activation kinetics are similar to those of cAMP. Docking experiments suggested a pivotal role of Arg-635 at the entrance of the binding pocket in HCN2, either causing stabilizing cation-π interactions with the aromatic ring in N 6-Phe-cAMP or N 6-Bn-cAMP or a steric clash with the aromatic ring in N 6-Bnz-cAMP. A reduced apparent affinity of N 6-Phe-cAMP toward the variants R635A and R635E strengthened that notion. We conclude that some PKA activators also effectively activate HCN2 channels. Hence, when studying PKA-mediated cAMP signaling with cAMP derivatives in a native environment, activation of HCN channels should be considered.
Collapse
Affiliation(s)
- Tim Leypold
- Friedrich Schiller University, University Hospital Jena, Institute of Physiology II, Kollegiengasse 9, 07743 Jena, Germany
| | - Michele Bonus
- Institute for Pharmaceutical and Medical Chemistry, Heinrich Heine University, Universitätsstraβe 1, 40225 Düsseldorf, Germany
| | - Felix Spiegelhalter
- Friedrich Schiller University, University Hospital Jena, Institute of Physiology II, Kollegiengasse 9, 07743 Jena, Germany
| | | | - Tina Schwabe
- Friedrich Schiller University, University Hospital Jena, Institute of Physiology II, Kollegiengasse 9, 07743 Jena, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medical Chemistry, Heinrich Heine University, Universitätsstraβe 1, 40225 Düsseldorf, Germany.,John von Neumann Institute for Computing, Jülich Supercomputing Centre and Institute for Complex Systems - Structural Biochemistry (ICS 6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Jana Kusch
- Friedrich Schiller University, University Hospital Jena, Institute of Physiology II, Kollegiengasse 9, 07743 Jena, Germany
| |
Collapse
|
14
|
Ng LCT, Zhuang M, Van Petegem F, Li YX, Accili EA. Binding and structural asymmetry governs ligand sensitivity in a cyclic nucleotide-gated ion channel. J Gen Physiol 2019; 151:1190-1212. [PMID: 31481514 PMCID: PMC6785730 DOI: 10.1085/jgp.201812162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 04/26/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
HCN channel opening is facilitated by cyclic nucleotides, but what determines the sensitivity of these channels to cAMP or cGMP is unclear. Ng et al. propose that ligand sensitivity depends on negative cooperativity and the asymmetric effects of ligand binding on channel structure and pore opening. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels open more easily when cAMP or cGMP bind to a domain in the intracellular C-terminus in each of four identical subunits. How sensitivity of the channels to these ligands is determined is not well understood. Here, we apply a mathematical model, which incorporates negative cooperativity, to gating and mutagenesis data available in the literature and combine the results with binding data collected using isothermal titration calorimetry. This model recapitulates the concentration–response data for the effects of cAMP and cGMP on wild-type HCN2 channel opening and, remarkably, predicts the concentration–response data for a subset of mutants with single-point amino acid substitutions in the binding site. Our results suggest that ligand sensitivity is determined by negative cooperativity and asymmetric effects on structure and channel opening, which are tuned by ligand-specific interactions and residues within the binding site.
Collapse
Affiliation(s)
- Leo C T Ng
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Meiying Zhuang
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Yue Xian Li
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Eric A Accili
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Lehnhoff J, Strauss U, Wierschke S, Grosser S, Pollali E, Schneider UC, Holtkamp M, Dehnicke C, Deisz RA. The anticonvulsant lamotrigine enhances Ih in layer 2/3 neocortical pyramidal neurons of patients with pharmacoresistant epilepsy. Neuropharmacology 2019; 144:58-69. [DOI: 10.1016/j.neuropharm.2018.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 11/29/2022]
|
16
|
Hydrophobic alkyl chains substituted to the 8-position of cyclic nucleotides enhance activation of CNG and HCN channels by an intricate enthalpy - entropy compensation. Sci Rep 2018; 8:14960. [PMID: 30297855 PMCID: PMC6175941 DOI: 10.1038/s41598-018-33050-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/19/2018] [Indexed: 01/01/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are tetrameric non-specific cation channels in the plasma membrane that are activated by either cAMP or cGMP binding to specific binding domains incorporated in each subunit. Typical apparent affinities of these channels for these cyclic nucleotides range from several hundred nanomolar to tens of micromolar. Here we synthesized and characterized novel cAMP and cGMP derivatives by substituting either hydrophobic alkyl chains or similar-sized more hydrophilic heteroalkyl chains to the 8-position of the purine ring with the aim to obtain full agonists of higher potency. The compounds were tested in homotetrameric CNGA2, heterotetrameric CNGA2:CNGA4:CNGB1b and homotetrameric HCN2 channels. We show that nearly all compounds are full agonists and that longer alkyl chains systematically increase the apparent affinity, at the best more than 30 times. The effects are stronger in CNG than HCN2 channels which, however, are constitutively more sensitive to cAMP. Kinetic analyses reveal that the off-rate is significantly slowed by the hydrophobic alkyl chains. Molecular dynamics simulations and free energy calculations suggest that an intricate enthalpy - entropy compensation underlies the higher apparent affinity of the derivatives with the longer alkyl chains, which is shown to result from a reduced loss of configurational entropy upon binding.
Collapse
|
17
|
Rheinberger J, Gao X, Schmidpeter PA, Nimigean CM. Ligand discrimination and gating in cyclic nucleotide-gated ion channels from apo and partial agonist-bound cryo-EM structures. eLife 2018; 7:39775. [PMID: 30028291 PMCID: PMC6093708 DOI: 10.7554/elife.39775] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022] Open
Abstract
Cyclic nucleotide-modulated channels have important roles in visual signal transduction and pacemaking. Binding of cyclic nucleotides (cAMP/cGMP) elicits diverse functional responses in different channels within the family despite their high sequence and structure homology. The molecular mechanisms responsible for ligand discrimination and gating are unknown due to lack of correspondence between structural information and functional states. Using single particle cryo-electron microscopy and single-channel recording, we assigned functional states to high-resolution structures of SthK, a prokaryotic cyclic nucleotide-gated channel. The structures for apo, cAMP-bound, and cGMP-bound SthK in lipid nanodiscs, correspond to no, moderate, and low single-channel activity, respectively, consistent with the observation that all structures are in resting, closed states. The similarity between apo and ligand-bound structures indicates that ligand-binding domains are strongly coupled to pore and SthK gates in an allosteric, concerted fashion. The different orientations of cAMP and cGMP in the ‘resting’ and ‘activated’ structures suggest a mechanism for ligand discrimination. Ion channels are essential for transmitting signals in the nervous system and brain. One large group of ion channels includes members that are activated by cyclic nucleotides, small molecules used to transmit signals within cells. These cyclic nucleotide-gated channels play an important role in regulating our ability to see and smell. The activity of these ion channels has been studied for years, but scientists have only recently been able to look into their structure. Since structural biology methods require purified, well-behaved proteins, the members of this ion channel family selected for structural studies do not necessarily match those whose activity has been well established. There is a need for a good model that would allow both the structure and activity of a cyclic nucleotide-gated ion channel to be characterized. The cyclic nucleotide-gated ion channel, SthK, from bacteria called Spirochaeta thermophila, was identified as such model because both its activity and its structure are accessible. Rheinberger et al. have used cryo electron microscopy to solve several high-resolution structures of SthK channels. In two of the structures, SthK was bound to either one of two types of activating cyclic nucleotides – cAMP or cGMP – and in another structure, no cyclic nucleotides were bound. Separately recording the activity of individual channels allowed the activity states likely to be represented by these structures to be identified. Combining the results of the experiments revealed no activity from channels in an unbound state, low levels of activity for channels bound to cGMP, and moderate activity for channels bound to cAMP. Rheinberger et al. show that the channel, under the conditions experienced in cryo electron microscopy, is closed in all of the states studied. Unexpectedly, the binding of cyclic nucleotides produced no structural change even in the cyclic nucleotide-binding pocket of the channel, a region that was previously observed to undergo such changes when this region alone was crystallized. Rheinberger et al. deduce from this that the four subunits that make up the channel likely undergo the conformational change towards an open state all at once, rather than one by one. The structures and the basic functional characterization of SthK channels provide a strong starting point for future research into determining the entire opening and closing cycle for a cyclic nucleotide-gated channel. Human equivalents of the channel are likely to work in similar ways. The results presented by Rheinberger et al. could therefore be built upon to help address diseases that result from deficiencies in cyclic nucleotide-gated channels, such as loss of vision due to retinal degradation (retinitis pigmentosa or progressive cone dystrophy) and achromatopsia.
Collapse
Affiliation(s)
- Jan Rheinberger
- Departments of Anesthesiology, Weill Cornell Medical College, New York, United States
| | - Xiaolong Gao
- Departments of Anesthesiology, Weill Cornell Medical College, New York, United States
| | | | - Crina M Nimigean
- Departments of Anesthesiology, Weill Cornell Medical College, New York, United States.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States.,Department of Biochemistry, Weill Cornell Medical College, New York, United States
| |
Collapse
|
18
|
Sunkara MR, Schwabe T, Ehrlich G, Kusch J, Benndorf K. All four subunits of HCN2 channels contribute to the activation gating in an additive but intricate manner. J Gen Physiol 2018; 150:1261-1271. [PMID: 29959170 PMCID: PMC6122924 DOI: 10.1085/jgp.201711935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/25/2018] [Accepted: 06/14/2018] [Indexed: 01/25/2023] Open
Abstract
HCN pacemaker channels are dually gated by hyperpolarizing voltages and cyclic nucleotide binding. Sunkara et al. show that each of the four binding sites promotes channel opening, most likely by exerting a turning momentum on the tetrameric intracellular gating ring. Hyperpolarization-activated cyclic nucleotide–modulated (HCN) channels are tetramers that elicit electrical rhythmicity in specialized brain neurons and cardiomyocytes. The channels are dually activated by voltage and binding of cyclic adenosine monophosphate (cAMP) to their four cyclic nucleotide-binding domains (CNBDs). Here we analyze the effects of cAMP binding to different concatemers of HCN2 channel subunits, each having a defined number of functional CNBDs. We show that each liganded CNBD promotes channel activation in an additive manner and that, in the special case of two functional CNBDs, functionality does not depend on the arrangement of the subunits. Correspondingly, the reverse process of deactivation is slowed by progressive liganding, but only if four and three ligands as well as two ligands in trans position (opposite to each other) are bound. In contrast, two ligands bound in cis positions (adjacent to each other) and a single bound ligand do not affect channel deactivation. These results support an activation mechanism in which each single liganded CNBD causes a turning momentum on the tetrameric ring-like structure formed by all four CNBDs and that at least two liganded subunits in trans positions are required to maintain activation.
Collapse
Affiliation(s)
- Mallikarjuna Rao Sunkara
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Tina Schwabe
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Gunter Ehrlich
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
19
|
Saponaro A, Cantini F, Porro A, Bucchi A, DiFrancesco D, Maione V, Donadoni C, Introini B, Mesirca P, Mangoni ME, Thiel G, Banci L, Santoro B, Moroni A. A synthetic peptide that prevents cAMP regulation in mammalian hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. eLife 2018; 7:35753. [PMID: 29923826 PMCID: PMC6023613 DOI: 10.7554/elife.35753] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Binding of TRIP8b to the cyclic nucleotide binding domain (CNBD) of mammalian hyperpolarization-activated cyclic nucleotide-gated (HCN) channels prevents their regulation by cAMP. Since TRIP8b is expressed exclusively in the brain, we envisage that it can be used for orthogonal control of HCN channels beyond the central nervous system. To this end, we have identified by rational design a 40-aa long peptide (TRIP8bnano) that recapitulates affinity and gating effects of TRIP8b in HCN isoforms (hHCN1, mHCN2, rbHCN4) and in the cardiac current If in rabbit and mouse sinoatrial node cardiomyocytes. Guided by an NMR-derived structural model that identifies the key molecular interactions between TRIP8bnano and the HCN CNBD, we further designed a cell-penetrating peptide (TAT-TRIP8bnano) which successfully prevented β-adrenergic activation of mouse If leaving the stimulation of the L-type calcium current (ICaL) unaffected. TRIP8bnano represents a novel approach to selectively control HCN activation, which yields the promise of a more targeted pharmacology compared to pore blockers.
Collapse
Affiliation(s)
- Andrea Saponaro
- Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Cantini
- Department of Chemistry, University of Florence, Florence, Italy.,Magnetic Resonance Center, University of Florence, Florence, Italy
| | | | - Annalisa Bucchi
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Vincenzo Maione
- Interuniversity Consortium for Magnetic Resonance of Metalloproteins, Sesto Fiorentino, Italy
| | - Chiara Donadoni
- Department of Biosciences, University of Milan, Milan, Italy
| | - Bianca Introini
- Department of Biosciences, University of Milan, Milan, Italy
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, CNRS, INSERM F-34094, Université de Montpellier, Montpellier, France.,Laboratory of Excellence Ion Channels Science and Therapeutics, Valbonne, France
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, CNRS, INSERM F-34094, Université de Montpellier, Montpellier, France.,Laboratory of Excellence Ion Channels Science and Therapeutics, Valbonne, France
| | - Gerhard Thiel
- Department of Biology, TU-Darmstadt, Darmstadt, Germany
| | - Lucia Banci
- Department of Chemistry, University of Florence, Florence, Italy.,Magnetic Resonance Center, University of Florence, Florence, Italy.,Interuniversity Consortium for Magnetic Resonance of Metalloproteins, Sesto Fiorentino, Italy.,Institute of Neurosciences, Consiglio Nazionale delle Ricerche, Florence, Italy
| | - Bina Santoro
- Department of Neuroscience, Columbia University, New York, United States
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy.,Institute of Biophysics, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
20
|
Schmidpeter PAM, Gao X, Uphadyay V, Rheinberger J, Nimigean CM. Ligand binding and activation properties of the purified bacterial cyclic nucleotide-gated channel SthK. J Gen Physiol 2018; 150:821-834. [PMID: 29752414 PMCID: PMC5987880 DOI: 10.1085/jgp.201812023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/09/2018] [Indexed: 11/20/2022] Open
Abstract
SthK is a bacterial cyclic nucleotide–gated ion channel from Spirochaeta thermophila. By optimizing the expression and purification of SthK, Schmidpeter et al. show that cAMP and cGMP bind to the channel with similar affinity but activate it with different efficacy. Cyclic nucleotide–modulated ion channels play several essential physiological roles. They are involved in signal transduction in photoreceptors and olfactory sensory neurons as well as pacemaking activity in the heart and brain. Investigations of the molecular mechanism of their actions, including structural and electrophysiological characterization, are restricted by the availability of stable, purified protein obtained from accessible systems. Here, we establish that SthK, a cyclic nucleotide–gated (CNG) channel from Spirochaeta thermophila, is an excellent model for investigating the gating of eukaryotic CNG channels at the molecular level. The channel has high sequence similarity with its eukaryotic counterparts and was previously reported to be activated by cyclic nucleotides in patch-clamp experiments with Xenopus laevis oocytes. We optimized protein expression and purification to obtain large quantities of pure, homogeneous, and active recombinant SthK protein from Escherichia coli. A negative-stain electron microscopy (EM) single-particle analysis indicated that this channel is a promising candidate for structural studies with cryo-EM. Using radioactivity and fluorescence flux assays, as well as single-channel recordings in lipid bilayers, we show that the protein is partially activated by micromolar concentrations of cyclic adenosine monophosphate (cAMP) and that channel activity is increased by depolarization. Unlike previous studies, we find that cyclic guanosine monophosphate (cGMP) is also able to activate SthK, but with much lower efficiency than cAMP. The distinct sensitivities to different ligands resemble eukaryotic CNG and hyperpolarization-activated and cyclic nucleotide–modulated channels. Using a fluorescence binding assay, we show that cGMP and cAMP bind to SthK with similar apparent affinities, suggesting that the large difference in channel activation by cAMP or cGMP is caused by the efficacy with which each ligand promotes the conformational changes toward the open state. We conclude that the functional characteristics of SthK reported here will permit future studies to analyze ligand gating and discrimination in CNG channels.
Collapse
Affiliation(s)
| | - Xiaolong Gao
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY
| | - Vikrant Uphadyay
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY
| | - Jan Rheinberger
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY .,Department of Biochemistry, Weill Cornell Medicine, New York, NY.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| |
Collapse
|
21
|
Abstract
The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG) channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP) or cyclic adenosine monophosphate (cAMP). Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and voltage-gated potassium channels (KCN). In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application.
Collapse
Affiliation(s)
- Stylianos Michalakis
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377 Munich, Germany.
| | - Elvir Becirovic
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377 Munich, Germany.
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377 Munich, Germany.
| |
Collapse
|
22
|
VanSchouwen B, Melacini G. Role of Dimers in the cAMP-Dependent Activation of Hyperpolarization-Activated Cyclic-Nucleotide-Modulated (HCN) Ion Channels. J Phys Chem B 2018; 122:2177-2190. [PMID: 29461059 DOI: 10.1021/acs.jpcb.7b10125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hyperpolarization-activated cyclic-nucleotide-modulated (HCN) ion channels control rhythmicity in neurons and cardiomyocytes. Cyclic AMP (cAMP) modulates HCN activity through the cAMP-induced formation of a tetrameric gating ring spanning the intracellular region (IR) of HCN. Although evidence from confocal patch-clamp fluorometry indicates that the cAMP-dependent gating of HCN occurs through a dimer of dimers, the structural and dynamical basis of cAMP allostery in HCN dimers has so far remained elusive. Thus, here we examine how dimers influence IR structural dynamics, and the role that such structural dynamics play in HCN allostery. To this end, we performed molecular dynamics (MD) simulations of HCN4 IR dimers in their fully apo, fully holo, and partially cAMP-bound states, resulting in a total simulated time of 1.2 μs. Comparative analyses of these MD trajectories, as well as previous monomer and tetramer simulations utilized as benchmarks for comparison, reveal that dimers markedly sensitize the HCN IR to cAMP-modulated allostery. Our results indicate that dimerization fine-tunes the IR dynamics to enhance, relative to both monomers and tetramers, the allosteric intra- and interprotomer coupling between the cAMP-binding domain and tetramerization domain components of the IR. The resulting allosteric model provides a viable rationalization of electrophysiological data on the role of IR dimers in HCN activation.
Collapse
Affiliation(s)
- Bryan VanSchouwen
- Department of Chemistry and Chemical Biology and ‡Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology and ‡Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
23
|
James ZM, Zagotta WN. Structural insights into the mechanisms of CNBD channel function. J Gen Physiol 2017; 150:225-244. [PMID: 29233886 PMCID: PMC5806680 DOI: 10.1085/jgp.201711898] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
James and Zagotta discuss how recent cryoEM structures inform our understanding of cyclic nucleotide–binding domain channels. Cyclic nucleotide-binding domain (CNBD) channels are a family of ion channels in the voltage-gated K+ channel superfamily that play crucial roles in many physiological processes. CNBD channels are structurally similar but functionally very diverse. This family includes three subfamilies: (1) the cyclic nucleotide-gated (CNG) channels, which are cation-nonselective, voltage-independent, and cyclic nucleotide-gated; (2) the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are weakly K+ selective, hyperpolarization-activated, and cyclic nucleotide-gated; and (3) the ether-à-go-go-type (KCNH) channels, which are strongly K+ selective, depolarization-activated, and cyclic nucleotide-independent. Recently, several high-resolution structures have been reported for intact CNBD channels, providing a structural framework to better understand their diverse function. In this review, we compare and contrast the recent structures and discuss how they inform our understanding of ion selectivity, voltage-dependent gating, and cyclic nucleotide–dependent gating within this channel family.
Collapse
Affiliation(s)
- Zachary M James
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| |
Collapse
|
24
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
25
|
Hayoz S, Tiwari PB, Piszczek G, Üren A, Brelidze TI. Investigating cyclic nucleotide and cyclic dinucleotide binding to HCN channels by surface plasmon resonance. PLoS One 2017; 12:e0185359. [PMID: 28950029 PMCID: PMC5614581 DOI: 10.1371/journal.pone.0185359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/11/2017] [Indexed: 11/19/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels control cardiac and neuronal rhythmicity. HCN channels contain cyclic nucleotide-binding domain (CNBD) in their C-terminal region linked to the pore-forming transmembrane segment with a C-linker. The C-linker couples the conformational changes caused by the direct binding of cyclic nucleotides to the HCN pore opening. Recently, cyclic dinucleotides were shown to antagonize the effect of cyclic nucleotides in HCN4 but not in HCN2 channels. Based on the structural analysis and mutational studies it has been proposed that cyclic dinucleotides affect HCN4 channels by binding to the C-linker pocket (CLP). Here, we first show that surface plasmon resonance (SPR) can be used to accurately measure cyclic nucleotide binding affinity to the C-linker/CNBD of HCN2 and HCN4 channels. We then used SPR to investigate cyclic dinucleotide binding in HCN channels. To our surprise, we detected no binding of cyclic dinucleotides to the isolated monomeric C-linker/CNBDs of HCN4 channels with SPR. The binding of cyclic dinucleotides was further examined with isothermal calorimetry (ITC), which indicated no binding of cyclic dinucleotides to both monomeric and tetrameric C-linker/CNBDs of HCN4 channels. Taken together, our results suggest that interaction of the C-linker/CNBD with other parts of the channel is necessary for cyclic-dinucleotide binding in HCN4 channels.
Collapse
Affiliation(s)
- Sebastien Hayoz
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Purushottam B. Tiwari
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Grzegorz Piszczek
- Biophysics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Aykut Üren
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Tinatin I. Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
26
|
Boulton S, Akimoto M, Akbarizadeh S, Melacini G. Free energy landscape remodeling of the cardiac pacemaker channel explains the molecular basis of familial sinus bradycardia. J Biol Chem 2017; 292:6414-6428. [PMID: 28174302 DOI: 10.1074/jbc.m116.773697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/28/2017] [Indexed: 12/21/2022] Open
Abstract
The hyperpolarization-activated and cyclic nucleotide-modulated ion channel (HCN) drives the pacemaker activity in the heart, and its malfunction can result in heart disorders. One such disorder, familial sinus bradycardia, is caused by the S672R mutation in HCN, whose electrophysiological phenotypes include a negative shift in the channel activation voltage and an accelerated HCN deactivation. The outcomes of these changes are abnormally low resting heart rates. However, the molecular mechanism underlying these electrophysiological changes is currently not fully understood. Crystallographic investigations indicate that the S672R mutation causes limited changes in the structure of the HCN intracellular gating tetramer, but its effects on protein dynamics are unknown. Here, we utilize comparative S672R versus WT NMR analyses to show that the S672R mutation results in extensive perturbations of the dynamics in both apo- and holo-forms of the HCN4 isoform, reflecting how S672R remodels the free energy landscape for the modulation of HCN4 by cAMP, i.e. the primary cyclic nucleotide modulator of HCN channels. We show that the S672R mutation results in a constitutive shift of the dynamic auto-inhibitory equilibrium toward inactive states of HCN4 and broadens the free-energy well of the apo-form, enhancing the millisecond to microsecond dynamics of the holo-form at sites critical for gating cAMP binding. These S672R-induced variations in dynamics provide a molecular basis for the electrophysiological phenotypes of this mutation and demonstrate that the pathogenic effects of the S672R mutation can be rationalized primarily in terms of modulations of protein dynamics.
Collapse
Affiliation(s)
- Stephen Boulton
- From the Departments of Biochemistry and Biomedical Sciences and
| | - Madoka Akimoto
- Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sam Akbarizadeh
- Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Giuseppe Melacini
- From the Departments of Biochemistry and Biomedical Sciences and .,Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
27
|
Yu P, Xue X, Zhang J, Hu X, Wu Y, Jiang LH, Jin H, Luo J, Zhang L, Liu Z, Yang W. Identification of the ADPR binding pocket in the NUDT9 homology domain of TRPM2. J Gen Physiol 2017; 149:219-235. [PMID: 28108595 PMCID: PMC5299621 DOI: 10.1085/jgp.201611675] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/12/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022] Open
Abstract
Activation of the transient receptor potential melastatin 2 (TRPM2) channel occurs during the response to oxidative stress under physiological conditions as well as in pathological processes such as ischemia and diabetes. Accumulating evidence indicates that adenosine diphosphate ribose (ADPR) is the most important endogenous ligand of TRPM2. However, although it is known that ADPR binds to the NUDT9 homology (NUDT9-H) domain in the intracellular C-terminal region, the molecular mechanism underlying ADPR binding and activation of TRPM2 remains unknown. In this study, we generate a structural model of the NUDT9-H domain and identify the binding pocket for ADPR using induced docking and molecular dynamics simulation. We find a subset of 11 residues-H1346, T1347, T1349, L1379, G1389, S1391, E1409, D1431, R1433, L1484, and H1488-that are most likely to directly interact with ADPR. Results from mutagenesis and electrophysiology approaches support the predicted binding mechanism, indicating that ADPR binds tightly to the NUDT9-H domain, and suggest that the most significant interactions are the van der Waals forces with S1391 and L1484, polar solvation interaction with E1409, and electronic interactions (including π-π interactions) with H1346, T1347, Y1349, D1431, and H1488. These findings not only clarify the roles of a range of newly identified residues involved in ADPR binding in the TRPM2 channel, but also reveal the binding pocket for ADPR in the NUDT9-H domain, which should facilitate structure-based drug design for the TRPM2 channel.
Collapse
Affiliation(s)
- Peilin Yu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiwen Xue
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jianmin Zhang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xupang Hu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yan Wu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, England, UK.,Department of Physiology and Neurobiology, Xinxiang Medical University, Henan 453003, China.,Sino-UK Brain Function Laboratory, Xinxiang Medical University, Henan 453003, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jianhong Luo
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Yang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
28
|
Li M, Zhou X, Wang S, Michailidis I, Gong Y, Su D, Li H, Li X, Yang J. Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature 2017; 542:60-65. [PMID: 28099415 DOI: 10.1038/nature20819] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022]
Abstract
Cyclic-nucleotide-gated channels are essential for vision and olfaction. They belong to the voltage-gated ion channel superfamily but their activities are controlled by intracellular cyclic nucleotides instead of transmembrane voltage. Here we report a 3.5-Å-resolution single-particle electron cryo-microscopy structure of a cyclic-nucleotide-gated channel from Caenorhabditis elegans in the cyclic guanosine monophosphate (cGMP)-bound open state. The channel has an unusual voltage-sensor-like domain, accounting for its deficient voltage dependence. A carboxy-terminal linker connecting S6 and the cyclic-nucleotide-binding domain interacts directly with both the voltage-sensor-like domain and the pore domain, forming a gating ring that couples conformational changes triggered by cyclic nucleotide binding to the gate. The selectivity filter is lined by the carboxylate side chains of a functionally important glutamate and three rings of backbone carbonyls. This structure provides a new framework for understanding mechanisms of ion permeation, gating and channelopathy of cyclic-nucleotide-gated channels and cyclic nucleotide modulation of related channels.
Collapse
Affiliation(s)
- Minghui Li
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Xiaoyuan Zhou
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650223, China.,Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China.,Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ioannis Michailidis
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Ye Gong
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650223, China.,Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China.,Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Deyuan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650223, China.,Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China.,Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Huan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650223, China.,Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China.,Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xueming Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650223, China.,Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China.,Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
29
|
VanSchouwen B, Melacini G. Structural Basis of Tonic Inhibition by Dimers of Dimers in Hyperpolarization-Activated Cyclic-Nucleotide-Modulated (HCN) Ion Channels. J Phys Chem B 2016; 120:10936-10950. [DOI: 10.1021/acs.jpcb.6b07735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bryan VanSchouwen
- Department
of Chemistry and Chemical Biology, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Giuseppe Melacini
- Department
of Chemistry and Chemical Biology, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4M1, Canada
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
30
|
Cyclic Purine and Pyrimidine Nucleotides Bind to the HCN2 Ion Channel and Variably Promote C-Terminal Domain Interactions and Opening. Structure 2016; 24:1629-1642. [PMID: 27568927 DOI: 10.1016/j.str.2016.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/21/2022]
Abstract
Cyclic AMP is thought to facilitate the opening of the HCN2 channel by binding to a C-terminal domain and promoting or inhibiting interactions between subunits. Here, we correlated the ability of cyclic nucleotides to promote interactions of isolated HCN2 C-terminal domains in solution with their ability to facilitate channel opening. Cyclic IMP, a cyclic purine nucleotide, and cCMP, a cyclic pyrimidine nucleotide, bind to a C-terminal domain containing the cyclic nucleotide-binding domain but, in contrast to other cyclic nucleotides examined, fail to promote its oligomerization, and produce only modest facilitation of opening of the full-length channel. Comparisons between ligand bound structures identify a region between the sixth and seventh β strands and the distal C helix as important for facilitation and tight binding. We propose that promotion of interactions between the C-terminal domains by a given ligand contribute to its ability to facilitate opening of the full-length channel.
Collapse
|
31
|
DeBerg HA, Brzovic PS, Flynn GE, Zagotta WN, Stoll S. Structure and Energetics of Allosteric Regulation of HCN2 Ion Channels by Cyclic Nucleotides. J Biol Chem 2015; 291:371-81. [PMID: 26559974 PMCID: PMC4697172 DOI: 10.1074/jbc.m115.696450] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Indexed: 12/20/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels play an important role in regulating electrical activity in the heart and brain. They are gated by the binding of cyclic nucleotides to a conserved, intracellular cyclic nucleotide-binding domain (CNBD), which is connected to the channel pore by a C-linker region. Binding of cyclic nucleotides increases the rate and extent of channel activation and shifts it to less hyperpolarized voltages. We probed the allosteric mechanism of different cyclic nucleotides on the CNBD and on channel gating. Electrophysiology experiments showed that cAMP, cGMP, and cCMP were effective agonists of the channel and produced similar increases in the extent of channel activation. In contrast, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) on the isolated CNBD indicated that the induced conformational changes and the degrees of stabilization of the active conformation differed for the three cyclic nucleotides. We explain these results with a model where different allosteric mechanisms in the CNBD all converge to have the same effect on the C-linker and render all three cyclic nucleotides similarly potent activators of the channel.
Collapse
Affiliation(s)
- Hannah A DeBerg
- From the Departments of Chemistry, Physiology and Biophysics, and
| | - Peter S Brzovic
- Biochemistry, University of Washington, Seattle, Washington 98195
| | | | | | - Stefan Stoll
- From the Departments of Chemistry, Physiology and Biophysics, and
| |
Collapse
|
32
|
Pessoa J, Fonseca F, Furini S, Morais-Cabral JH. Determinants of ligand selectivity in a cyclic nucleotide-regulated potassium channel. ACTA ACUST UNITED AC 2015; 144:41-54. [PMID: 24981229 PMCID: PMC4076524 DOI: 10.1085/jgp.201311145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Preference for cGMP binding to a cyclic nucleotide–binding domain can achieved by compensating for ligand dehydration or through retention of solvation waters in the bound state. Cyclic nucleotide–binding (CNB) domains regulate the activity of channels, kinases, exchange factors, and transcription factors. These proteins are highly variable in their ligand selectivity; some are highly selective for either cAMP or cGMP, whereas others are not. Several molecular determinants of ligand selectivity in CNB domains have been defined, but these do not provide a complete view of the selectivity mechanism. We performed a thorough analysis of the ligand-binding properties of mutants of the CNB domain from the MlotiK1 potassium channel. In particular, we defined which residues specifically favor cGMP or cAMP. Inversion of ligand selectivity, from favoring cAMP to favoring cGMP, was only achieved through a combination of three mutations in the ligand-binding pocket. We determined the x-ray structure of the triple mutant bound to cGMP and performed molecular dynamics simulations and a biochemical analysis of the effect of the mutations. We concluded that the increase in cGMP affinity and selectivity does not result simply from direct interactions between the nucleotide base and the amino acids introduced in the ligand-binding pocket residues. Rather, tighter cGMP binding over cAMP results from the polar chemical character of the mutations, from greater accessibility of water molecules to the ligand in the bound state, and from an increase in the structural flexibility of the mutated binding pocket.
Collapse
Affiliation(s)
- João Pessoa
- Instituto de Biologia Molecular e Celular and Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180 Porto, PortugalInstituto de Biologia Molecular e Celular and Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal
| | - Fátima Fonseca
- Instituto de Biologia Molecular e Celular and Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - João H Morais-Cabral
- Instituto de Biologia Molecular e Celular and Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal
| |
Collapse
|
33
|
Cordeiro Matos S, Zhang Z, Séguéla P. Peripheral Neuropathy Induces HCN Channel Dysfunction in Pyramidal Neurons of the Medial Prefrontal Cortex. J Neurosci 2015; 35:13244-56. [PMID: 26400952 PMCID: PMC6605438 DOI: 10.1523/jneurosci.0799-15.2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 01/28/2023] Open
Abstract
Neuropathic pain is a debilitating condition for which the development of effective treatments has been limited by an incomplete understanding of its molecular basis. The cationic current Ih mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels plays an important role in pain by facilitating ectopic firing and hyperexcitability in DRG neurons, however little is known regarding the role of Ih in supraspinal pain pathways. The medial prefrontal cortex (mPFC), which is reported to be involved in the affective aspects of pain, exhibits high HCN channel expression. Using the spared nerve injury (SNI) model of neuropathic pain in Long-Evans rats and patch-clamp recordings in layer II/III pyramidal neurons of the contralateral mPFC, we observed a hyperpolarizing shift in the voltage-dependent activation of Ih in SNI neurons, whereas maximal Ih remained unchanged. Accordingly, SNI mPFC pyramidal neurons exhibited increased input resistance and excitability, as well as facilitated glutamatergic mGluR5-mediated persistent firing, compared with sham neurons. Moreover, intracellular application of bromo-cAMP abolished the hyperpolarizing shift in the voltage-dependent activation of Ih observed in SNI neurons, whereas protein kinase A (PKA) inhibition further promoted this shift in both SNI and sham neurons. Behaviorally, acute HCN channel blockade by local injection of ZD7288 in the mPFC of SNI rats induced a decrease in cold allodynia. These findings suggest that changes in the cAMP/PKA axis in mPFC neurons underlie alterations to HCN channel function, which can influence descending inhibition of pain pathways in neuropathic conditions. Significance statement: Recent studies investigating the role of the medial prefrontal cortex (mPFC) in neuropathic pain have led to an increased awareness of how affective and cognitive factors can influence pain perception. It is therefore imperative that we advance our understanding of the involvement of supraspinal pain pathways. Our electrophysiological and behavioral results support an important role for hyperpolarization-activated cyclic nucleotide-gated channels and the cAMP/protein kinase A signaling axis in promoting hyperexcitability and persistent firing in pyramidal neurons of the mPFC in neuropathic animals. These findings offer novel insights, with potential therapeutic implications, into pathophysiological mechanisms underlying the abnormal contribution of layer II/III prefrontal pyramidal neurons to chronic pain states.
Collapse
Affiliation(s)
- Steven Cordeiro Matos
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Zizhen Zhang
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
34
|
Moleschi KJ, Akimoto M, Melacini G. Measurement of State-Specific Association Constants in Allosteric Sensors through Molecular Stapling and NMR. J Am Chem Soc 2015; 137:10777-85. [PMID: 26247242 DOI: 10.1021/jacs.5b06557] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allostery is a ubiquitous mechanism to control biological function and arises from the coupling of inhibitory and binding equilibria. The extent of coupling reflects the inactive vs active state selectivity of the allosteric effector. Hence, dissecting allosteric determinants requires quantification of state-specific association constants. However, observed association constants are typically population-averages, reporting on overall affinities but not on allosteric coupling. Here we propose a general method to measure state-specific association constants in allosteric sensors based on three key elements, i.e., state-selective molecular stapling through disulfide bridges, competition binding saturation transfer experiments and chemical shift correlation analyses to gauge state populations. The proposed approach was applied to the prototypical cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA-RIα), for which the structures of the inactive and active states are available, as needed to design the state-selective disulfide bridges. Surprisingly, the PKA-RIα state-specific association constants are comparable to those of a structurally homologous domain with ∼10(3)-fold lower cAMP-affinity, suggesting that the affinity difference arises primarily from changes in the position of the dynamic apo inhibitory equilibrium.
Collapse
Affiliation(s)
- Kody J Moleschi
- Department of Chemistry and Chemical Biology, and ‡Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, and ‡Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, and ‡Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
35
|
Magee KEA, Madden Z, Young EC. HCN Channel C-Terminal Region Speeds Activation Rates Independently of Autoinhibition. J Membr Biol 2015; 248:1043-60. [PMID: 26123597 DOI: 10.1007/s00232-015-9816-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/08/2015] [Indexed: 01/13/2023]
Abstract
Hyperpolarization- and cyclic nucleotide-activated (HCN) channels contribute to rhythmic oscillations in excitable cells. They possess an intrinsic autoinhibition with a hyperpolarized V 1/2, which can be relieved by cAMP binding to the cyclic nucleotide binding (CNB) fold in the C-terminal region or by deletion of the CNB fold. We questioned whether V 1/2 shifts caused by altering the autoinhibitory CNB fold would be accompanied by parallel changes in activation rates. We used two-electrode voltage clamp on Xenopus oocytes to compare wildtype (WT) HCN2, a constitutively autoinhibited point mutant incapable of cAMP binding (HCN2 R591E), and derivatives with various C-terminal truncations. Activation V 1/2 and deactivation t 1/2 measurements confirmed that a truncated channel lacking the helix αC of the CNB fold (ΔαC) had autoinhibition comparable to HCN2 R591E; however, ΔαC activated approximately two-fold slower than HCN2 R591E over a 60-mV range of hyperpolarizations. A channel with a more drastic truncation deleting the entire CNB fold (ΔCNB) had similar V 1/2 values to HCN2 WT with endogenous cAMP bound, confirming autoinhibition relief, yet it surprisingly activated slower than the autoinhibited HCN2 R591E. Whereas CNB fold truncation slowed down voltage-dependent reaction steps, the voltage-independent closed-open equilibrium subject to autoinhibition in HCN2 was not rate-limiting. Chemically inhibiting formation of the endogenous lipid PIP2 hyperpolarized the V 1/2 of HCN2 WT but did not slow down activation to match ΔCNB rates. Our findings suggest a "quickening conformation" mechanism, requiring a full-length CNB that ensures fast rates for voltage-dependent steps during activation regardless of potentiation by cAMP or PIP2.
Collapse
Affiliation(s)
- Kaylee E A Magee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Zarina Madden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Edgar C Young
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
36
|
Tapping the translation potential of cAMP signalling: molecular basis for selectivity in cAMP agonism and antagonism as revealed by NMR. Biochem Soc Trans 2015; 42:302-7. [PMID: 24646235 DOI: 10.1042/bst20130282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eukaryotic CBDs (cAMP-binding domains) control multiple cellular functions (e.g. phosphorylation, guanine exchange and ion channel gating). Hence the manipulation of cAMP-dependent signalling pathways has a high translational potential. However, the ubiquity of eukaryotic CBDs also poses a challenge in terms of selectivity. Before the full translational potential of cAMP signalling can be tapped, it is critical to understand the structural basis for selective cAMP agonism and antagonism. Recent NMR investigations have shown that structurally homologous CBDs respond differently to several CBD ligands and that these unexpected differences arise at the level of either binding (i.e. affinity) or allostery (i.e. modulation of the autoinhibitory equilibria). In the present article, we specifically address how the highly conserved CBD fold binds cAMP with markedly different affinities in PKA (protein kinase A) relative to other eukaryotic cAMP receptors, such as Epac (exchange protein directly activated by cAMP) and HCN (hyperpolarization-activated cyclic-nucleotide-modulated channel). A major emerging determinant of cAMP affinity is hypothesized to be the position of the autoinhibitory equilibrium of the apo-CBD, which appears to vary significantly across different CBDs. These analyses may assist the development of selective CBD effectors that serve as potential drug leads for the treatment of cardiovascular diseases.
Collapse
|
37
|
DeBerg HA, Bankston JR, Rosenbaum JC, Brzovic PS, Zagotta WN, Stoll S. Structural mechanism for the regulation of HCN ion channels by the accessory protein TRIP8b. Structure 2015; 23:734-44. [PMID: 25800552 DOI: 10.1016/j.str.2015.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/13/2015] [Accepted: 02/09/2015] [Indexed: 11/19/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels underlie the cationic Ih current present in many neurons. The direct binding of cyclic AMP to HCN channels increases the rate and extent of channel opening and results in a depolarizing shift in the voltage dependence of activation. TRIP8b is an accessory protein that regulates the cell surface expression and dendritic localization of HCN channels and reduces the cyclic nucleotide dependence of these channels. Here, we use electron paramagnetic resonance (EPR) to show that TRIP8b binds to the apo state of the cyclic nucleotide binding domain (CNBD) of HCN2 channels without changing the overall domain structure. With EPR and nuclear magnetic resonance, we locate TRIP8b relative to the HCN channel and identify the binding interface on the CNBD. These data provide a structural framework for understanding how TRIP8b regulates the cyclic nucleotide dependence of HCN channels.
Collapse
Affiliation(s)
- Hannah A DeBerg
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - John R Bankston
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Joel C Rosenbaum
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Peter S Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
38
|
Wu Y, Zheng Q, Xu Y, Chu W, Cui Y, Wang Y, Zhang H. Insight into the urea binding and K166R mutation stabilizing mechanism of TlpB: Molecular dynamics and principal component analysis study. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-4135-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
39
|
Xu Y, Wang Y, Meng XY, Zhang M, Jiang M, Cui M, Tseng GN. Building KCNQ1/KCNE1 channel models and probing their interactions by molecular-dynamics simulations. Biophys J 2014; 105:2461-73. [PMID: 24314077 DOI: 10.1016/j.bpj.2013.09.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 10/25/2022] Open
Abstract
The slow delayed rectifier (I(KS)) channel is composed of KCNQ1 (pore-forming) and KCNE1 (auxiliary) subunits, and functions as a repolarization reserve in the human heart. Design of I(KS)-targeting anti-arrhythmic drugs requires detailed three-dimensional structures of the KCNQ1/KCNE1 complex, a task made possible by Kv channel crystal structures (templates for KCNQ1 homology-modeling) and KCNE1 NMR structures. Our goal was to build KCNQ1/KCNE1 models and extract mechanistic information about their interactions by molecular-dynamics simulations in an explicit lipid/solvent environment. We validated our models by confirming two sets of model-generated predictions that were independent from the spatial restraints used in model-building. Detailed analysis of the molecular-dynamics trajectories revealed previously unrecognized KCNQ1/KCNE1 interactions, whose relevance in I(KS) channel function was confirmed by voltage-clamp experiments. Our models and analyses suggest three mechanisms by which KCNE1 slows KCNQ1 activation: by promoting S6 bending at the Pro hinge that closes the activation gate; by promoting a downward movement of gating charge on S4; and by establishing a network of electrostatic interactions with KCNQ1 on the extracellular surface that stabilizes the channel in a pre-open activated state. Our data also suggest how KCNE1 may affect the KCNQ1 pore conductance.
Collapse
Affiliation(s)
- Yu Xu
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | | | |
Collapse
|
40
|
Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function. Proc Natl Acad Sci U S A 2014; 111:14577-82. [PMID: 25197093 DOI: 10.1073/pnas.1410389111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
cAMP signaling in the brain mediates several higher order neural processes. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels directly bind cAMP through their cytoplasmic cyclic nucleotide binding domain (CNBD), thus playing a unique role in brain function. Neuronal HCN channels are also regulated by tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), an auxiliary subunit that antagonizes the effects of cAMP by interacting with the channel CNBD. To unravel the molecular mechanisms underlying the dual regulation of HCN channel activity by cAMP/TRIP8b, we determined the NMR solution structure of the HCN2 channel CNBD in the cAMP-free form and mapped on it the TRIP8b interaction site. We reconstruct here the full conformational changes induced by cAMP binding to the HCN channel CNBD. Our results show that TRIP8b does not compete with cAMP for the same binding region; rather, it exerts its inhibitory action through an allosteric mechanism, preventing the cAMP-induced conformational changes in the HCN channel CNBD.
Collapse
|
41
|
Hu L, Santoro B, Saponaro A, Liu H, Moroni A, Siegelbaum S. Binding of the auxiliary subunit TRIP8b to HCN channels shifts the mode of action of cAMP. ACTA ACUST UNITED AC 2014; 142:599-612. [PMID: 24277603 PMCID: PMC3840918 DOI: 10.1085/jgp.201311013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hyperpolarization-activated cyclic nucleotide–regulated cation (HCN) channels generate the hyperpolarization-activated cation current Ih present in many neurons. These channels are directly regulated by the binding of cAMP, which both shifts the voltage dependence of HCN channel opening to more positive potentials and increases maximal Ih at extreme negative voltages where voltage gating is complete. Here we report that the HCN channel brain-specific auxiliary subunit TRIP8b produces opposing actions on these two effects of cAMP. In the first action, TRIP8b inhibits the effect of cAMP to shift voltage gating, decreasing both the sensitivity of the channel to cAMP (K1/2) and the efficacy of cAMP (maximal voltage shift); conversely, cAMP binding inhibits these actions of TRIP8b. These mutually antagonistic actions are well described by a cyclic allosteric mechanism in which TRIP8b binding reduces the affinity of the channel for cAMP, with the affinity of the open state for cAMP being reduced to a greater extent than the cAMP affinity of the closed state. In a second apparently independent action, TRIP8b enhances the action of cAMP to increase maximal Ih. This latter effect cannot be explained by the cyclic allosteric model but results from a previously uncharacterized action of TRIP8b to reduce maximal current through the channel in the absence of cAMP. Because the binding of cAMP also antagonizes this second effect of TRIP8b, application of cAMP produces a larger increase in maximal Ih in the presence of TRIP8b than in its absence. These findings may provide a mechanistic explanation for the wide variability in the effects of modulatory transmitters on the voltage gating and maximal amplitude of Ih reported for different neurons in the brain.
Collapse
Affiliation(s)
- Lei Hu
- Department of Neuroscience, 2 Department of Pharmacology, and 3 Howard Hughes Medical Institute, Columbia University, New York, NY 10032
| | | | | | | | | | | |
Collapse
|
42
|
Lyashchenko AK, Redd KJ, Goldstein PA, Tibbs GR. cAMP control of HCN2 channel Mg2+ block reveals loose coupling between the cyclic nucleotide-gating ring and the pore. PLoS One 2014; 9:e101236. [PMID: 24983358 PMCID: PMC4077740 DOI: 10.1371/journal.pone.0101236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/04/2014] [Indexed: 12/24/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-regulated HCN channels underlie the Na+-K+ permeable IH pacemaker current. As with other voltage-gated members of the 6-transmembrane KV channel superfamily, opening of HCN channels involves dilation of a helical bundle formed by the intracellular ends of S6 albeit this is promoted by inward, not outward, displacement of S4. Direct agonist binding to a ring of cyclic nucleotide-binding sites, one of which lies immediately distal to each S6 helix, imparts cAMP sensitivity to HCN channel opening. At depolarized potentials, HCN channels are further modulated by intracellular Mg2+ which blocks the open channel pore and blunts the inhibitory effect of outward K+ flux. Here, we show that cAMP binding to the gating ring enhances not only channel opening but also the kinetics of Mg2+ block. A combination of experimental and simulation studies demonstrates that agonist acceleration of block is mediated via acceleration of the blocking reaction itself rather than as a secondary consequence of the cAMP enhancement of channel opening. These results suggest that the activation status of the gating ring and the open state of the pore are not coupled in an obligate manner (as required by the often invoked Monod-Wyman-Changeux allosteric model) but couple more loosely (as envisioned in a modular model of protein activation). Importantly, the emergence of second messenger sensitivity of open channel rectification suggests that loose coupling may have an unexpected consequence: it may endow these erstwhile “slow” channels with an ability to exert voltage and ligand-modulated control over cellular excitability on the fastest of physiologically relevant time scales.
Collapse
Affiliation(s)
- Alex K. Lyashchenko
- Department of Anesthesiology, Columbia University, New York, New York, United States of America
| | - Kacy J. Redd
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - Peter A. Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Gareth R. Tibbs
- Department of Anesthesiology, Columbia University, New York, New York, United States of America
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Double electron-electron resonance reveals cAMP-induced conformational change in HCN channels. Proc Natl Acad Sci U S A 2014; 111:9816-21. [PMID: 24958877 DOI: 10.1073/pnas.1405371111] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Binding of 3',5'-cyclic adenosine monophosphate (cAMP) to hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels regulates their gating. cAMP binds to a conserved intracellular cyclic nucleotide-binding domain (CNBD) in the channel, increasing the rate and extent of activation of the channel and shifting activation to less hyperpolarized voltages. The structural mechanism underlying this regulation, however, is unknown. We used double electron-electron resonance (DEER) spectroscopy to directly map the conformational ensembles of the CNBD in the absence and presence of cAMP. Site-directed, double-cysteine mutants in a soluble CNBD fragment were spin-labeled, and interspin label distance distributions were determined using DEER. We found motions of up to 10 Å induced by the binding of cAMP. In addition, the distributions were narrower in the presence of cAMP. Continuous-wave electron paramagnetic resonance studies revealed changes in mobility associated with cAMP binding, indicating less conformational heterogeneity in the cAMP-bound state. From the measured DEER distributions, we constructed a coarse-grained elastic-network structural model of the cAMP-induced conformational transition. We find that binding of cAMP triggers a reorientation of several helices within the CNBD, including the C-helix closest to the cAMP-binding site. These results provide a basis for understanding how the binding of cAMP is coupled to channel opening in HCN and related channels.
Collapse
|
44
|
Akimoto M, Zhang Z, Boulton S, Selvaratnam R, VanSchouwen B, Gloyd M, Accili EA, Lange OF, Melacini G. A mechanism for the auto-inhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel opening and its relief by cAMP. J Biol Chem 2014; 289:22205-20. [PMID: 24878962 DOI: 10.1074/jbc.m114.572164] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels control neuronal and cardiac electrical rhythmicity. There are four homologous isoforms (HCN1-4) sharing a common multidomain architecture that includes an N-terminal transmembrane tetrameric ion channel followed by a cytoplasmic "C-linker," which connects a more distal cAMP-binding domain (CBD) to the inner pore. Channel opening is primarily stimulated by transmembrane elements that sense membrane hyperpolarization, although cAMP reduces the voltage required for HCN activation by promoting tetramerization of the intracellular C-linker, which in turn relieves auto-inhibition of the inner pore gate. Although binding of cAMP has been proposed to relieve auto-inhibition by affecting the structure of the C-linker and CBD, the nature and extent of these cAMP-dependent changes remain limitedly explored. Here, we used NMR to probe the changes caused by the binding of cAMP and of cCMP, a partial agonist, to the apo-CBD of HCN4. Our data indicate that the CBD exists in a dynamic two-state equilibrium, whose position as gauged by NMR chemical shifts correlates with the V½ voltage measured through electrophysiology. In the absence of cAMP, the most populated CBD state leads to steric clashes with the activated or "tetrameric" C-linker, which becomes energetically unfavored. The steric clashes of the apo tetramer are eliminated either by cAMP binding, which selects for a CBD state devoid of steric clashes with the tetrameric C-linker and facilitates channel opening, or by a transition of apo-HCN to monomers or dimer of dimers, in which the C-linker becomes less structured, and channel opening is not facilitated.
Collapse
Affiliation(s)
- Madoka Akimoto
- From the Departments of Chemistry and Chemical Biology and
| | - Zaiyong Zhang
- the Biomolecular NMR and Munich Center for Integrated Protein Science, Department of Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Stephen Boulton
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | | | | | - Melanie Gloyd
- From the Departments of Chemistry and Chemical Biology and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Eric A Accili
- the Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada, and
| | - Oliver F Lange
- the Biomolecular NMR and Munich Center for Integrated Protein Science, Department of Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany, the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Giuseppe Melacini
- From the Departments of Chemistry and Chemical Biology and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada,
| |
Collapse
|
45
|
Möller S, Alfieri A, Bertinetti D, Aquila M, Schwede F, Lolicato M, Rehmann H, Moroni A, Herberg FW. Cyclic nucleotide mapping of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. ACS Chem Biol 2014; 9:1128-37. [PMID: 24605759 DOI: 10.1021/cb400904s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play a central role in the regulation of cardiac and neuronal firing rate, and these channels can be dually activated by membrane hyperpolarization and by binding of cyclic nucleotides. cAMP has been shown to directly bind HCN channels and modulate their activity. Despite this, while there are selective inhibitors that block the activation potential of the HCN channels, regulation by cAMP analogs has not been well investigated. A comprehensive screen of 47 cyclic nucleotides with modifications in the nucleobase, ribose moiety, and cyclic phosphate was tested on the three isoforms HCN1, HCN2, and HCN4. 7-CH-cAMP was identified to be a high affinity binder for HCN channels and crosschecked for its ability to act on other cAMP receptor proteins. While 7-CH-cAMP is a general activator for cAMP- and cGMP-dependent protein kinases as well as for the guanine nucleotide exchange factors Epac1 and Epac2, it displays the highest affinity to HCN channels. The molecular basis of the high affinity was investigated by determining the crystal structure of 7-CH-cAMP in complex with the cyclic nucleotide binding domain of HCN4. Electrophysiological studies demonstrate a strong activation potential of 7-CH-cAMP for the HCN4 channel in vivo. So, this makes 7-CH-cAMP a promising activator of the HCN channels in vitro whose functionality can be translated in living cells.
Collapse
Affiliation(s)
- Stefan Möller
- Department
of Biochemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Andrea Alfieri
- Department
of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - Daniela Bertinetti
- Department
of Biochemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Marco Aquila
- Department
of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - Frank Schwede
- Biolog Life Science Institute, Flughafendamm 9a, 28199 Bremen, Germany
| | - Marco Lolicato
- Cardiovascular
Research Institute, University of California San Francisco, 555 Mission
Bay Boulevard South, Rm 482, San Francisco, CA 94158, United States
| | - Holger Rehmann
- Molecular
Cancer Research, Centre of Biomedical Genetics and Cancer Genomics
Centre, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| | - Anna Moroni
- Department
of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - Friedrich W. Herberg
- Department
of Biochemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| |
Collapse
|
46
|
Chandrasekaran P, Rajasekaran R. Structural characterization of disease-causing mutations on SAP and the functional impact on the SLAM peptide: a molecular dynamics approach. MOLECULAR BIOSYSTEMS 2014; 10:1869-80. [DOI: 10.1039/c4mb00177j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Podda MV, Grassi C. New perspectives in cyclic nucleotide-mediated functions in the CNS: the emerging role of cyclic nucleotide-gated (CNG) channels. Pflugers Arch 2013; 466:1241-57. [PMID: 24142069 DOI: 10.1007/s00424-013-1373-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 01/07/2023]
Abstract
Cyclic nucleotides play fundamental roles in the central nervous system (CNS) under both physiological and pathological conditions. The impact of cAMP and cGMP signaling on neuronal and glial cell functions has been thoroughly characterized. Most of their effects have been related to cyclic nucleotide-dependent protein kinase activity. However, cyclic nucleotide-gated (CNG) channels, first described as key mediators of sensory transduction in retinal and olfactory receptors, have been receiving increasing attention as possible targets of cyclic nucleotides in the CNS. In the last 15 years, consistent evidence has emerged for their expression in neurons and astrocytes of the rodent brain. Far less is known, however, about the functional role of CNG channels in these cells, although several of their features, such as Ca(2+) permeability and prolonged activation in the presence of cyclic nucleotides, make them ideal candidates for mediators of physiological functions in the CNS. Here, we review literature suggesting the involvement of CNG channels in a number of CNS cellular functions (e.g., regulation of membrane potential, neuronal excitability, and neurotransmitter release) as well as in more complex phenomena, like brain plasticity, adult neurogenesis, and pain sensitivity. The emerging picture is that functional and dysfunctional cyclic nucleotide signaling in the CNS has to be reconsidered including CNG channels among possible targets. However, concerted efforts and multidisciplinary approaches are still needed to get more in-depth knowledge in this field.
Collapse
Affiliation(s)
- Maria Vittoria Podda
- Institute of Human Physiology, Medical School, Università Cattolica, Largo Francesco Vito 1, 00168, Rome, Italy
| | | |
Collapse
|
48
|
Carlson AE, Rosenbaum JC, Brelidze TI, Klevit RE, Zagotta WN. Flavonoid regulation of HCN2 channels. J Biol Chem 2013; 288:33136-45. [PMID: 24085296 DOI: 10.1074/jbc.m113.501759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μM. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels.
Collapse
|
49
|
Dai G, Varnum MD. CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions. Am J Physiol Cell Physiol 2013; 305:C147-59. [PMID: 23552282 PMCID: PMC3725626 DOI: 10.1152/ajpcell.00037.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/29/2013] [Indexed: 11/22/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels are critical for sensory transduction in retinal photoreceptors and olfactory receptor cells; their activity is modulated by phosphoinositides (PIPn) such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). An achromatopsia-associated mutation in cone photoreceptor CNGA3, L633P, is located in a carboxyl (COOH)-terminal leucine zipper domain shown previously to be important for channel assembly and PIPn regulation. We determined the functional consequences of this mutation using electrophysiological recordings of patches excised from cells expressing wild-type and mutant CNG channel subunits. CNGA3-L633P subunits formed functional channels with or without CNGB3, producing an increase in apparent cGMP affinity. Surprisingly, L633P dramatically potentiated PIPn inhibition of apparent cGMP affinity for these channels. The impact of L633P on PIPn sensitivity depended on an intact amino (NH2) terminal PIPn regulation module. These observations led us to hypothesize that L633P enhances PIPn inhibition by altering the coupling between NH2- and COOH-terminal regions of CNGA3. A recombinant COOH-terminal fragment partially restored normal PIPn sensitivity to channels with COOH-terminal truncation, but L633P prevented this effect. Furthermore, coimmunoprecipitation of channel fragments, and thermodynamic linkage analysis, also provided evidence for NH2-COOH interactions. Finally, tandem dimers of CNGA3 subunits that specify the arrangement of subunits containing L633P and other mutations indicated that the putative interdomain interaction occurs between channel subunits (intersubunit) rather than exclusively within the same subunit (intrasubunit). Collectively, these studies support a model in which intersubunit interactions control the sensitivity of cone CNG channels to regulation by phosphoinositides. Aberrant channel regulation may contribute to disease progression in patients with the L633P mutation.
Collapse
Affiliation(s)
- Gucan Dai
- Department of Integrative Physiology and Neuroscience, Program in Neuroscience and Center for Integrated Biotechnology, Washington State University, Pullman, Washington 99164-7620, USA
| | | |
Collapse
|
50
|
Affiliation(s)
- François Roubille
- Montreal Heart Institute, 5000 Belanger St, Montreal, PQ H1T 1C8, QC, Canada
| | | |
Collapse
|